示例#1
0
def testprofiling(ID):
  tree = Display.getFront().getLayerSet().findById(ID)

  coords = Matrix(getNodeCoordinates(tree))

  #Define axis vectors and origin
  xnorm = Matrix([[1,0,0]])
  ynorm = Matrix([[0,1,0]])
  znorm = Matrix([[0,0,1]])
  center= Matrix([[0,0,0]])

  #Project nodes onto axis
  dpx=[]
  dpy=[]
  dpz=[]
  m=coords.getRowDimension()
  for i in range(0, m):
    xstore = Matrix([coords.getRow( i )]) * xnorm.transpose()
    ystore = Matrix([coords.getRow( i )]) * ynorm.transpose()
    zstore = Matrix([coords.getRow( i )]) * znorm.transpose()
    dpx.append(xstore.getRow(0))
    dpy.append(ystore.getRow(0))
    dpz.append(zstore.getRow(0))

  #get it back in array form (get rid of list in list of Jarray)

  dpx=[ x[0] for x in dpx]
  dpy=[ x[0] for x in dpy]
  dpz=[ x[0] for x in dpz]
  zipped=zip(dpx, dpy, dpz)
  
  return zipped
示例#2
0
def profileDistances(ID, biniter):

  histo=getDendriticProfiles(ID, biniter)

  xhisto=histo[0]
  yhisto=histo[1]
  zhisto=histo[2]

  xdistance=[]
  ydistance=[]
  zdistance=[]

  tree = Display.getFront().getLayerSet().findById(ID)
  coords = Matrix(getNodeCoordinates(tree))
  m=coords.getRowDimension()

  for i in range(0, m):
    xdist = coords.get(i, 1 )
    if xdist > 0 :
      xdistance.append(xdist)
    else:
      xdistance.append((-1)*xdist)

  for i in range(0, m):
    ydist = coords.get(i, 0 )
    if ydist > 0 :
      ydistance.append(ydist)
    else:
      ydistance.append((-1)*ydist)

  for i in range(0, m):
    zdist = sqrt(coords.get(i, 0)**2 + coords.get(i,1)**2)
    zdistance.append(zdist)

  return xdistance, ydistance, zdistance
示例#3
0
def pca(ID, biniter):
  tree = Display.getFront().getLayerSet().findById(ID)

  #Calculate the center of mass
  center = Matrix( [[0,0,0]] )
  coords = Matrix(getNodeCoordinates(tree))
  m=coords.getRowDimension()

  for i in range(0, coords.getRowDimension()):
    center += Matrix([coords.getRow( i )])
  center /= float(m)

  #print center

  """
  x, y, z = 0, 0, 0
  nc = getNodeCoordinates(tree)
  for c in nc:
    x += c[0]
    y += c[1]
    z += c[2]
  print "center:", x/len(nc), y/len(nc), z/len(nc)
  """

  #Define covvariance matrix
  cova = Matrix([[0,0,0],[0,0,0],[0,0,0]])
  diff= Matrix ( [[0,0,0]])
  for i in range(0, m):
    diff = Matrix([coords.getRow( i )]) - center
    cova += diff.transpose() * diff
  cova /= float(m)

  #Evaluedecomposition 
  evaluedecomp = cova.eig()
  evalues = evaluedecomp.getRealEigenvalues()
  evectors = evaluedecomp.getV() # is a Matrix instance

  #Find maximum Eigenvector for maximal Eigenvalue
  maxevaluepos = -1
  maxevalue = 0
  for i in range(0, len(evalues)):
	  if evalues[i] > maxevalue or maxevaluepos==-1:
		  maxevalue=evalues[i]
		  maxevaluepos=i	
  maxevector=evectors.getColumn(maxevaluepos)  #HAVE TO GET VALUES OF COLUMN of evector matrix  i NOT ROW



  #--------------------TEST if Eigenvaluedecomposition is correct-----------
  #vectormatrix=Matrix([evectors.getColumn(maxevaluepos)])
  #test=cova * vectormatrix.transpose()
  #test2=vectormatrix*maxevalue
  #print test
  #print test2
  #-------------------------------------------------------------------------

  #Define a vector over the point cloud and count points in defined interval
  #Normalize vector
  length=sqrt(maxevector[0]**2 + maxevector[1]**2 + maxevector[2]**2)
  normvector = map(lambda x: x / length, maxevector)


  normvectormatrix = Matrix([normvector])
  pca=[]
  m=coords.getRowDimension()
  for i in range(0, m):
    pcastore = (Matrix([coords.getRow( i )]) - center ) * normvectormatrix.transpose()
    pca.append(pcastore.getRow(0))

  #Count number of nodes which fall in defined interval of pca projection -> has to be fixed globally when to compare PCAs!
  counter = 0
  histovector = []
  pca=[ x[0] for x in pca] #get it back in array form (get rid of list in list)
  binleft = -12500 #binleft = min(pca)
  iterations = biniter
  length = int(25000/iterations + 0.5) #int((max(pca)-min(pca))/iterations + 0.5)
  binright = binleft + length

  for i in range(0,iterations):
    for i in range(0, len(pca)):
      if pca[i] <= binright and pca[i] >= binleft:
        counter += 1    
    histovector.append(counter)
    counter=0
    binleft+=length
    binright+=length
  #print "The histogram vector is:", histovector
  return histovector
def getDendriticProfiles(ID, biniter):

    tree = Display.getFront().getLayerSet().findById(ID)

    coords = Matrix(getNodeCoordinates(tree))

    # Define axis vectors and origin
    xnorm = Matrix([[1, 0, 0]])
    ynorm = Matrix([[0, 1, 0]])
    znorm = Matrix([[0, 0, 1]])
    center = Matrix([[0, 0, 0]])

    # Project nodes onto axis
    dpx = []
    dpy = []
    dpz = []
    m = coords.getRowDimension()
    for i in range(0, m):
        xstore = Matrix([coords.getRow(i)]) * xnorm.transpose()
        ystore = Matrix([coords.getRow(i)]) * ynorm.transpose()
        zstore = Matrix([coords.getRow(i)]) * znorm.transpose()
        dpx.append(xstore.getRow(0))
        dpy.append(ystore.getRow(0))
        dpz.append(zstore.getRow(0))

    # Count number of nodes which fall in defined interval of pca projection
    xhistovector = []
    yhistovector = []
    zhistovector = []

    # get it back in array form (get rid of list in list of Jarray)

    dpx = [x[0] for x in dpx]
    dpy = [x[0] for x in dpy]
    dpz = [x[0] for x in dpz]

    # Initialize interval size and fix iterations to a specific number
    xbinleft = -34600.0
    ybinleft = -24200.0
    zbinleft = 0
    # --------PARAMETER FOR MACHINE LEARNING-----
    iterations = biniter
    # -------------------------------------------
    xlength = int((35600.0 + 34600.0) / iterations + 0.5)
    ylength = int((21300.0 + 24200.0) / iterations + 0.5)
    zlength = int((22500) / iterations + 0.5)
    xbinright = xbinleft + xlength
    ybinright = ybinleft + ylength
    zbinright = zbinleft + zlength

    # Count elements in bins
    xaxis = []

    # Count lengths in bins
    xdist = []
    ydist = []
    zdist = []

    for i in range(0, iterations):
        counter = 0
        xdiff = 0
        for i in range(0, len(dpx)):
            if dpx[i] <= xbinright and dpx[i] >= xbinleft:
                counter += 1
                xdiff += sqrt(dpy[i] ** 2 + dpz[i] ** 2)  # sqrt(dpy[i]**2) xdist is yvalue
        if counter != 0:
            xdiff /= counter
        xdist.append(xdiff)
        xhistovector.append(counter)
        xaxis.append(xbinleft)
        xbinleft += xlength
        xbinright += xlength

    yaxis = []

    for i in range(0, iterations):
        counter = 0
        ydiff = 0
        for i in range(0, len(dpy)):
            if dpy[i] <= ybinright and dpy[i] >= ybinleft:
                counter += 1
                ydiff += sqrt(dpx[i] ** 2 + dpz[i] ** 2)
        if counter != 0:
            ydiff /= counter
        ydist.append(ydiff)
        yhistovector.append(counter)
        yaxis.append(ybinleft)
        ybinleft += ylength
        ybinright += ylength

    zaxis = []

    for i in range(0, iterations):
        counter = 0
        zdiff = 0
        for i in range(0, len(dpz)):
            if dpz[i] <= zbinright and dpz[i] >= zbinleft:
                counter += 1
                zdiff += sqrt(dpx[i] ** 2 + dpy[i] ** 2)
        if counter != 0:
            zdiff /= counter
        zdist.append(zdiff)
        zhistovector.append(counter)
        zaxis.append(zbinleft)
        zbinleft += zlength
        zbinright += zlength

    # print xdist
    # print ydist
    # print zdist

    """
    #Normalize
  for i in range(0, iterations):
    xhistovector[i]/=float(xlength)
    yhistovector[i]/=float(ylength)
    zhistovector[i]/=float(zlength)
  """
    return xhistovector, yhistovector, zhistovector, xdist, ydist, zdist
def getDendriticProfiles(ID):

  tree = Display.getFront().getLayerSet().findById(ID)

  coords = Matrix(getNodeCoordinates(tree))

  #Define axis vectors and origin
  xnorm = Matrix([[1,0,0]])
  ynorm = Matrix([[0,1,0]])
  znorm = Matrix([[0,0,1]])
  center= Matrix([[0,0,0]])

  #Project nodes onto axis
  dpx=[]
  dpy=[]
  dpz=[]
  m=coords.getRowDimension()
  for i in range(0, m):
    xstore = Matrix([coords.getRow( i )]) * xnorm.transpose()
    ystore = Matrix([coords.getRow( i )]) * ynorm.transpose()
    zstore = Matrix([coords.getRow( i )]) * znorm.transpose()
    dpx.append(xstore.getRow(0))
    dpy.append(ystore.getRow(0))
    dpz.append(zstore.getRow(0))

  #Count number of nodes which fall in defined interval of pca projection
  counter = 0
  xhistovector = []
  yhistovector = []
  zhistovector = []

  #get it back in array form (get rid of list in list of Jarray)

  dpx=[ x[0] for x in dpx]
  dpy=[ x[0] for x in dpy]
  dpz=[ x[0] for x in dpz]

  #Initialize interval size and fix iterations to a specific number
  xbinleft = min(dpx)
  ybinleft = min(dpy)
  zbinleft = min(dpz)
  #-------PARAMETER FOR MACHINE LEARNING--------------
  iterations =100
  #---------------------------------------------------
  
  xlength = int((max(dpx)-min(dpx))/iterations + 0.5)
  ylength = int((max(dpy)-min(dpy))/iterations + 0.5)
  zlength = int((max(dpz)-min(dpz))/iterations + 0.5)
  xbinright = xbinleft + xlength
  ybinright = ybinleft + ylength
  zbinright = zbinleft + zlength

  #Count elements in bins
  xaxis=[]

  for i in range(0,iterations):
    for i in range(0, len(dpx)):
      if dpx[i] <= xbinright and dpx[i] >= xbinleft:
        counter += 1    
    xhistovector.append(counter)
    counter=0
    xbinleft += xlength
    xbinright += xlength
    xaxis.append(xbinleft)
  
  yaxis=[]

  for i in range(0,iterations):
    for i in range(0, len(dpy)):
      if dpy[i] <= ybinright and dpy[i] >= ybinleft:
        counter += 1    
    yhistovector.append(ylength)
    counter=0
    ybinleft += ylength
    ybinright += ylength
    yaxis.append(ybinleft)

  zaxis=[]

  for i in range(0,iterations):
    for i in range(0, len(dpz)):
      if dpz[i] <= zbinright and dpz[i] >= zbinleft:
        counter += 1    
    zhistovector.append(counter)
    counter=0
    zbinleft += zlength
    zbinright += zlength
    zaxis.append(zbinleft)

#Normalize bin-count by division through length
  for i in range(0, iterations):
    xhistovector[i]/=float(xlength)
    yhistovector[i]/=float(ylength)
    zhistovector[i]/=float(zlength)
  
  return xhistovector, yhistovector, zhistovector
    # data may be a radius or a java.awt.geom.Area 
    coords.append( correct([x, y, z]) )
    #print coords[len(coords)-1]
  return coords

#---------Select tree-----------------  
#tree = Display.getFront().getActive()
ID = 74329
tree = Display.getFront().getLayerSet().findById(ID)
#-------------------------------------


#Calculate the center of mass
center = Matrix( [[0,0,0]] )
coords = Matrix(getNodeCoordinates(tree))
m=coords.getRowDimension()

for i in range(0, coords.getRowDimension()):
  center += Matrix([coords.getRow( i )])
center /= float(m)

print center

"""
x, y, z = 0, 0, 0
nc = getNodeCoordinates(tree)
for c in nc:
  x += c[0]
  y += c[1]
  z += c[2]
print "center:", x/len(nc), y/len(nc), z/len(nc)
示例#7
0
ID=75408
tree = Display.getFront().getLayerSet().findById(ID)

coords = Matrix(getNodeCoordinates(tree))

#Define axis vectors and origin
xnorm = Matrix([[1,0,0]])
ynorm = Matrix([[0,1,0]])
znorm = Matrix([[0,0,1]])
center= Matrix([[0,0,0]])

#Project nodes onto axis
dpx=[]
dpy=[]
dpz=[]
m=coords.getRowDimension()
for i in range(0, m):
  xstore = Matrix([coords.getRow( i )]) * xnorm.transpose()
  ystore = Matrix([coords.getRow( i )]) * ynorm.transpose()
  zstore = Matrix([coords.getRow( i )]) * znorm.transpose()
  dpx.append(xstore.getRow(0))
  dpy.append(ystore.getRow(0))
  dpz.append(zstore.getRow(0))

#Count number of nodes which fall in defined interval of pca projection
counter = 0
xhistovector = []
yhistovector = []
zhistovector = []

#get it back in array form (get rid of list in list of Jarray)
示例#8
0
def sphereCount(ID, biniter):
  #find center of mass
  tree = Display.getFront().getLayerSet().findById(ID)
  coords = Matrix(getNodeCoordinates(tree))
  center = Matrix( [[0,0,0]] )
  m=coords.getRowDimension()


  for i in range(0, m):
    center += Matrix([coords.getRow( i )])
  center /= float(m)

  #calculate all distances of all points to center of mass and put them in a list
  xdist=[]
  ydist=[]
  zdist=[]
  for i in range(0, m):
    xdiff=[]
    if coords.get(i,0) > center.get(0,0):
      xdiff = coords.get(i,0) - center.get(0,0)
    else:
      xdiff = center.get(0,0) - coords.get(i,0)
    xdist.append(xdiff)

  for i in range(0, m):
    ydiff=[]
    if coords.get(i,1) > center.get(0,1):
      ydiff = coords.get(i,1) - center.get(0,1)
    else:
      ydiff = center.get(0,1) - coords.get(i,1)
    ydist.append(ydiff)

  for i in range(0, m):
    zdiff=[]
    if coords.get(i,2) > center.get(0,2):
      zdiff = coords.get(i,2) - center.get(0,2)
    else:
      zdiff = center.get(0,2) - coords.get(i,2)
    zdist.append(zdiff)

  nodeDist=[]
  dist=[]
  for i in range(0, m):
    dist=sqrt(xdist[i]**2 + ydist[i]**2 + zdist[i]**2)
    nodeDist.append(dist)

  iterations=biniter
  Ri=0 #inner radius
  """
  The maximum distance can only be achieved in the xy-plane
  With "fixed" coordinates this will approx. be 35000nm
  To make the scholl-profiles comparable this length has to be used.
  """ 
  scholl=[]
  xaxis=[]
  counter=0
  length= int(35000 / biniter + 0.5)
  Ra=length #outer radius

  for i in range(0, biniter):
    for i in range(0, len(nodeDist)):
      if nodeDist[i] <= Ra and nodeDist[i] >= Ri:  
        counter += 1   
    scholl.append(counter)
    counter=0
    xaxis.append(Ri) # adapt THIS position in all other scripts! Otherwise 1 datapoint is missing!!
    Ri += length
    Ra += length
    
  return scholl, xaxis
示例#9
0
def sumDist(id1, biniter):

  distance=profileDistances(id1, biniter)
  xdistance=distance[0]
  ydistance=distance[1]
  zdistance=distance[2]
  
  tree = Display.getFront().getLayerSet().findById(id1)
  coords = Matrix(getNodeCoordinates(tree))
  m=coords.getRowDimension()

  xdist=[]
  ydist=[]
  zdist=[]
  
  #Initialize interval size and fix iterations to a specific coordinate position
  xbinleft = -34600.0
  ybinleft = -24200.0
  zbinleft = 0
  #----------PARAMETER FOR MACHINE LEARNING-----
  iterations =biniter
  #---------------------------------------------
 
  xlength = int((35600.0+34600.0)/iterations + 0.5)
  ylength = int((21300.0+24200.0)/iterations + 0.5)
  zlength = int((22500)/iterations + 0.5)
  
  xbinright = xbinleft + xlength
  ybinright = ybinleft + ylength
  zbinright = zbinleft + zlength  

  sumdist=0.0
  
  for i in range(0, iterations):
    for i in range(0, len(xdistance)):
      if xdistance[i] <= xbinright and xdistance[i] >= xbinleft:
        sumdist += xdistance[i]   
    xdist.append(sumdist)
    sumdist=0.0
    xbinleft += xlength
    xbinright += xlength

  for i in range(0, iterations):
    for i in range(0, len(ydistance)):
      if ydistance[i] <= ybinright and ydistance[i] >= ybinleft:
        sumdist += ydistance[i]     
    ydist.append(sumdist)
    sumdist=0.0
    ybinleft += ylength
    ybinright += ylength

  for i in range(0, iterations):
    for i in range(0, len(zdistance)):
      if zdistance[i] <= zbinright and zdistance[i] >= zbinleft:
        sumdist += zdistance[i]     
    zdist.append(sumdist)
    sumdist=0.0
    zbinleft += zlength
    zbinright += zlength

  sumdistance=[]
  sumdistance= [xdist, ydist, zdist]
  return sumdistance