def runFromPickle(self, picklefile):

        f = open(picklefile, "rb")
        ent_model = pickle.load(f)
        f.close()

        print 'Loaded classifier from', picklefile
        ent = MaximumEntropyClassifier(self.rawfname, **self.maxent_args)
        ent.setModel(ent_model)

        return self.evaluate(ent)
    def runFromPickle(self, picklefile):
      '''
      Opens the NLTK model stored in <picklefile> and uses that model for evaluation
      '''
      f = open(picklefile, "rb")
      # Pickle stores an NLTK model
      ent_model = pickle.load(f)
      f.close()

      print 'Loaded classifier from', picklefile
      ent = MaximumEntropyClassifier(self.rawfname, **self.maxent_args)
      ent.setModel(ent_model)

      # Return everything but the classifer string
      return self.evaluate(ent)[1:]
    def runFromPickle(self, picklefile):
        '''
      Opens the NLTK model stored in <picklefile> and uses that model for evaluation
      '''
        f = open(picklefile, "rb")
        # Pickle stores an NLTK model
        ent_model = pickle.load(f)
        f.close()

        print 'Loaded classifier from', picklefile
        ent = MaximumEntropyClassifier(self.rawfname, **self.maxent_args)
        ent.setModel(ent_model)

        # Return everything but the classifer string
        return self.evaluate(ent)[1:]