def view3d(sgrid): from mayavi.sources.vtk_data_source import VTKDataSource from mayavi.modules.api import Outline, GridPlane from mayavi.api import Engine from mayavi.core.ui.engine_view import EngineView e=Engine() e.start() s = e.new_scene() # Do this if you need to see the MayaVi tree view UI. ev = EngineView(engine=e) ui = ev.edit_traits() # mayavi.new_scene() src = VTKDataSource(data=sgrid) e.add_source(src) e.add_module(Outline()) g = GridPlane() g.grid_plane.axis = 'x' e.add_module(g)
def tresdeizar(X, Y, anchox, anchoy, angulo): engine = Engine() engine.start() scene = engine.new_scene() scene.scene.disable_render = True # for speed visual.set_viewer(scene) surfaces = [] for k in range(0, len(X)): source = ParametricSurface() source.function = 'ellipsoid' engine.add_source(source) surface = Surface() source.add_module(surface) actor = surface.actor # mayavi actor, actor.actor is tvtk actor actor.property.opacity = 0.7 actor.property.color = (0, 0, 1) # tuple(np.random.rand(3)) actor.mapper.scalar_visibility = False # don't colour ellipses by their scalar indices into colour map actor.actor.orientation = np.array([90, angulo[k], 0 ]) #* 90 #(angulo[k]) # in degrees actor.actor.position = np.array([X[k], Y[k], 0]) actor.actor.scale = np.array( [anchox[k] / 2, anchox[k] / 2, anchoy[k] / 2]) surfaces.append(surface) source.scene.background = (1.0, 1.0, 1.0) CellScann.set_img_3deizada(mlab) return mlab.show()
def plot(self): ''' Plot a 3D visualisation of the Voronoi grid using mayavi. This method requires mayavi to be installed and also needs the vertices information to be available (see the class constructor). Note that in order for this method to work in an interactive IPython session, a series of environment variables and proper switches need to be used depending on your system configuration. For instance, on a Linux machine with PyQt4 and a recent IPython version, the following bash startup command for IPython can be used: ``ETS_TOOLKIT=qt4 QT_API=pyqt ipython --gui=qt4`` This sets both the mayavi and the IPython GUI toolkit to qt4, and the ``QT_API`` variable is used to specify that we want the ``pyqt`` API (as opposed to the ``pyside`` alternative API - PySide is an alternative implementation of PyQt). It should be possible to get this method working on different configurations, but the details will be highly system-dependent. ''' if not self._with_vertices: raise ValueError( 'the class must be constructed with \'with_vertices=True\' in order to support plotting' ) import numpy as np try: from tvtk.api import tvtk from mayavi.api import Engine from mayavi import mlab from mayavi.sources.vtk_data_source import VTKDataSource from mayavi.modules.surface import Surface from mayavi.modules.scalar_cut_plane import ScalarCutPlane except ImportError: raise ImportError( 'the plot method requires Mayavi, please make sure it is correctly installed' ) # Shortcut. vertices = self._neighbours_table['vertices'] # This is a list of all the vertices composing all voronoi cells. # points = [[x1,y1,z1],[x2,y2,z2],...] points = [] # Array to describe each voronoi cell in terms of the points list above. E.g., # cells = [4,0,1,2,3,5,4,5,6,7,8] # This describes two cells, the first with 4 vertices whose indices in the points array # are 0,1,2,3, the second with 5 vertices whose indices are 4,5,6,7,8. cells = [] cur_cell_idx = 0 # Indices in the cells array where each new cell starts. In the example above, # offset = [0,5] offset = [] cur_offset = 0 # Array of cell types. Cells will all be of the same type. cell_types = [] # Build the above quantities. for v in vertices: # Drop the empty vertices coordinates, signalled by NaN. arr = v[~np.isnan(v)] assert (len(arr) % 3 == 0) tmp = np.split(arr, len(arr) / 3) # Append the vertices. points = points + tmp # Append the cell description. cells = cells + \ [len(tmp)] + range(cur_cell_idx, cur_cell_idx + len(tmp)) cur_cell_idx += len(tmp) # Append the offset info. offset.append(cur_offset) cur_offset += len(tmp) + 1 # Append the cell type. cell_types.append(tvtk.ConvexPointSet().cell_type) # Cache the sites' positions. sites_arr = self._neighbours_table['coordinates'] # Setup the Mayavi engine and figure. e = Engine() e.start() fig = mlab.figure(engine=e) # Plot the sites. mlab.points3d(sites_arr[:, 0], sites_arr[:, 1], sites_arr[:, 2], figure=fig) # Plot the cells with coloured surfaces. # This is just an array of scalars to assign a "temperature" to each cell vertex, which will be # used for coloring purposes. temperature = np.arange(0, len(points) * 10, 10, 'd') # Initialise the array of cells. cell_array = tvtk.CellArray() cell_array.set_cells(len(vertices), np.array(cells)) # Initialise the unstructured grid object. ug = tvtk.UnstructuredGrid(points=np.array(points)) ug.set_cells(np.array(cell_types), np.array(offset), cell_array) ug.point_data.scalars = temperature ug.point_data.scalars.name = 'temperature' # Create a data source from the unstructured grid object. src = VTKDataSource(data=ug) # Add the source to the engine. e.add_source(src) # Create a surface object with opacity 0.5 surf = Surface() surf.actor.property.opacity = 0.5 # Add the surface object to the engine. e.add_module(surf) # Add a cut plane as well. e.add_module(ScalarCutPlane()) # Create another representation of the grid, this time using only white wireframe # to highlight to shape of the cells. # Rebuild the ug. ug = tvtk.UnstructuredGrid(points=np.array(points)) ug.set_cells(np.array(cell_types), np.array(offset), cell_array) src = VTKDataSource(data=ug) e.add_source(src) surf = Surface() surf.actor.property.representation = 'wireframe' e.add_module(surf) cp = ScalarCutPlane() e.add_module(cp)
def plot(self): ''' Plot a 3D visualisation of the Voronoi grid using mayavi. This method requires mayavi to be installed and also needs the vertices information to be available (see the class constructor). Note that in order for this method to work in an interactive IPython session, a series of environment variables and proper switches need to be used depending on your system configuration. For instance, on a Linux machine with PyQt4 and a recent IPython version, the following bash startup command for IPython can be used: ``ETS_TOOLKIT=qt4 QT_API=pyqt ipython --gui=qt4`` This sets both the mayavi and the IPython GUI toolkit to qt4, and the ``QT_API`` variable is used to specify that we want the ``pyqt`` API (as opposed to the ``pyside`` alternative API - PySide is an alternative implementation of PyQt). It should be possible to get this method working on different configurations, but the details will be highly system-dependent. ''' if not self._with_vertices: raise ValueError( 'the class must be constructed with \'with_vertices=True\' in order to support plotting') import numpy as np try: from tvtk.api import tvtk from mayavi.api import Engine from mayavi import mlab from mayavi.sources.vtk_data_source import VTKDataSource from mayavi.modules.surface import Surface from mayavi.modules.scalar_cut_plane import ScalarCutPlane except ImportError: raise ImportError( 'the plot method requires Mayavi, please make sure it is correctly installed') # Shortcut. vertices = self._neighbours_table['vertices'] # This is a list of all the vertices composing all voronoi cells. # points = [[x1,y1,z1],[x2,y2,z2],...] points = [] # Array to describe each voronoi cell in terms of the points list above. E.g., # cells = [4,0,1,2,3,5,4,5,6,7,8] # This describes two cells, the first with 4 vertices whose indices in the points array # are 0,1,2,3, the second with 5 vertices whose indices are 4,5,6,7,8. cells = [] cur_cell_idx = 0 # Indices in the cells array where each new cell starts. In the example above, # offset = [0,5] offset = [] cur_offset = 0 # Array of cell types. Cells will all be of the same type. cell_types = [] # Build the above quantities. for v in vertices: # Drop the empty vertices coordinates, signalled by NaN. arr = v[~np.isnan(v)] assert(len(arr) % 3 == 0) tmp = np.split(arr, len(arr) / 3) # Append the vertices. points = points + tmp # Append the cell description. cells = cells + \ [len(tmp)] + range(cur_cell_idx, cur_cell_idx + len(tmp)) cur_cell_idx += len(tmp) # Append the offset info. offset.append(cur_offset) cur_offset += len(tmp) + 1 # Append the cell type. cell_types.append(tvtk.ConvexPointSet().cell_type) # Cache the sites' positions. sites_arr = self._neighbours_table['coordinates'] # Setup the Mayavi engine and figure. e = Engine() e.start() fig = mlab.figure(engine=e) # Plot the sites. mlab.points3d( sites_arr[:, 0], sites_arr[:, 1], sites_arr[:, 2], figure=fig) # Plot the cells with coloured surfaces. # This is just an array of scalars to assign a "temperature" to each cell vertex, which will be # used for coloring purposes. temperature = np.arange(0, len(points) * 10, 10, 'd') # Initialise the array of cells. cell_array = tvtk.CellArray() cell_array.set_cells(len(vertices), np.array(cells)) # Initialise the unstructured grid object. ug = tvtk.UnstructuredGrid(points=np.array(points)) ug.set_cells(np.array(cell_types), np.array(offset), cell_array) ug.point_data.scalars = temperature ug.point_data.scalars.name = 'temperature' # Create a data source from the unstructured grid object. src = VTKDataSource(data=ug) # Add the source to the engine. e.add_source(src) # Create a surface object with opacity 0.5 surf = Surface() surf.actor.property.opacity = 0.5 # Add the surface object to the engine. e.add_module(surf) # Add a cut plane as well. e.add_module(ScalarCutPlane()) # Create another representation of the grid, this time using only white wireframe # to highlight to shape of the cells. # Rebuild the ug. ug = tvtk.UnstructuredGrid(points=np.array(points)) ug.set_cells(np.array(cell_types), np.array(offset), cell_array) src = VTKDataSource(data=ug) e.add_source(src) surf = Surface() surf.actor.property.representation = 'wireframe' e.add_module(surf) cp = ScalarCutPlane() e.add_module(cp)
class Visualisation(object): ''' Class to visualize vascularNetworks in 3D using vtk and mayavi to visualize the vascular network and the area over time. The simulation results data as pressure and Flow are mapped on the surface of the vessels''' def __init__(self, vascularNetwork = None): ''' Constructor of the Visualisation ''' #dictionarys to save the src and actors self.vizActors = {} self.vizSources = {} self.vizVTKGrids = {} self.velArrowGrid = {} self.velArrowSrc = {} self.glyph = {} self.vesselLengths = {} self.vesselN = {} # Solution data # is numpyarray within numpyarrays # control as # AreaSolution[ vesselID ] [ point in time ] # scalarSolution[ vesselID ] [ point in time ] self.areaSolution = None self.scalarSolution = None self.scalarNames = None self.scalarPosition = 0 self.solutionName = None self.solutionPosition = 0 # set min max for look uptable self.SourceMin = 0 self.SourceMax = 0 #dimensions | 2 radius (inner outer) | 24 points on circle # | third dimension N = gridpoints in z axis: not fixed, vessel property self.dims = [1, 24] # vascularNetwork self.vascularNetwork = vascularNetwork # engine and scene for visualisation self.engine = Engine() self.scene = None # to increase the radius change # radius(t) = radius0 + deltaRadius * factor self.factor = 50 # Movie self.movieBool = False self.movNumber = 0 self.movPath = None # update control self.moveWall = True self.moveWallOff = False self.pauseBool = True self.calls = 0 self.currentTime = 0 self.endTime = None self.updateTimeStep = 1 # bool for velocity profile self.vecBool = False self.powerLawCoefficient = 2.0 self.static = False # 2 d plot figures self.figspace = None self.figtime = None self.plotSpace = False self.picked = None #### init this stuff prob move to another function self.initialize() def __del__(self): ''' Class Destructor ''' del(self.vascularNetwork) print " visualisation removed" #-------------------## public methods##-------------------# def initialize(self): ''' Initialize and create a 3D representation of the network ''' if self.vascularNetwork != None: gc.enable() for key,vessel in self.vascularNetwork.vessels.iteritems(): self.vesselLengths[key] = vessel.length self.vesselN[key] = vessel.N self.scene = self.engine.new_scene(name = self.vascularNetwork.name) self.engine.scenes[0].name = str(self.vascularNetwork.name+' - '+'paused') self.scene.scene.background = (0.0,0.0,0.0) # start the engine self.engine.start() # set cameraposition self.scene.scene.camera.azimuth(90) self.scene.scene.camera.roll(90) # create the initial network self.createVizData() # add the initial network self.scene.scene.disable_render = True for Id in self.vizSources.iterkeys(): self.engine.add_source(self.vizSources[Id],self.scene) self.engine.add_module(self.vizActors[Id], obj=self.vizSources[Id]) self.engine.add_source(self.velArrowSrc[Id], self.scene) self.glyph[Id].actor.actor.visibility = self.vecBool # set bool for visualize the arrows self.engine.add_module(self.glyph[Id], obj=self.velArrowSrc[Id]) # refit the camera position self.scene.scene.reset_zoom() self.scene.scene.disable_render = False if self.static == False: # add interactor self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_N) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_M) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_B) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_V) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_C) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_X) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_Y) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_J) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_H) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_U) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_G) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_komma) self.scene.scene.interactor.add_observer("KeyPressEvent",self.key_press_punkt) #self.scene.mayavi_scene.on_mouse_pick(self.picker_callback) self.engine.scenes[0].on_mouse_pick(self.picker_callback) print " ..3d visualisation initialized!" def setVascularNetwork(self,vascularNetwork): ''' Set the vascular Network if not set in constructor and initialize the network ''' self.vascularNetwork = vascularNetwork self.initialize() def setSolutionData(self,solutionData): ''' Process the solutionData, calculates the velocity and set all needed varibles. solutionData is a list with dictionarys containing the solution one or several simulation solutions. solutionData = [ {'Pressure': pressureData, 'Flow': flowData, 'Area': areaData, 'Name': 'solution1' }, ...] ''' #initialize self.areaSolution = [] self.scalarSolution = [] self.scalarNames = [] self.solutionName = [] for solution in solutionData: # save the solution name currentSolutionName = solution.pop('Name') #save the scalars of the solution currentScalars = [] currentScalarNames = [] # transfer pressure to mmHg Psol = {} for vesselId,Ptemp in solution['Pressure'].iteritems(): Psol[vesselId] = Ptemp/133.32 currentScalars.append(Psol) currentScalarNames.append('Pressure') currentScalars.append(solution.pop('Flow')) currentScalarNames.append('Flow') currentScalars.append(solution.pop('Area')) currentScalarNames.append('Area') # calculate velocities velocity = [] for i in range (0,len(currentScalars[1]),1): vel_t = array([currentScalars[1][i][0]/currentScalars[2][i][0]]) for t in range(1,len(currentScalars[1][i]),1): v = currentScalars[1][i][t]/currentScalars[2][i][t] vel_t = append(vel_t,[v],axis = 0) velocity.append(vel_t) # set the velocity currentScalars.append(velocity) currentScalarNames.append('Velocity') # check if additional solution data was passed: for key,value in solution.iteritems(): currentScalars.append(value) currentScalarNames.append(key) # save the data in class variables self.areaSolution.append(currentScalars[2]) self.scalarSolution.append(currentScalars) self.scalarNames.append(currentScalarNames) self.solutionName.append(currentSolutionName) del(currentScalars) del(currentScalarNames) del(currentSolutionName) self.endTime = len(self.areaSolution[self.solutionPosition][0]) self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'paused'+' - '+self.solutionName[self.solutionPosition]) print ' .. solution data initialized!' def visualize(self): ''' Start the visualisation of the simulation result. Set up Upgrade method and starts the main loop. Use only if the simulation result was set! ''' # update the lookuptables and set them minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) for actor in self.vizActors.itervalues(): actor.module_manager.scalar_lut_manager.data_range = [self.SourceMin, self.SourceMax] #self.vizActors[0].module_manager.scalar_lut_manager.data_name = self.scalarNames[self.solutionPosition][self.scalarPosition] #self.vizActors[0].module_manager.scalar_lut_manager.show_scalar_bar = True timer = Timer(0.03, self.update) gui = GUI() gui.busy = True gui.start_event_loop() def visualizeStatic(self): gui = GUI() self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'static') gui.start_event_loop() def picker_callback(self, picker): ''' Mouse pick callback, opens a 2D time plot if a vessel is picked; If the plotSpace is activated key "g" the animated space plot of the vessel is loaded aswell ''' printOut = ' .. world - picked' if len(picker.actors) > 0: picked = picker.actors[0] for key,value in self.vizActors.iteritems(): if value.actor.actor._vtk_obj == picked._vtk_obj: self.picked = self.vascularNetwork.vessels[key].name printOut = str(' .. '+self.vascularNetwork.name +' - '+ self.picked + ' - picked') string = ' '.join(['python',cur+'/class2dVisualisationSimple.py','-f',self.vascularNetwork.name, '-n 1','-i',str(key)]) subprocess.call(string, shell=True) # if self.static == False: # # if self.figspace is not None and type(self.figspace) is not int: # self.figspace.clf() # if self.figtime is not None: # self.figtime.clf() # # networkPlot = NetworkPlot([self.scalarSolution[self.solutionPosition][0][key]], # [self.scalarSolution[self.solutionPosition][1][key]], # [self.scalarSolution[self.solutionPosition][2][key]]) # # #self.figspace,self.figtime = thread.start_new_thread(networkPlot, ({name: self.vascularNetwork.getSimulationDictionary()[name]}, # # 0,1,False,True,True,self.vascularNetwork.simulationContext['totalTime'],True)) # self.figspace,self.figtime = networkPlot(VesselNetwork = {self.picked: self.vascularNetwork.getSimulationDictionary()[key]}, # cutTime=0,CUT=1,plotVelocity=False,plotSpace=self.plotSpace,plotTime=True, # totaltime = self.vascularNetwork.simulationContext['totalTime'], scaleplot=True) print printOut def key_press_G(self,obj,event): ''' Key event G: enable / disable 2D space plot if vessel is picked ''' key = obj.GetKeyCode() if key=='G': if self.plotSpace == False: self.plotSpace = True print " .. 2D space plot enabled" else: self.plotSpace = False print " .. 2D space plot disabled" elif key=='g': if self.figtime is not None: print " .. time plot for ",self.picked," saved" path = str(cur+'/../network_files/'+self.vascularNetwork.name+'/2dTimePlots/') if not os.path.exists(path): os.makedirs(path) self.figtime.savefig(str(path+self.vascularNetwork.name+'-'+self.solutionName[self.solutionPosition]+'-'+self.picked+'.png')) def key_press_N(self,obj,event): ''' Key event n: next lookup table - change the lookup and scalar mapping ''' key = obj.GetKeyCode() if key=='n' or key=='N': self.scalarPosition = self.scalarPosition + 1 if self.scalarPosition == len(self.scalarNames[self.solutionPosition]): self.scalarPosition = 0 minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) def key_press_J(self,obj,event): ''' Key event j: last lookup table - change the lookup and scalar mapping ''' key = obj.GetKeyCode() if key=='j' or key=='J': self.scalarPosition = self.scalarPosition - 1 if self.scalarPosition < 0: self.scalarPosition = len(self.scalarNames[self.solutionPosition]) - 1 # recalculate the range of the lookuptable ## Note: change this in further version to save memory -> (list) minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) def key_press_H(self,obj,event): ''' Key event h: next solution data - show next soultion data set ''' key = obj.GetKeyCode() if key=='h' or key=='H': self.solutionPosition = self.solutionPosition + 1 if self.solutionPosition == len(self.solutionName): self.solutionPosition = 0 # recalculate the range of the lookuptable ## self.scalarPosition = 0 minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) self.endTime = len(self.areaSolution[self.solutionPosition][0]) #set name of the solution if self.pauseBool == False: self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'paused'+' - '+self.solutionName[self.solutionPosition]) else: self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'running'+' - '+'t = 0.000' +' - '+self.solutionName[self.solutionPosition]) #restart simulation self.currentTime = 0 def key_press_U(self,obj,event): ''' Key event u: last solution data - show last soultion data set ''' key = obj.GetKeyCode() if key=='u' or key=='U': self.solutionPosition = self.solutionPosition - 1 if self.solutionPosition < 0: self.solutionPosition = len(self.solutionName) - 1 # recalculate the range of the lookuptable ## self.scalarPosition = 0 minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) #set time self.endTime = len(self.areaSolution[self.solutionPosition][0]) #set name of the solution if self.pauseBool == False: self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'paused'+' - '+self.solutionName[self.solutionPosition]) else: self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'running'+' - '+'t = 0.000' +' - '+self.solutionName[self.solutionPosition]) #restart simulation self.currentTime = 0 def key_press_M(self,obj,event): ''' Key event m: start saving png for movie ''' key = obj.GetKeyCode() if key=='m' or key=='M': # create movie directory if self.movPath == None: self.movPath = str(cur+'/../NetworkFiles/'+self.vascularNetwork.name+'/movieTemplateData/') if not os.path.exists(str(self.movPath)): os.makedirs(str(self.movPath)) if self.movieBool == False: self.movieBool = True print " .. start creating movie files" else: self.movieBool = False self.movNumber = 0 print " .. stop creating movie files" def key_press_B(self,obj,event): ''' Key event B: pause/break the simulation ''' key = obj.GetKeyCode() if key=='b' or key=='B': if self.pauseBool == False: self.pauseBool = True self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'paused'+' - '+self.solutionName[self.solutionPosition]) else: self.pauseBool = False self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'running'+' - '+'t = 0.000' +' - '+self.solutionName[self.solutionPosition]) def key_press_V(self,obj,event): ''' Key event V: open vessels and show vectorfields ''' key = obj.GetKeyCode() if key=='v' or key=='V': if self.vecBool == False: self.vecBool = True for glyph in self.glyph.itervalues(): glyph.actor.actor.visibility = self.vecBool self.scalarPosition = 3 minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) self.vizActors[0].module_manager.scalar_lut_manager.show_scalar_bar = False self.glyph[0].module_manager.scalar_lut_manager.data_range = [0, self.SourceMax] self.glyph[0].module_manager.scalar_lut_manager.show_scalar_bar = True self.glyph[0].module_manager.scalar_lut_manager.data_name = self.scalarNames[self.solutionPosition][self.scalarPosition] print " .. velocity profile enabled" else: self.vecBool = False for glyph in self.glyph.itervalues(): glyph.actor.actor.visibility = self.vecBool print " .. velocity profile disabled" self.scalarPosition = 3 minL = [] maxL = [] for array in self.scalarSolution[self.solutionPosition][self.scalarPosition].itervalues(): minL.append(array.min()) maxL.append(array.max()) self.SourceMin = min(minL) self.SourceMax = max(maxL) self.vizActors[0].module_manager.scalar_lut_manager.data_name = self.scalarNames[self.solutionPosition][3] self.vizActors[0].module_manager.scalar_lut_manager.show_scalar_bar = True def key_press_C(self,obj,event): ''' Key event C: stop/start simulation of the wall movement ''' key = obj.GetKeyCode() print key if key=='c' or key=='C': if self.moveWall == False: self.moveWall = True print " .. wall movement enabled" else: self.moveWallOff = True print " .. wall movement disabled" def key_press_X(self,obj,event): ''' Key event X: increase the radius factor ''' key = obj.GetKeyCode() if key=='x' or key=='X': self.factor = self.factor + 1 print " .. radius factor increased to: ",self.factor def key_press_Y(self,obj,event): ''' Key event Y: decrease the radius factor ''' key = obj.GetKeyCode() if key=='y' or key=='Y' or key=='z' or key=='Z': if self.factor > 0: self.factor = self.factor - 1 print " .. radius factor decreased to: ",self.factor def key_press_komma(self,obj,event): ''' Key event ,: increase the timestep ''' key = obj.GetKeyCode() if key==',' or key==',': self.updateTimeStep = self.updateTimeStep + 1 print " .. update timestep increased to: ",self.updateTimeStep def key_press_punkt(self,obj,event): ''' Key event ,: decrease the timestep ''' key = obj.GetKeyCode() if key=='.' or key=='.': if self.updateTimeStep > 1: self.updateTimeStep = self.updateTimeStep - 1 print " .. update timestep decreased to: ",self.updateTimeStep #-------------------## private methods##-------------------# def update(self): ''' update function: updates the scene,actors every time it is called ''' if self.endTime == None: self.endTime = len(self.areaSolution[self.solutionPosition][0]) if self.pauseBool == False: Lstart = time.clock() ###start the update # stop the rendering while updating grids and the piplines # without mayavi is rendering during the update # --> updateTime is 10x higher # --> all vessels are updated at the same time self.scene.scene.disable_render = True # to accelerate fist calculat data then apply TempColor = {} TempPoints = {} TempVelPoints = {} TempVelColor = {} #create new data LstartD = time.clock() for Id in self.vesselLengths.iterkeys(): if self.moveWall == True: radiusAr = sqrt(self.areaSolution[self.solutionPosition][Id][0]/pi)+(sqrt(self.areaSolution[self.solutionPosition][Id][self.currentTime]/pi)-sqrt(self.areaSolution[self.solutionPosition][Id][0]/pi))*self.factor # calculate the radius from the area if self.moveWallOff == True: radiusAr = sqrt(self.areaSolution[self.solutionPosition][Id][0]/pi) # create points for the vessels TempPoints[Id] = self.generate_vertices(r_array = radiusAr, length = self.vesselLengths[Id], N = self.vesselN[Id]) # create points for the velocity arrows TempVelPoints[Id] = self.generate_velocity_points(length = self.vesselLengths[Id], N = self.vesselN[Id], r_array= radiusAr) # set size and color of the velocity arrows if self.vecBool == True: ## here the 3 must refer to the velocity!! in scalarSolution self.scalarPosition = 3 TempVelColor[Id] = self.generate_velocity_colorScalars(velArray = self.scalarSolution[self.solutionPosition][self.scalarPosition][Id][self.currentTime], N = self.vesselN[Id]) if Id == 1: print self.scalarSolution[self.solutionPosition][self.scalarPosition][Id][self.currentTime][1] #set the scalar color array to velocity colorAr = self.scalarSolution[self.solutionPosition][self.scalarPosition][Id][0] else: # set the scalar color array to the current choosen colorAr = self.scalarSolution[self.solutionPosition][self.scalarPosition][Id][self.currentTime] # create scalar color map TempColor[Id]= ravel(self.generate_colorScalars(colorAr, N = self.vesselN[Id])) LendD = time.clock() #print ' time:', LendD - LstartD for Id,grid in self.vizVTKGrids.iteritems(): # modify grid of the vizVTKGrid # create scalar color map grid.point_data.scalars = TempColor[Id] grid.point_data.scalars.name = 'scalars' # create update data if wall movement is enabled if self.moveWall == True: grid.points = TempPoints[Id] # set lut range (necessary) self.vizActors[Id].module_manager.scalar_lut_manager.data_range = [self.SourceMin, self.SourceMax] # set lut (for 1 actor is enough # update velocity vectors if self.vecBool == True: for Id,grid in self.velArrowGrid.iteritems(): grid.point_data.scalars = TempVelColor[Id][1] grid.point_data.scalars.name = 'scalars' grid.point_data.vectors = TempVelColor[Id][0] grid.point_data.vectors.name = 'vectors' self.glyph[Id].glyph.scale_mode = 'scale_by_scalar' self.glyph[Id].glyph.glyph.range = [0, self.SourceMax] self.glyph[Id].glyph.color_mode = 'color_by_scalar' self.glyph[Id].module_manager.scalar_lut_manager.data_range = [0, self.SourceMax] self.glyph[Id].module_manager.scalar_lut_manager.use_default_range = False self.glyph[0].module_manager.scalar_lut_manager.show_scalar_bar = True self.glyph[0].module_manager.scalar_lut_manager.data_name = self.scalarNames[self.solutionPosition][self.scalarPosition] # update position if they change (wallmovement) if self.moveWall == True: grid.points = TempVelPoints[Id] #else: #self.vizActors[0].module_manager.scalar_lut_manager.data_name = self.scalarNames[self.solutionPosition][self.scalarPosition] #self.vizActors[0].module_manager.scalar_lut_manager.show_scalar_bar = True if self.moveWallOff == True: self.moveWall = False self.moveWallOff = False dt = (self.vascularNetwork.simulationContext['totalTime']/self.endTime)*self.currentTime self.engine.scenes[0].name = str(self.vascularNetwork.name +' - '+'running'+' - '+'t = %0.4f' %dt+' - '+self.solutionName[self.solutionPosition]) # control the current timeStep self.currentTime = self.currentTime+self.updateTimeStep # restart simulation if end reached if self.currentTime >= self.endTime: self.currentTime = 0 # if no movie: if self.movieBool == False: #start the rendering again self.scene.scene.disable_render = False #save pictures for the movies else: #thread.start_new_thread(self.scene.scene.save_png,(('../data/temp/'+'movieTemplateData'+str(self.movNumber).zfill(4)+'.png'), )) Lstart = time.clock() self.scene.scene.save_png(self.movPath+'movieTemplateData'+str(self.movNumber).zfill(4)+'.png') Lend = time.clock() print" needed %1.6f sec to save the picture" %((Lend-Lstart)) self.movNumber = self.movNumber + 1 Lend = time.clock() #print" update time %1.6f -- framerate: %1.2f -- increase in framerate: %1.2f " %((Lend-Lstart), 1.0/(Lend-Lstart), (1.0/(Lend-Lstart-LendD+LstartD))-(1.0/(Lend-Lstart))) def generate_vertices(self,length,N,r_array = None,r_init = None): ''' Calculates vertices of an vessel either based on radius array with lenght N or radius init = [radius start, radius end] ''' N = int(N) if r_array == None: r_initA = r_init[0] r_initB = r_init[1] r_array = linspace(r_initA, r_initB, N) # inner wall (not necesarry!) #ri_array = r_array*array([0.9]) #r = vstack((ri_array,r_array)).transpose() r = r_array.transpose() if self.vecBool == False : thetaFactor = 2 else: thetaFactor = 1 theta = linspace(pi/2.0, pi/2.0+thetaFactor*pi, self.dims[1]) z = linspace(0, length, N) ## create Points aLength = self.dims[0]*self.dims[1] points = empty([aLength*N,3]) start = 0 for z_plane in range(0,len(z),1): end = start+aLength plane_points = points[start:end] plane_points[:,0] = (cos(theta)*r[z_plane]).ravel() # for inner wall add r[z_plane,:][:,None] plane_points[:,1] = (sin(theta)*r[z_plane]).ravel() plane_points[:,2] = z[z_plane] start = end return points def generate_colorScalars(self,colorArray, N): ''' map the values of the colorArray to the points of the grid ''' # for loop #colors = array([]) #for z_plane in range(0,int(N),1): # s_z = linspace(colorArray[z_plane] ,colorArray[z_plane], (self.dims[0]*self.dims[1])) # colors = hstack((colors,s_z)) # matrix calculation colors = column_stack(ones(((self.dims[0]*self.dims[1]),int(N)))*colorArray).ravel() return colors def generate_velocity_points(self, length, N , r_array = None,r_init = None, numberOfVec = 11): ''' calculates the points for the velocity arrows of the velocity profil ''' #numberOfVec should be odd if r_array == None: r_initA = r_init[0] r_initB = r_init[1] r_array = linspace(r_initA, r_initB, N) dz = length/N z = linspace(dz, length-dz, (N-2)) ## create Points aLength = numberOfVec points = empty([aLength*(N-2),3]) start = 0 for z_plane in range(0,len(z),1): end = start+aLength y_plane = linspace(- r_array[z_plane]*0.9, r_array[z_plane]*0.9, numberOfVec) plane_points = points[start:end] plane_points[:,0] = 0 plane_points[:,1] = y_plane plane_points[:,2] = z[z_plane] start = end return points def generate_velocity_colorScalars(self, N, velArray = None, numberOfVec=11): ''' Map the values of the velocity calculated of the mean velocity to the points of the grid ''' if velArray == None: velC = linspace(0.001,0.005,int((N-2))) else: velC = delete(velArray,[0,int(N-1)]) profileA = linspace(0.9,0.0,6) profileB = linspace(0,0.9,6) prof = append(profileA,profileB) profile = delete(prof, 6) #cast N colorVectors = empty([numberOfVec*(N-2),3]) colorScalars = array([]) count = 0 for z in range(0,int(N-2),1): for i in range (0,numberOfVec,1): #velocity profile using powerlaw with n = self.powerLawCoefficient vel = velC[z]*((self.powerLawCoefficient+2.0)/self.powerLawCoefficient)*(1.0-profile[i]**self.powerLawCoefficient) # vectors are for direction of the arrows t = 1.0 if vel != 0: t = vel/abs(vel) # scalares determine size and color vec_i = array([0,0,t*abs(vel)]) colorVectors[count] = vec_i colorScalars = hstack((colorScalars,[abs(vel)])) count = count + 1 return [colorVectors,colorScalars] def createVizData(self): ''' Creates the actors and sources of the vascular network parsing through the network as binary tree using connection of mother and daughter vessels ''' ### INIT viz = [] vessels = self.vascularNetwork.vessels root = self.vascularNetwork.root[0] ### root vessel ## find data #find initial rotation rootRot = 0.0 if vessels[root].angleToMother != None: rootRot = vessels[root].angleToMother #find inital RadiusA dRadiusA = 0.05 if vessels[root].radiusA != None: dRadiusA = vessels[root].radiusA #find inital RadiusB dRadiusB = dRadiusA if vessels[root].radiusB != None: dRadiusB = vessels[root].radiusB #find length of root rLength = 1.0 if vessels[root].length != None: rLength = vessels[root].length ## create visualisation Data # create the data points points = self.generate_vertices(r_init=[dRadiusA,dRadiusB],length = rLength, N = self.vesselN[root]) # create scalar color map col = linspace(0.0, 0.0, self.vesselN[root]) color = self.generate_colorScalars(col, N = self.vesselN[root]) # generate structured grid, data source self.vizVTKGrids[root] = tvtk.StructuredGrid(dimensions=(self.dims[1], self.dims[0], self.vesselN[root])) #set data points self.vizVTKGrids[root].points = points #set scalar color map self.vizVTKGrids[root].point_data.scalars = ravel(color) self.vizVTKGrids[root].point_data.scalars.name = 'scalars' #self.scalarNames[self.scalarPosition] # create datasource for mayavi self.vizSources[root] = VTKDataSource(data = self.vizVTKGrids[root]) # create surface actor for the datas ource self.vizActors[root] = Surface() self.vizActors[root].actor.actor.position=0,0,0 self.vizActors[root].actor.actor.rotate_x(rootRot) ### create the velocity vector field # creat gird for the velocity arrows self.velArrowGrid[root] = tvtk.StructuredGrid(dimensions=(11, 1, self.vesselN[root])) #set data points self.velArrowGrid[root].points = self.generate_velocity_points(self.vesselLengths[root], self.vesselN[root], r_init=[dRadiusA,dRadiusB]) #set scalar color map color = self.generate_velocity_colorScalars(self.vesselN[root]) self.velArrowGrid[root].point_data.vectors = color[0].copy() self.velArrowGrid[root].point_data.vectors.name = 'vectors' self.velArrowGrid[root].point_data.scalars = color[1].copy() self.velArrowGrid[root].point_data.scalars.name = 'scalars' # create source self.velArrowSrc[root] = VTKDataSource(data = self.velArrowGrid[root]) # create vectors data self.glyph[root] = Glyph() self.glyph[root].glyph.scale_mode = 'scale_by_scalar' self.glyph[root].glyph.color_mode = 'color_by_scalar' self.glyph[root].glyph.glyph_source.glyph_source = self.glyph[root].glyph.glyph_source.glyph_dict['arrow_source'] self.glyph[root].glyph.glyph_source.glyph_position = 'tail' self.glyph[root].glyph.glyph.scale_factor = self.vesselLengths[root] / self.vesselN[root] * 4 / 7 # set position self.glyph[root].actor.actor.position = 0,0,0 self.glyph[root].actor.actor.rotate_x(rootRot) viz.append(root) ## set rest of the network while len(viz) != 0: # Current left Daughter currentVessel = viz.pop(0) #find values of the current mother moPos = self.vizActors[currentVessel].actor.actor.position moRot = self.vizActors[currentVessel].actor.actor.orientation[0] moRotY = self.vizActors[currentVessel].actor.actor.orientation[1] moLength = 1.0 if vessels[currentVessel].length != None: moLength = vessels[currentVessel].length if vessels[currentVessel].radiusB != None: moRadiusB = vessels[currentVessel].radiusB elif vessels[currentVessel].radiusA != None: moRadiusB = vessels[currentVessel].radiusA else: moRadiusB = 0.05 #find Daughters rightDaughter = None rightDaughter = vessels[currentVessel].rightDaughter leftDaughter = None leftDaughter = vessels[currentVessel].leftDaughter # create left Daughter vessel visualisation if leftDaughter is not None: #find length of Daughter dLength = 1.0 if vessels[leftDaughter].length != None: dLength = vessels[leftDaughter].length #find inital RadiusA dRadiusA = moRadiusB if vessels[leftDaughter].radiusA != None: dRadiusA = vessels[leftDaughter].radiusA #find inital RadiusB dRadiusB = dRadiusA if vessels[leftDaughter].radiusB != None: dRadiusB = vessels[leftDaughter].radiusB #set rotation if rightDaughter is not None: if vessels[leftDaughter].angleToMother is not None: drot = -moRotY+(1+2/180.0*moRotY)*((1+2/180.0*moRotY)*-vessels[leftDaughter].angleToMother + moRot) else: drot = -moRotY+(1+2/180.0*moRotY)*((1+2/180.0*moRotY)*-30.0 + moRot) else: drot = moRot #set z_position pos_z = moLength*cos(moRot*pi/180)*(1+2/180.0*moRotY) #set y_position if moRot != 0.0: pos_y = -moLength*sin(moRot*pi/180) else: pos_y = 0.0 # apply position changes dpos = moPos[0],moPos[1]+pos_y,moPos[2]+pos_z ## create visualisation Data # create the data points points = self.generate_vertices(r_init=[dRadiusA,dRadiusB],length = dLength,N = self.vesselN[leftDaughter]) # create scalar color map col = linspace(0.0, 0.0, self.vesselN[leftDaughter]) color = self.generate_colorScalars(col, N = self.vesselN[leftDaughter]) # generate structured grid, data source self.vizVTKGrids[leftDaughter] = tvtk.StructuredGrid(dimensions=(self.dims[1], self.dims[0], self.vesselN[leftDaughter])) #set data points self.vizVTKGrids[leftDaughter].points = points #set scalar color map self.vizVTKGrids[leftDaughter].point_data.scalars = ravel(color.copy()) self.vizVTKGrids[leftDaughter].point_data.scalars.name = 'scalars' #self.scalarNames[self.scalarPosition] # create datasource for mayavi self.vizSources[leftDaughter] = VTKDataSource(data = self.vizVTKGrids[leftDaughter]) # create surface actor for the datas ource self.vizActors[leftDaughter] = Surface() self.vizActors[leftDaughter].actor.actor.position = dpos self.vizActors[leftDaughter].actor.actor.rotate_x(drot) ## set arrows self.velArrowGrid[leftDaughter] = tvtk.StructuredGrid(dimensions=(11, 1, self.vesselN[leftDaughter])) #set data points self.velArrowGrid[leftDaughter].points = self.generate_velocity_points(self.vesselLengths[leftDaughter], self.vesselN[leftDaughter], r_init=[dRadiusA,dRadiusB]) #set scalar color map color = self.generate_velocity_colorScalars(self.vesselN[leftDaughter]) self.velArrowGrid[leftDaughter].point_data.vectors = color[0].copy() self.velArrowGrid[leftDaughter].point_data.vectors.name = 'vectors' self.velArrowGrid[leftDaughter].point_data.scalars = color[1].copy() self.velArrowGrid[leftDaughter].point_data.scalars.name = 'scalars' # create source self.velArrowSrc[leftDaughter] = VTKDataSource(data = self.velArrowGrid[leftDaughter]) # create vectors data self.glyph[leftDaughter] = Glyph() self.glyph[leftDaughter].glyph.scale_mode = 'scale_by_scalar' self.glyph[leftDaughter].glyph.color_mode = 'color_by_scalar' self.glyph[leftDaughter].glyph.glyph_source.glyph_source = self.glyph[leftDaughter].glyph.glyph_source.glyph_dict['arrow_source'] self.glyph[leftDaughter].glyph.glyph_source.glyph_position = 'tail' self.glyph[leftDaughter].glyph.glyph.scale_factor = self.vesselLengths[leftDaughter] / self.vesselN[leftDaughter] * 4 / 7 # set position self.glyph[leftDaughter].actor.actor.position = dpos self.glyph[leftDaughter].actor.actor.rotate_x(drot) #check for children if vessels[leftDaughter].leftDaughter is not None: viz.append(leftDaughter) # right Daughter (only if left Daughter) if rightDaughter is not None: #find length of Daughter dLength = 1.0 if vessels[rightDaughter].length != None: dLength = vessels[rightDaughter].length #find inital RadiusA dRadiusA = moRadiusB if vessels[rightDaughter].radiusA != None: dRadiusA = vessels[rightDaughter].radiusA #find inital RadiusB dRadiusB = dRadiusA if vessels[rightDaughter].radiusB != None: dRadiusB = vessels[rightDaughter].radiusB # set values if vessels[rightDaughter].angleToMother is not None: drot = -moRotY+(1+2/180.0*moRotY)*( (1+2/180.0*moRotY)*vessels[rightDaughter].angleToMother + moRot) else: drot = -moRotY+(1+2/180.0*moRotY)*((1+2/180.0*moRotY)*30.0 + moRot) # set z position pos_z = moLength*cos(moRot*pi/180)*(1+2/180.0*moRotY) # truns with 180 degree #set rotation if moRot != 0: pos_y = -moLength*sin(moRot*pi/180) else: pos_y = 0.0 dpos = moPos[0],moPos[1]+pos_y,moPos[2]+pos_z ## create visualisation Data # create the data points points = self.generate_vertices(r_init=[dRadiusA,dRadiusB],length = dLength,N = self.vesselN[rightDaughter]) # create scalar color map col = linspace(0.0, 0.0, self.vesselN[rightDaughter]) color = self.generate_colorScalars(col, N = self.vesselN[rightDaughter]) # generate structured grid, data source self.vizVTKGrids[rightDaughter] = tvtk.StructuredGrid(dimensions=(self.dims[1], self.dims[0], self.vesselN[rightDaughter])) #set data points self.vizVTKGrids[rightDaughter].points = points #set scalar color map self.vizVTKGrids[rightDaughter].point_data.scalars = ravel(color.copy()) self.vizVTKGrids[rightDaughter].point_data.scalars.name = 'scalars' #self.scalarNames[self.scalarPosition] # create datasource for mayavi self.vizSources[rightDaughter] = VTKDataSource(data = self.vizVTKGrids[rightDaughter]) # create surface actor for the datas ource self.vizActors[rightDaughter] = Surface() self.vizActors[rightDaughter].actor.actor.position = dpos self.vizActors[rightDaughter].actor.actor.rotate_x(drot) self.velArrowGrid[rightDaughter] = tvtk.StructuredGrid(dimensions=(11, 1, self.vesselN[rightDaughter])) #set data points self.velArrowGrid[rightDaughter].points = self.generate_velocity_points(self.vesselLengths[rightDaughter], self.vesselN[rightDaughter], r_init=[dRadiusA,dRadiusB]) #set scalar color map color = self.generate_velocity_colorScalars(self.vesselN[rightDaughter]) self.velArrowGrid[rightDaughter].point_data.vectors = color[0].copy() self.velArrowGrid[rightDaughter].point_data.vectors.name = 'vectors' self.velArrowGrid[rightDaughter].point_data.scalars = color[1].copy() self.velArrowGrid[rightDaughter].point_data.scalars.name = 'scalars' # create source self.velArrowSrc[rightDaughter] = VTKDataSource(data = self.velArrowGrid[rightDaughter]) # create vectors data self.glyph[rightDaughter] = Glyph() self.glyph[rightDaughter].glyph.scale_mode = 'scale_by_scalar' self.glyph[rightDaughter].glyph.color_mode = 'color_by_scalar' self.glyph[rightDaughter].glyph.glyph_source.glyph_source = self.glyph[rightDaughter].glyph.glyph_source.glyph_dict['arrow_source'] self.glyph[rightDaughter].glyph.glyph_source.glyph_position = 'tail' self.glyph[rightDaughter].glyph.glyph.scale_factor = self.vesselLengths[rightDaughter] / self.vesselN[rightDaughter] * 4 / 7 # set position self.glyph[rightDaughter].actor.actor.position = dpos self.glyph[rightDaughter].actor.actor.rotate_x(drot) # check for children if vessels[rightDaughter].leftDaughter is not None: viz.append(rightDaughter)
""" displayVmrl.py Display a VMR file of a cube Created JRM 2015-11-24 Do "%gui qt" first @author: John Minter """ import os from mayavi.sources.vrml_importer import VRMLImporter from mayavi.api import Engine gitDir = os.environ["GIT_HOME"] relImg = "/OSImageAnalysis/images/vrml/" fName = "Lines" filePath = gitDir + relImg + fName + ".wrl" print(filePath) e = Engine() e.start() s = e.new_scene() src = VRMLImporter() src.initialize(filePath) e.add_source(src)
e = Engine() e.start() # In[3]: s = e.new_scene() # In[4]: r = VTKFileReader() # In[5]: r.initialize('heart.vtk') e.add_source(r) # In[6]: from mayavi.modules import api # In[7]: o = api.Outline() # In[8]: e.add_module(o) # In[9]:
# #src = mlab.pipeline.scalar_field(s) #mlab.pipeline.iso_surface(src, contours=[s.min()+0.1*s.ptp(), ], opacity=0.3) #mlab.pipeline.iso_surface(src, contours=[s.max()-0.1*s.ptp(), ],) def minc_reader(fname): #Reader for .mnc files. #Parameters: #fname -- Filename to be read. from tvtk.api import tvtk from mayavi.sources.vtk_data_source import VTKDataSource r = tvtk.MINCImageReader(file_name=fname) r.update() src = VTKDataSource(data=r.output) print src.data return src from mayavi.api import Engine e = Engine() e.start() s = e.new_scene() source = minc_reader('/home/sulantha/Downloads/new_temp.mnc') e.add_source(source) from mayavi.modules.api import Surface surf = Surface() e.add_module(surf, obj=source) mlab.show()