def make_mbmf_pi(n, h, e, l):
        def _mbmf_pi(ob):
            ac, rew = mbl.step(ob=ob,
                               pi=_mbmf_inner_pi,
                               horizon=h,
                               num_samples=n,
                               num_elites=e,
                               gamma=mbl_gamma,
                               lamb=l,
                               use_mean_elites=use_mean_elites)
            return ac[None], rew

        return Policy(step=_mbmf_pi, reset=None)
def learn(
        *,
        network,
        env,
        eval_env,
        make_eval_env,
        env_id,
        total_timesteps,
        timesteps_per_batch,
        sil_update,
        sil_loss,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        lr=3e-4,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=5,
        sil_value=0.01,
        sil_alpha=0.6,
        sil_beta=0.1,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_interval=0,
        load_path=None,
        # MBL
        # For train mbl
        mbl_train_freq=5,

        # For eval
        num_eval_episodes=5,
        eval_freq=5,
        vis_eval=False,
        eval_targs=('mbmf', ),
        #eval_targs=('mf',),
        quant=2,

        # For mbl.step
        #num_samples=(1500,),
        num_samples=(1, ),
        horizon=(2, ),
        #horizon=(2,1),
        #num_elites=(10,),
        num_elites=(1, ),
        mbl_lamb=(1.0, ),
        mbl_gamma=0.99,
        #mbl_sh=1, # Number of step for stochastic sampling
        mbl_sh=10000,
        #vf_lookahead=-1,
        #use_max_vf=False,
        reset_per_step=(0, ),

        # For get_model
        num_fc=2,
        num_fwd_hidden=500,
        use_layer_norm=False,

        # For MBL
        num_warm_start=int(1e4),
        init_epochs=10,
        update_epochs=5,
        batch_size=512,
        update_with_validation=False,
        use_mean_elites=1,
        use_ent_adjust=0,
        adj_std_scale=0.5,

        # For data loading
        validation_set_path=None,

        # For data collect
        collect_val_data=False,

        # For traj collect
        traj_collect='mf',

        # For profile
        measure_time=True,
        eval_val_err=False,
        measure_rew=True,
        model_fn=None,
        update_fn=None,
        init_fn=None,
        mpi_rank_weight=1,
        comm=None,
        vf_coef=0.5,
        max_grad_norm=0.5,
        log_interval=1,
        nminibatches=4,
        noptepochs=4,
        cliprange=0.2,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''
    if not isinstance(num_samples, tuple): num_samples = (num_samples, )
    if not isinstance(horizon, tuple): horizon = (horizon, )
    if not isinstance(num_elites, tuple): num_elites = (num_elites, )
    if not isinstance(mbl_lamb, tuple): mbl_lamb = (mbl_lamb, )
    if not isinstance(reset_per_step, tuple):
        reset_per_step = (reset_per_step, )
    if validation_set_path is None:
        if collect_val_data:
            validation_set_path = os.path.join(logger.get_dir(), 'val.pkl')
        else:
            validation_set_path = os.path.join('dataset',
                                               '{}-val.pkl'.format(env_id))
    if eval_val_err:
        eval_val_err_path = os.path.join('dataset',
                                         '{}-combine-val.pkl'.format(env_id))
    logger.log(locals())
    logger.log('MBL_SH', mbl_sh)
    logger.log('Traj_collect', traj_collect)

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0
    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    set_global_seeds(seed)
    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    nenvs = env.num_envs
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    nbatch = nenvs * timesteps_per_batch
    nbatch_train = nbatch // nminibatches
    is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
        make_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='pi',
            silm=pi)
        model = make_model()
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)
        make_old_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='oldpi',
            silm=oldpi)
        old_model = make_old_model()

    # MBL
    # ---------------------------------------
    #viz = Visdom(env=env_id)
    win = None
    eval_targs = list(eval_targs)
    logger.log(eval_targs)

    make_model_f = get_make_mlp_model(num_fc=num_fc,
                                      num_fwd_hidden=num_fwd_hidden,
                                      layer_norm=use_layer_norm)
    mbl = MBL(env=eval_env,
              env_id=env_id,
              make_model=make_model_f,
              num_warm_start=num_warm_start,
              init_epochs=init_epochs,
              update_epochs=update_epochs,
              batch_size=batch_size,
              **network_kwargs)

    val_dataset = {'ob': None, 'ac': None, 'ob_next': None}
    if update_with_validation:
        logger.log('Update with validation')
        val_dataset = load_val_data(validation_set_path)
    if eval_val_err:
        logger.log('Log val error')
        eval_val_dataset = load_val_data(eval_val_err_path)
    if collect_val_data:
        logger.log('Collect validation data')
        val_dataset_collect = []

    def _mf_pi(ob, t=None):
        stochastic = True
        ac, vpred, _, _ = pi.step(ob, stochastic=stochastic)
        return ac, vpred

    def _mf_det_pi(ob, t=None):
        #ac, vpred, _, _ = pi.step(ob, stochastic=False)
        ac, vpred = pi._evaluate([pi.pd.mode(), pi.vf], ob)
        return ac, vpred

    def _mf_ent_pi(ob, t=None):
        mean, std, vpred = pi._evaluate([pi.pd.mode(), pi.pd.std, pi.vf], ob)
        ac = np.random.normal(mean, std * adj_std_scale, size=mean.shape)
        return ac, vpred
################### use_ent_adjust======> adj_std_scale????????pi action sample

    def _mbmf_inner_pi(ob, t=0):
        if use_ent_adjust:
            return _mf_ent_pi(ob)
        else:
            #return _mf_pi(ob)
            if t < mbl_sh: return _mf_pi(ob)
            else: return _mf_det_pi(ob)

    # ---------------------------------------

    # Run multiple configuration once
    all_eval_descs = []

    def make_mbmf_pi(n, h, e, l):
        def _mbmf_pi(ob):
            ac, rew = mbl.step(ob=ob,
                               pi=_mbmf_inner_pi,
                               horizon=h,
                               num_samples=n,
                               num_elites=e,
                               gamma=mbl_gamma,
                               lamb=l,
                               use_mean_elites=use_mean_elites)
            return ac[None], rew

        return Policy(step=_mbmf_pi, reset=None)

    for n in num_samples:
        for h in horizon:
            for l in mbl_lamb:
                for e in num_elites:
                    if 'mbmf' in eval_targs:
                        all_eval_descs.append(('MeanRew', 'MBL_TRPO_SIL',
                                               make_mbmf_pi(n, h, e, l)))
                    #if 'mbmf' in eval_targs: all_eval_descs.append(('MeanRew-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), 'MBL_TRPO-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), make_mbmf_pi(n, h, e, l)))
    if 'mf' in eval_targs:
        all_eval_descs.append(
            ('MeanRew', 'TRPO_SIL', Policy(step=_mf_pi, reset=None)))

    logger.log('List of evaluation targets')
    for it in all_eval_descs:
        logger.log(it[0])

    pool = Pool(mp.cpu_count())
    warm_start_done = False
    # ----------------------------------------

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)
    # Prepare for rollouts
    # ----------------------------------------
    if traj_collect == 'mf':
        seg_gen = traj_segment_generator(env,
                                         timesteps_per_batch,
                                         model,
                                         stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
            if traj_collect == 'mf-random' or traj_collect == 'mf-mb':
                seg_mbl = seg_gen_mbl.__next__()
            else:
                seg_mbl = seg
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]

        # Val data collection
        if collect_val_data:
            for ob_, ac_, ob_next_ in zip(ob[:-1, 0, ...], ac[:-1, ...],
                                          ob[1:, 0, ...]):
                val_dataset_collect.append(
                    (copy.copy(ob_), copy.copy(ac_), copy.copy(ob_next_)))
        # -----------------------------
        # MBL update
        else:
            ob_mbl, ac_mbl = seg_mbl["ob"], seg_mbl["ac"]

            mbl.add_data_batch(ob_mbl[:-1, 0, ...], ac_mbl[:-1, ...],
                               ob_mbl[1:, 0, ...])
            mbl.update_forward_dynamic(require_update=iters_so_far %
                                       mbl_train_freq == 0,
                                       ob_val=val_dataset['ob'],
                                       ac_val=val_dataset['ac'],
                                       ob_next_val=val_dataset['ob_next'])
        # -----------------------------

        if traj_collect == 'mf':
            #if traj_collect == 'mf' or traj_collect == 'mf-random' or traj_collect == 'mf-mb':
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            model = seg["model"]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
            if hasattr(pi, "rms"):
                pi.rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            for (lossname, lossval) in zip(loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

            with timed("vf"):

                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=64):
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)
            with timed("SIL"):
                lrnow = lr(1.0 - timesteps_so_far / total_timesteps)
                l_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train(
                    lrnow)

            logger.record_tabular("ev_tdlam_before",
                                  explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if sil_update > 0:
            logger.record_tabular("SilSamples", sil_samples)

        if rank == 0:
            # MBL evaluation
            if not collect_val_data:
                #set_global_seeds(seed)
                default_sess = tf.get_default_session()

                def multithread_eval_policy(env_, pi_, num_episodes_,
                                            vis_eval_, seed):
                    with default_sess.as_default():
                        if hasattr(env, 'ob_rms') and hasattr(env_, 'ob_rms'):
                            env_.ob_rms = env.ob_rms
                        res = eval_policy(env_, pi_, num_episodes_, vis_eval_,
                                          seed, measure_time, measure_rew)

                        try:
                            env_.close()
                        except:
                            pass
                    return res

                if mbl.is_warm_start_done() and iters_so_far % eval_freq == 0:
                    warm_start_done = mbl.is_warm_start_done()
                    if num_eval_episodes > 0:
                        targs_names = {}
                        with timed('eval'):
                            num_descs = len(all_eval_descs)
                            list_field_names = [e[0] for e in all_eval_descs]
                            list_legend_names = [e[1] for e in all_eval_descs]
                            list_pis = [e[2] for e in all_eval_descs]
                            list_eval_envs = [
                                make_eval_env() for _ in range(num_descs)
                            ]
                            list_seed = [seed for _ in range(num_descs)]
                            list_num_eval_episodes = [
                                num_eval_episodes for _ in range(num_descs)
                            ]
                            print(list_field_names)
                            print(list_legend_names)

                            list_vis_eval = [
                                vis_eval for _ in range(num_descs)
                            ]

                            for i in range(num_descs):
                                field_name, legend_name = list_field_names[
                                    i], list_legend_names[i],

                                res = multithread_eval_policy(
                                    list_eval_envs[i], list_pis[i],
                                    list_num_eval_episodes[i],
                                    list_vis_eval[i], seed)
                                #eval_results = pool.starmap(multithread_eval_policy, zip(list_eval_envs, list_pis, list_num_eval_episodes, list_vis_eval,list_seed))

                                #for field_name, legend_name, res in zip(list_field_names, list_legend_names, eval_results):
                                perf, elapsed_time, eval_rew = res
                                logger.record_tabular(field_name, perf)
                                if measure_time:
                                    logger.record_tabular(
                                        'Time-%s' % (field_name), elapsed_time)
                                if measure_rew:
                                    logger.record_tabular(
                                        'SimRew-%s' % (field_name), eval_rew)
                                targs_names[field_name] = legend_name

                    if eval_val_err:
                        fwd_dynamics_err = mbl.eval_forward_dynamic(
                            obs=eval_val_dataset['ob'],
                            acs=eval_val_dataset['ac'],
                            obs_next=eval_val_dataset['ob_next'])
                        logger.record_tabular('FwdValError', fwd_dynamics_err)

                    logger.dump_tabular()
                    #print(logger.get_dir())
                    #print(targs_names)
                    #if num_eval_episodes > 0:


#                        win = plot(viz, win, logger.get_dir(), targs_names=targs_names, quant=quant, opt='best')
# -----------
#logger.dump_tabular()
        yield pi

    if collect_val_data:
        with open(validation_set_path, 'wb') as f:
            pickle.dump(val_dataset_collect, f)
        logger.log('Save {} validation data'.format(len(val_dataset_collect)))
示例#3
0
def learn(
        *,
        network,
        env,
        eval_env,
        make_eval_env,
        env_id,
        total_timesteps,
        seed=None,
        nsteps=2048,
        ent_coef=0.0,
        lr=3e-4,
        vf_coef=0.5,
        max_grad_norm=0.5,
        gamma=0.99,
        lam=0.95,
        log_interval=10,
        nminibatches=4,
        noptepochs=4,
        cliprange=0.2,

        # MBL
        # For train mbl
        mbl_train_freq=5,
        # For eval
        num_eval_episodes=5,
        eval_freq=5,
        vis_eval=False,
        #eval_targs=('mbmf',),
        eval_targs=('mf', ),
        quant=2,

        # For mbl.step
        #num_samples=(1500,),
        num_samples=(1, ),
        horizon=(2, ),
        #horizon=(2,1),
        #num_elites=(10,),
        num_elites=(1, ),
        mbl_lamb=(1.0, ),
        mbl_gamma=0.99,
        #mbl_sh=1, # Number of step for stochastic sampling
        mbl_sh=10000,
        #vf_lookahead=-1,
        #use_max_vf=False,
        reset_per_step=(0, ),

        # For get_model
        num_fc=2,
        num_fwd_hidden=500,
        use_layer_norm=False,

        # For MBL
        num_warm_start=int(1e4),
        init_epochs=10,
        update_epochs=5,
        batch_size=512,
        update_with_validation=False,
        use_mean_elites=1,
        use_ent_adjust=0,
        adj_std_scale=0.5,

        # For data loading
        validation_set_path=None,

        # For data collect
        collect_val_data=False,

        # For traj collect
        traj_collect='mf',

        # For profile
        measure_time=True,
        eval_val_err=False,
        measure_rew=True,
        save_interval=0,
        load_path=None,
        model_fn=None,
        update_fn=None,
        init_fn=None,
        mpi_rank_weight=1,
        comm=None,
        **network_kwargs):
    '''
    Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)

    Parameters:
    ----------

    network:                          policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
                                      specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
                                      tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
                                      neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
                                      See common/models.py/lstm for more details on using recurrent nets in policies

    env: baselines.common.vec_env.VecEnv     environment. Needs to be vectorized for parallel environment simulation.
                                      The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class.


    nsteps: int                       number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
                                      nenv is number of environment copies simulated in parallel)

    total_timesteps: int              number of timesteps (i.e. number of actions taken in the environment)

    ent_coef: float                   policy entropy coefficient in the optimization objective

    lr: float or function             learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the
                                      training and 0 is the end of the training.

    vf_coef: float                    value function loss coefficient in the optimization objective

    max_grad_norm: float or None      gradient norm clipping coefficient

    gamma: float                      discounting factor

    lam: float                        advantage estimation discounting factor (lambda in the paper)

    log_interval: int                 number of timesteps between logging events

    nminibatches: int                 number of training minibatches per update. For recurrent policies,
                                      should be smaller or equal than number of environments run in parallel.

    noptepochs: int                   number of training epochs per update

    cliprange: float or function      clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training
                                      and 0 is the end of the training

    save_interval: int                number of timesteps between saving events

    load_path: str                    path to load the model from

    **network_kwargs:                 keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
                                      For instance, 'mlp' network architecture has arguments num_hidden and num_layers.



    '''
    if not isinstance(num_samples, tuple): num_samples = (num_samples, )
    if not isinstance(horizon, tuple): horizon = (horizon, )
    if not isinstance(num_elites, tuple): num_elites = (num_elites, )
    if not isinstance(mbl_lamb, tuple): mbl_lamb = (mbl_lamb, )
    if not isinstance(reset_per_step, tuple):
        reset_per_step = (reset_per_step, )
    if validation_set_path is None:
        if collect_val_data:
            validation_set_path = os.path.join(logger.get_dir(), 'val.pkl')
        else:
            validation_set_path = os.path.join('dataset',
                                               '{}-val.pkl'.format(env_id))
    if eval_val_err:
        eval_val_err_path = os.path.join('dataset',
                                         '{}-combine-val.pkl'.format(env_id))
    logger.log(locals())
    logger.log('MBL_SH', mbl_sh)
    logger.log('Traj_collect', traj_collect)

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0
    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    set_global_seeds(seed)

    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)
    total_timesteps = int(total_timesteps)

    policy = build_policy(env, network, **network_kwargs)
    np.set_printoptions(precision=3)
    # Get the nb of env
    nenvs = env.num_envs
    # Get state_space and action_space
    ob_space = env.observation_space
    ac_space = env.action_space

    # Calculate the batch_size
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches
    is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)

    # Instantiate the model object (that creates act_model and train_model)
    if model_fn is None:
        model_fn = Model

    model = model_fn(policy=policy,
                     ob_space=ob_space,
                     ac_space=ac_space,
                     nbatch_act=nenvs,
                     nbatch_train=nbatch_train,
                     nsteps=nsteps,
                     ent_coef=ent_coef,
                     vf_coef=vf_coef,
                     max_grad_norm=max_grad_norm,
                     comm=comm,
                     mpi_rank_weight=mpi_rank_weight,
                     ppo=True,
                     prev_pi=None)
    pi = model.act_model

    if load_path is not None:
        model.load(load_path)

    # MBL
    # ---------------------------------------
    #viz = Visdom(env=env_id)
    win = None
    eval_targs = list(eval_targs)
    logger.log(eval_targs)

    make_model = get_make_mlp_model(num_fc=num_fc,
                                    num_fwd_hidden=num_fwd_hidden,
                                    layer_norm=use_layer_norm)
    mbl = MBL(env=eval_env,
              env_id=env_id,
              make_model=make_model,
              num_warm_start=num_warm_start,
              init_epochs=init_epochs,
              update_epochs=update_epochs,
              batch_size=batch_size,
              **network_kwargs)

    val_dataset = {'ob': None, 'ac': None, 'ob_next': None}
    if update_with_validation:
        logger.log('Update with validation')
        val_dataset = load_val_data(validation_set_path)
    if eval_val_err:
        logger.log('Log val error')
        eval_val_dataset = load_val_data(eval_val_err_path)
    if collect_val_data:
        logger.log('Collect validation data')
        val_dataset_collect = []

    def _mf_pi(ob, t=None):
        stochastic = True
        ac, vpred, _, _ = pi.step(ob, stochastic=stochastic)
        return ac, vpred

    def _mf_det_pi(ob, t=None):
        #ac, vpred, _, _ = pi.step(ob, stochastic=False)
        ac, vpred = pi._evaluate([pi.pd.mode(), pi.vf], ob)
        return ac, vpred

    def _mf_ent_pi(ob, t=None):
        mean, std, vpred = pi._evaluate([pi.pd.mode(), pi.pd.std, pi.vf], ob)
        ac = np.random.normal(mean, std * adj_std_scale, size=mean.shape)
        return ac, vpred
################### use_ent_adjust======> adj_std_scale????????pi action sample

    def _mbmf_inner_pi(ob, t=0):
        if use_ent_adjust:
            return _mf_ent_pi(ob)
        else:
            #return _mf_pi(ob)
            if t < mbl_sh: return _mf_pi(ob)
            else: return _mf_det_pi(ob)

# ---------------------------------------

# Run multiple configuration once

    all_eval_descs = []

    def make_mbmf_pi(n, h, e, l):
        def _mbmf_pi(ob):
            ac, rew = mbl.step(ob=ob,
                               pi=_mbmf_inner_pi,
                               horizon=h,
                               num_samples=n,
                               num_elites=e,
                               gamma=mbl_gamma,
                               lamb=l,
                               use_mean_elites=use_mean_elites)
            return ac[None], rew

        return Policy(step=_mbmf_pi, reset=None)

    for n in num_samples:
        for h in horizon:
            for l in mbl_lamb:
                for e in num_elites:
                    if 'mbmf' in eval_targs:
                        all_eval_descs.append(
                            ('MeanRew', 'MBL_PPO', make_mbmf_pi(n, h, e, l)))
                    #if 'mbmf' in eval_targs: all_eval_descs.append(('MeanRew-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), 'MBL_TRPO-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), make_mbmf_pi(n, h, e, l)))
    if 'mf' in eval_targs:
        all_eval_descs.append(('MeanRew', 'PPO', Policy(step=_mf_pi,
                                                        reset=None)))

    logger.log('List of evaluation targets')
    for it in all_eval_descs:
        logger.log(it[0])

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    pool = Pool(mp.cpu_count())
    warm_start_done = False
    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    # Instantiate the runner object
    runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam)
    epinfobuf = deque(maxlen=40)
    if init_fn is not None: init_fn()

    if traj_collect == 'mf':
        obs = runner.run()[0]

    # Start total timer
    tfirststart = time.perf_counter()

    nupdates = total_timesteps // nbatch
    for update in range(1, nupdates + 1):
        assert nbatch % nminibatches == 0
        # Start timer
        if hasattr(model.train_model, "ret_rms"):
            model.train_model.ret_rms.update(returns)
        if hasattr(model.train_model, "rms"):
            model.train_model.rms.update(obs)
        tstart = time.perf_counter()
        frac = 1.0 - (update - 1.0) / nupdates
        # Calculate the learning rate
        lrnow = lr(frac)
        # Calculate the cliprange
        cliprangenow = cliprange(frac)

        if update % log_interval == 0 and is_mpi_root:
            logger.info('Stepping environment...')

        # Get minibatch
        obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run(
        )  #pylint: disable=E0632

        # Val data collection
        if collect_val_data:
            for ob_, ac_, ob_next_ in zip(obs[:-1, 0, ...], actions[:-1, ...],
                                          obs[1:, 0, ...]):
                val_dataset_collect.append(
                    (copy.copy(ob_), copy.copy(ac_), copy.copy(ob_next_)))
        # -----------------------------
        # MBL update
        else:
            ob_mbl, ac_mbl = obs.copy(), actions.copy()

            mbl.add_data_batch(ob_mbl[:-1, ...], ac_mbl[:-1, ...], ob_mbl[1:,
                                                                          ...])
            mbl.update_forward_dynamic(require_update=(update - 1) %
                                       mbl_train_freq == 0,
                                       ob_val=val_dataset['ob'],
                                       ac_val=val_dataset['ac'],
                                       ob_next_val=val_dataset['ob_next'])
        # -----------------------------

        if update % log_interval == 0 and is_mpi_root: logger.info('Done.')

        epinfobuf.extend(epinfos)

        # Here what we're going to do is for each minibatch calculate the loss and append it.
        mblossvals = []
        if states is None:  # nonrecurrent version
            # Index of each element of batch_size
            # Create the indices array
            inds = np.arange(nbatch)
            for _ in range(noptepochs):
                # Randomize the indexes
                np.random.shuffle(inds)
                # 0 to batch_size with batch_train_size step
                for start in range(0, nbatch, nbatch_train):
                    end = start + nbatch_train
                    mbinds = inds[start:end]
                    slices = (arr[mbinds]
                              for arr in (obs, returns, masks, actions, values,
                                          neglogpacs))
                    mblossvals.append(model.train(lrnow, cliprangenow,
                                                  *slices))
        else:  # recurrent version
            print("caole")
            assert nenvs % nminibatches == 0
            envsperbatch = nenvs // nminibatches
            envinds = np.arange(nenvs)
            flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
            for _ in range(noptepochs):
                np.random.shuffle(envinds)
                for start in range(0, nenvs, envsperbatch):
                    end = start + envsperbatch
                    mbenvinds = envinds[start:end]
                    mbflatinds = flatinds[mbenvinds].ravel()
                    slices = (arr[mbflatinds]
                              for arr in (obs, returns, masks, actions, values,
                                          neglogpacs))
                    mbstates = states[mbenvinds]
                    mblossvals.append(
                        model.train(lrnow, cliprangenow, *slices, mbstates))

        # Feedforward --> get losses --> update
        lossvals = np.mean(mblossvals, axis=0)
        # End timer
        tnow = time.perf_counter()
        # Calculate the fps (frame per second)
        fps = int(nbatch / (tnow - tstart))

        if update_fn is not None:
            update_fn(update)

        if update % log_interval == 0 or update == 1:
            # Calculates if value function is a good predicator of the returns (ev > 1)
            # or if it's just worse than predicting nothing (ev =< 0)
            ev = explained_variance(values, returns)
            logger.logkv("misc/serial_timesteps", update * nsteps)
            logger.logkv("misc/nupdates", update)
            logger.logkv("misc/total_timesteps", update * nbatch)
            logger.logkv("fps", fps)
            logger.logkv("misc/explained_variance", float(ev))
            logger.logkv('eprewmean',
                         safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.logkv("AverageReturn",
                         safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.logkv('eplenmean',
                         safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.logkv('misc/time_elapsed', tnow - tfirststart)
            for (lossval, lossname) in zip(lossvals, model.loss_names):
                logger.logkv('loss/' + lossname, lossval)

            if rank == 0:
                # MBL evaluation
                if not collect_val_data:
                    #set_global_seeds(seed)
                    default_sess = tf.get_default_session()

                    def multithread_eval_policy(env_, pi_, num_episodes_,
                                                vis_eval_, seed):
                        with default_sess.as_default():
                            if hasattr(env, 'ob_rms') and hasattr(
                                    env_, 'ob_rms'):
                                env_.ob_rms = env.ob_rms
                            res = eval_policy(env_, pi_, num_episodes_,
                                              vis_eval_, seed, measure_time,
                                              measure_rew)

                            try:
                                env_.close()
                            except:
                                pass
                        return res

                    #if mbl.forward_dynamic.memory.nb_entries >= mbl.num_warm_start and update % eval_freq == 0:
                    if mbl.is_warm_start_done() and update % eval_freq == 0:
                        warm_start_done = mbl.is_warm_start_done()
                        if num_eval_episodes > 0:
                            targs_names = {}
                            with timed('eval'):
                                num_descs = len(all_eval_descs)
                                list_field_names = [
                                    e[0] for e in all_eval_descs
                                ]
                                list_legend_names = [
                                    e[1] for e in all_eval_descs
                                ]
                                list_pis = [e[2] for e in all_eval_descs]
                                list_eval_envs = [
                                    make_eval_env() for _ in range(num_descs)
                                ]
                                list_seed = [seed for _ in range(num_descs)]
                                list_num_eval_episodes = [
                                    num_eval_episodes for _ in range(num_descs)
                                ]
                                print(list_field_names)
                                print(list_legend_names)

                                list_vis_eval = [
                                    vis_eval for _ in range(num_descs)
                                ]

                                for i in range(num_descs):
                                    field_name, legend_name = list_field_names[
                                        i], list_legend_names[i],

                                    res = multithread_eval_policy(
                                        list_eval_envs[i], list_pis[i],
                                        list_num_eval_episodes[i],
                                        list_vis_eval[i], seed)
                                    #eval_results = pool.starmap(multithread_eval_policy, zip(list_eval_envs, list_pis, list_num_eval_episodes, list_vis_eval,list_seed))

                                    #for field_name, legend_name, res in zip(list_field_names, list_legend_names, eval_results):
                                    perf, elapsed_time, eval_rew = res
                                    logger.logkv(field_name, perf)
                                    if measure_time:
                                        logger.logkv('Time-%s' % (field_name),
                                                     elapsed_time)
                                    if measure_rew:
                                        logger.logkv(
                                            'SimRew-%s' % (field_name),
                                            eval_rew)
                                    targs_names[field_name] = legend_name

                        if eval_val_err:
                            fwd_dynamics_err = mbl.eval_forward_dynamic(
                                obs=eval_val_dataset['ob'],
                                acs=eval_val_dataset['ac'],
                                obs_next=eval_val_dataset['ob_next'])
                            logger.logkv('FwdValError', fwd_dynamics_err)

                        #logger.dump_tabular()
                        logger.dumpkvs()
                        #print(logger.get_dir())
                        #print(targs_names)
                        #if num_eval_episodes > 0:
#                            win = plot(viz, win, logger.get_dir(), targs_names=targs_names, quant=quant, opt='best')
#else: logger.dumpkvs()
# -----------
            yield pi

        if collect_val_data:
            with open(validation_set_path, 'wb') as f:
                pickle.dump(val_dataset_collect, f)
            logger.log('Save {} validation data'.format(
                len(val_dataset_collect)))
        if save_interval and (update % save_interval == 0 or update
                              == 1) and logger.get_dir() and is_mpi_root:
            checkdir = osp.join(logger.get_dir(), 'checkpoints')
            os.makedirs(checkdir, exist_ok=True)
            savepath = osp.join(checkdir, '%.5i' % update)
            print('Saving to', savepath)
            model.save(savepath)

    return model