def __init__(self, lambda_weights: float = 0.1, lambda_leaves: float = 0.1, **loss_kwargs): super().__init__(lambda_weights, lambda_leaves, **loss_kwargs) check_pars(self.required_pars, **loss_kwargs) self.alphas = self.kwargs['alphas']
def __init__(self, lambda_weights: float = 0.1, lambda_leaves: float = 0.1, **loss_kwargs): super().__init__(lambda_weights, lambda_leaves, **loss_kwargs) check_pars(self.required_pars, **loss_kwargs) self.n_harmonics = self.kwargs['n_harmonics'] self.cosines = None self.sines = None self.P = None
def __init__(self, lambda_weights: float = 0.1, lambda_leaves: float = 0.1, **loss_kwargs): super().__init__(lambda_weights, lambda_leaves, **loss_kwargs) check_pars(self.required_pars, **loss_kwargs) self.lambda_smooth = self.kwargs['lambda_smooth'] self.lambdas = None self.Q_inv = None self.D = None
def __init__(self, lambda_weights: float = 0.1, lambda_leaves: float = 0.1, **loss_kwargs): super().__init__(lambda_weights, lambda_leaves, **loss_kwargs) check_pars(self.required_pars, **loss_kwargs) self.S = self.kwargs['S'] self.precision = self.kwargs['precision'] self.S_inv = np.linalg.inv(self.S.T @ self.S) self.lambdas, self.Q = eigh( self.S.T @ self.kwargs['precision'] @ self.S) self.Q_inv = np.linalg.inv(self.Q) self.H_inv = lambda H: self.compute_H_inv(np.mean(H)) self.n_dims = self.S.shape[1]