示例#1
0
    def scan_loop(self):
        rate = 100
        points_per_channel = 10
        low_chan = 0  # Ignored by a_in_scan when queue is enabled
        high_chan = 3  # Ignored by a_in_scan when queue is enabled
        num_channels = high_chan - low_chan + 1
        total_count = points_per_channel * num_channels

        # Ignored by a_in_scan when queue is enabled
        range_ = self.ai_props.available_ranges[0]

        # Allocate a buffer for the scan
        if self.ai_props.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution <= 16
            memhandle = ul.win_buf_alloc(total_count)
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution >
            # 16
            memhandle = ul.win_buf_alloc_32(total_count)

        # Check if the buffer was successfully allocated
        if not memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            return

        try:
            # Run the scan
            ul.a_in_scan(self.board_num, low_chan, high_chan, total_count,
                         rate, range_, memhandle, 0)

            # Convert the memhandle to a ctypes array
            # Note: the ctypes array will only be valid until win_buf_free
            # is called.
            # A copy of the buffer can be created using win_buf_to_array
            # or win_buf_to_array_32 before the memory is freed. The copy can
            # be used at any time.
            if self.ai_props.resolution <= 16:
                # Use the memhandle_as_ctypes_array method for devices with a
                # resolution <= 16
                array = self.memhandle_as_ctypes_array(memhandle)
            else:
                # Use the memhandle_as_ctypes_array_32 method for devices with
                # a resolution > 16
                array = self.memhandle_as_ctypes_array_32(memhandle)

            # Display the values
            self.display_values(array, total_count)

            self.after(1000, self.scan_loop)
        except ULError as e:
            self.show_ul_error(e)
        finally:
            # Free the allocated memory
            ul.win_buf_free(memhandle)
示例#2
0
    def start_scan(self):
        low_chan = self.get_low_channel_num()
        high_chan = self.get_high_channel_num()

        if low_chan > high_chan:
            messagebox.showerror(
                "Error",
                "Low Channel Number must be greater than or equal to High "
                "Channel Number")
            self.start_button["state"] = tk.NORMAL
            return

        rate = 100
        points_per_channel = 10
        num_channels = high_chan - low_chan + 1
        total_count = points_per_channel * num_channels

        range_ = self.ai_props.available_ranges[0]

        # Allocate a buffer for the scan
        memhandle = ul.scaled_win_buf_alloc(total_count)

        # Check if the buffer was successfully allocated
        if not memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            self.start_button["state"] = tk.NORMAL
            return

        # Convert the memhandle to a ctypes array
        # Note: the ctypes array will only be valid until win_buf_free
        # is called.
        # A copy of the buffer can be created using scaled_win_buf_to_array
        # before the memory is freed. The copy can be used at any time.
        array = self.memhandle_as_ctypes_array_scaled(memhandle)

        try:
            # Run the scan
            ul.a_in_scan(self.board_num, low_chan, high_chan, total_count,
                         rate, range_, memhandle, ScanOptions.SCALEDATA)

            # Display the values
            self.display_values(array, total_count, low_chan, high_chan)
        except ULError as e:
            self.show_ul_error(e)
        finally:
            # Free the allocated memory
            ul.win_buf_free(memhandle)
            self.start_button["state"] = tk.NORMAL
示例#3
0
    def start_scan(self):
        low_chan = self.get_low_channel_num()
        high_chan = self.get_high_channel_num()

        if low_chan > high_chan:
            messagebox.showerror(
                "Error",
                "Low Channel Number must be greater than or equal to High "
                "Channel Number")
            self.start_button["state"] = tk.NORMAL
            return

        rate = 100
        points_per_channel = 10
        num_channels = high_chan - low_chan + 1
        total_count = points_per_channel * num_channels

        ai_range = self.ai_info.supported_ranges[0]

        # Allocate a buffer for the scan
        if self.ai_info.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution
            # <= 16
            memhandle = ul.win_buf_alloc(total_count)
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution
            # > 16
            memhandle = ul.win_buf_alloc_32(total_count)

        # Check if the buffer was successfully allocated
        if not memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            self.start_button["state"] = tk.NORMAL
            return

        try:
            # Run the scan
            ul.a_in_scan(self.board_num, low_chan, high_chan, total_count,
                         rate, ai_range, memhandle, 0)

            # Cast the memhandle to a ctypes pointer
            # Note: the ctypes array will only be valid until win_buf_free
            # is called.
            # A copy of the buffer can be created using win_buf_to_array
            # or win_buf_to_array_32 before the memory is freed. The copy
            # can be used at any time.
            if self.ai_info.resolution <= 16:
                # Use the memhandle_as_ctypes_array method for devices with
                # a resolution <= 16
                array = cast(memhandle, POINTER(c_ushort))
            else:
                # Use the memhandle_as_ctypes_array_32 method for devices
                # with a resolution > 16
                array = cast(memhandle, POINTER(c_ulong))

            # Display the values
            self.display_values(array, ai_range, total_count, low_chan,
                                high_chan)
        except ULError as e:
            show_ul_error(e)
        finally:
            # Free the allocated memory
            ul.win_buf_free(memhandle)
            self.start_button["state"] = tk.NORMAL
    def start_input_scan(self):
        self.input_low_chan = self.get_input_low_channel_num()
        self.input_high_chan = self.get_input_high_channel_num()
        self.num_input_chans = (self.input_high_chan - self.input_low_chan + 1)

        self.periodtime = int(
            self.periodbox.get())  # variable of the duration in sec
        self.periodtimevar = self.periodtime  # a placeholder of periodtime which can be changed

        if self.input_low_chan > self.input_high_chan:
            messagebox.showerror(
                "Error",
                "Low Channel Number must be greater than or equal to High "
                "Channel Number")
            self.set_input_ui_idle_state()
            return

        rate = int(
            self.input_Samplingrate.get())  # data sampling rate per second
        # self.samplingrate = rate
        points_per_channel = self.test_time()
        total_count = points_per_channel * self.num_input_chans
        range_ = self.ai_props.available_ranges[0]
        scan_options = ScanOptions.BACKGROUND | ScanOptions.CONTINUOUS

        # Allocate a buffer for the scan
        if self.ai_props.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution <=
            # 16
            self.input_memhandle = ul.win_buf_alloc(total_count)
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution
            # > 16
            self.input_memhandle = ul.win_buf_alloc_32(total_count)

        if not self.input_memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            self.set_input_ui_idle_state()
            return

        # Create the frames that will hold the data
        self.recreate_input_data_frame()
        try:
            # Run the scan
            ul.a_in_scan(self.board_num, self.input_low_chan,
                         self.input_high_chan, total_count, rate, range_,
                         self.input_memhandle, scan_options)
        except ULError as e:
            self.show_ul_error(e)
            self.set_input_ui_idle_state()
            return

        # Convert the input_memhandle to a ctypes array
        # Note: the ctypes array will no longer be valid after win_buf_free is called.
        # A copy of the buffer can be created using win_buf_to_array
        # or win_buf_to_array_32 before the memory is freed. The copy can
        # be used at any time.
        if self.ai_props.resolution <= 16:
            # self.copied_array = ul.win_buf_to_array(self.iput_memhandle)
            # Use the memhandle_as_ctypes_array method for devices with a
            # resolution <= 16
            self.ctypes_array = self.memhandle_as_ctypes_array(
                self.input_memhandle)
        else:
            # Use the memhandle_as_ctypes_array_32 method for devices with a
            # resolution > 16
            self.ctypes_array = self.memhandle_as_ctypes_array_32(
                self.input_memhandle)

        # Start updating the displayed values
        self.update_input_displayed_values(range_)

        # Start the arena output
        self.tempo = 2.2
        self.update_arena_output()
示例#5
0
    def start_scan(self):
        # Set filename
        self.file_name = window.rec_settings.FolderLabel.text() + '/' + window.rec_settings.NamePrefixLabel.text() + \
            datetime.datetime.now().strftime("_%Y_%m_%d_%H%M%S") + \
            '.wav'

        try:
            # Start the scan
            ul.a_in_scan(
                self.board_num, self.low_chan, self.high_chan, self.ul_buffer_count,
                self.rate, self.ai_range, self.memhandle, self.scan_options)

            self.status = Status.IDLE
            # Wait for the scan to start fully
            while(self.status == Status.IDLE):
                self.status, _, _ = ul.get_status(
                    self.board_num, FunctionType.AIFUNCTION)

            # Create a file for storing the data
            # PYSOUNDFILE MODULE
            temp_file = SoundFile(self.file_name, 'w+', self.rate, 1, 'PCM_16')
            # with SoundFile(self.file_name, 'w', self.rate, 1, 'PCM_16') as f:
            #     print('abro', self.file_name)
            # WAVE MODULE
            # with wave.open('wavemod' + self.file_name, 'w') as f:
            #     f.setnchannels(1)
            #     f.setsampwidth(2)
            #     f.setframerate(self.rate)

            # Start the write loop
            prev_count = 0
            prev_index = 0
            write_ch_num = self.low_chan

            while self.status != Status.IDLE:
                # Get the latest counts
                self.status, curr_count, _ = ul.get_status(
                    self.board_num, FunctionType.AIFUNCTION)

                new_data_count = curr_count - prev_count

                # Check for a buffer overrun before copying the data, so
                # that no attempts are made to copy more than a full buffer
                # of data
                if new_data_count > self.ul_buffer_count:
                    # Print an error and stop writing
                    # QtGui.QMessageBox.information(self, "Error", "A buffer overrun occurred")
                    ul.stop_background(self.board_num, FunctionType.AIFUNCTION)
                    print("A buffer overrun occurred")  # cambiar por critical message
                    break  # VER COMO REEMPLAZAR

                # Check if a chunk is available
                if new_data_count > self.write_chunk_size:
                    self.wrote_chunk = True
                    # Copy the current data to a new array

                    # Check if the data wraps around the end of the UL
                    # buffer. Multiple copy operations will be required.
                    if prev_index + self.write_chunk_size > self.ul_buffer_count - 1:
                        first_chunk_size = self.ul_buffer_count - prev_index
                        second_chunk_size = (
                            self.write_chunk_size - first_chunk_size)

                        # Copy the first chunk of data to the write_chunk_array
                        ul.win_buf_to_array(
                            self.memhandle, self.write_chunk_array, prev_index,
                            first_chunk_size)

                        # Create a pointer to the location in
                        # write_chunk_array where we want to copy the
                        # remaining data
                        second_chunk_pointer = cast(
                            addressof(self.write_chunk_array) + first_chunk_size
                            * sizeof(c_ushort), POINTER(c_ushort))

                        # Copy the second chunk of data to the
                        # write_chunk_array
                        ul.win_buf_to_array(
                            self.memhandle, second_chunk_pointer,
                            0, second_chunk_size)
                    else:
                        # Copy the data to the write_chunk_array
                        ul.win_buf_to_array(
                            self.memhandle, self.write_chunk_array, prev_index,
                            self.write_chunk_size)

                    # Check for a buffer overrun just after copying the data
                    # from the UL buffer. This will ensure that the data was
                    # not overwritten in the UL buffer before the copy was
                    # completed. This should be done before writing to the
                    # file, so that corrupt data does not end up in it.
                    self.status, curr_count, _ = ul.get_status(
                        self.board_num, FunctionType.AIFUNCTION)
                    # Opcion 1: original ( valores altos )
                    if curr_count - prev_count > self.ul_buffer_count:
                        # Print an error and stop writing
                        ul.stop_background(self.board_num, FunctionType.AIFUNCTION)
                        print("BUFFER OVERRUN")
                        QtGui.QMessageBox.critical(self, "Warning", "A buffer overrun occurred")
                        break
                        # VER COMO HACER PARA EVITAR QUE CIERRE EL PROGRAMA:

                    for i in range(self.write_chunk_size):

                        # opcion 1
                        self.chunk_ls.append(self.write_chunk_array[i]-32768)

                    # opcion 4
                    self.chunk_np = np.asarray(self.chunk_ls, dtype=np.int16)
                    # resampled_chunk = samplerate.resample(self.chunk_np, 44100. /
                    #                                       float(self.rate), 'sinc_best')
                    # resampled_chunk = resampy.resample(self.chunk_np, self.rate, 44100)

                    temp_file.write(self.chunk_np)
                    # self.chunk_signal.emit(self.chunk_ls)
                    # self.file_ls.extend(self.chunk_ls)
                    self.chunk_ls = []


                else:
                    self.wrote_chunk = False

                if self.wrote_chunk:
                    self.chunk_signal.emit(self.chunk_np)
                    # Increment prev_count by the chunk size
                    prev_count += self.write_chunk_size
                    # Increment prev_index by the chunk size
                    prev_index += self.write_chunk_size
                    # Wrap prev_index to the size of the UL buffer
                    prev_index %= self.ul_buffer_count

                    if prev_count % self.points_to_write == 0:
                        # self.file_signal.emit(self.file_np)
                        # self.write_wav_file(self.file_ls
                        temp_file.close()
                        self.file_name = window.rec_settings.FolderLabel.text() + '/' + window.rec_settings.NamePrefixLabel.text() + \
                            datetime.datetime.now().strftime("_%Y_%m_%d_%H%M%S") + \
                            '.wav'
                        temp_file = SoundFile(self.file_name, 'w', self.rate, 1, 'PCM_16')
                else:
                    # Wait a short amount of time for more data to be
                    # acquired.
                    time.sleep(0.1)
        except ULError as e:
            print('except')
            # QtGui.QMessageBox.critical(window, 'Error', 'Please restart program')
            self.print_ul_error(e)  # VER FUNCION Y ADAPATAR A PYQT
        finally:
            # Free the buffer in a finally block to prevent errors from causing
            # a memory leak.
            temp_file.close()
            ul.stop_background(self.board_num, FunctionType.AIFUNCTION)
            ul.win_buf_free(self.memhandle)
            self.finished_signal.emit()
示例#6
0
def run_example():
    board_num = 0
    rate = 100
    points_per_channel = 1000

    if use_device_detection:
        ul.ignore_instacal()
        if not util.config_first_detected_device(board_num):
            print("Could not find device.")
            return

    ai_props = AnalogInputProps(board_num)
    if ai_props.num_ai_chans < 1:
        util.print_unsupported_example(board_num)
        return

    low_chan = 0
    high_chan = min(3, ai_props.num_ai_chans - 1)
    num_chans = high_chan - low_chan + 1

    total_count = points_per_channel * num_chans

    ai_range = ai_props.available_ranges[0]

    scan_options = ScanOptions.BACKGROUND

    if ScanOptions.SCALEDATA in ai_props.supported_scan_options:
        # If the hardware supports the SCALEDATA option, it is easiest to
        # use it.
        scan_options |= ScanOptions.SCALEDATA

        memhandle = ul.scaled_win_buf_alloc(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array_scaled method for scaled
        # buffers.
        ctypes_array = util.memhandle_as_ctypes_array_scaled(memhandle)
    elif ai_props.resolution <= 16:
        # Use the win_buf_alloc method for devices with a resolution <= 16
        memhandle = ul.win_buf_alloc(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array method for devices with a
        # resolution <= 16.
        ctypes_array = util.memhandle_as_ctypes_array(memhandle)
    else:
        # Use the win_buf_alloc_32 method for devices with a resolution > 16
        memhandle = ul.win_buf_alloc_32(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array_32 method for devices with a
        # resolution > 16
        ctypes_array = util.memhandle_as_ctypes_array_32(memhandle)

    # Note: the ctypes array will no longer be valid after win_buf_free is
    # called.
    # A copy of the buffer can be created using win_buf_to_array or
    # win_buf_to_array_32 before the memory is freed. The copy can be used
    # at any time.

    # Check if the buffer was successfully allocated
    if not memhandle:
        print("Failed to allocate memory.")
        return

    try:
        # Start the scan
        ul.a_in_scan(board_num, low_chan, high_chan, total_count, rate,
                     ai_range, memhandle, scan_options)

        # Create a format string that aligns the data in columns
        row_format = "{:>12}" * num_chans

        # Print the channel name headers
        labels = []
        for ch_num in range(low_chan, high_chan + 1):
            labels.append("CH" + str(ch_num))
        print(row_format.format(*labels))

        # Start updating the displayed values
        status, curr_count, curr_index = ul.get_status(board_num,
                                                       FunctionType.AIFUNCTION)
        while status != Status.IDLE:
            # Make sure a data point is available for display.
            if curr_count > 0:
                # curr_index points to the start of the last completed
                # channel scan that was transferred between the board and
                # the data buffer. Display the latest value for each
                # channel.
                display_data = []
                for data_index in range(curr_index, curr_index + num_chans):
                    if ScanOptions.SCALEDATA in scan_options:
                        # If the SCALEDATA ScanOption was used, the values
                        # in the array are already in engineering units.
                        eng_value = ctypes_array[data_index]
                    else:
                        # If the SCALEDATA ScanOption was NOT used, the
                        # values in the array must be converted to
                        # engineering units using ul.to_eng_units().
                        eng_value = ul.to_eng_units(board_num, ai_range,
                                                    ctypes_array[data_index])
                    display_data.append('{:.3f}'.format(eng_value))
                print(row_format.format(*display_data))

            # Wait a while before adding more values to the display.
            time.sleep(0.5)

            status, curr_count, curr_index = ul.get_status(
                board_num, FunctionType.AIFUNCTION)

        # Stop the background operation (this is required even if the
        # scan completes successfully)
        ul.stop_background(board_num, FunctionType.AIFUNCTION)

        print("Scan completed successfully.")
    except ULError as e:
        util.print_ul_error(e)
    finally:
        # Free the buffer in a finally block to prevent errors from causing
        # a memory leak.
        ul.win_buf_free(memhandle)

        if use_device_detection:
            ul.release_daq_device(board_num)
示例#7
0
def run_example():
    # By default, the example detects and displays all available devices and
    # selects the first device listed. Use the dev_id_list variable to filter
    # detected devices by device ID (see UL documentation for device IDs).
    # If use_device_detection is set to False, the board_num variable needs to
    # match the desired board number configured with Instacal.
    use_device_detection = True
    # Supported Device IDs for the USB-2408 and USB-2416 Series
    # USB-2408 = 253, USB-2408-2AO = 254, USB-2416 = 208, USB-2416-4AO = 209
    dev_id_list = [253, 254, 208, 209]
    board_num = 0
    low_chan = 0
    high_chan = 3
    num_chans = high_chan - low_chan + 1
    memhandle = None

    try:
        if use_device_detection:
            config_first_detected_device(board_num, dev_id_list)

        daq_dev_info = DaqDeviceInfo(board_num)
        print('\nActive DAQ device: ',
              daq_dev_info.product_name,
              ' (',
              daq_dev_info.unique_id,
              ')\n',
              sep='')

        rate = 10
        points_per_channel = 10
        total_count = points_per_channel * num_chans

        scan_options = ScanOptions.FOREGROUND | ScanOptions.SCALEDATA

        memhandle = ul.scaled_win_buf_alloc(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array_scaled method for scaled buffers.
        ctypes_array = cast(memhandle, POINTER(c_double))
        # Note: the ctypes array will no longer be valid after win_buf_free is
        # called.
        # A copy of the buffer can be created using win_buf_to_array or
        # win_buf_to_array_32 before the memory is freed. The copy can be used
        # at any time.

        # Check if the buffer was successfully allocated
        if not memhandle:
            raise Exception('Error: Failed to allocate memory')

        # Set channel settings
        set_channel_settings(board_num)

        # Start the scan
        ul.a_in_scan(board_num, low_chan, high_chan, total_count, rate,
                     ULRange.BIP10VOLTS, memhandle, scan_options)

        print('Scan completed successfully. Data:')

        # Create a format string that aligns the data in columns
        row_format = '{:>5}' + '{:>10}' * num_chans

        # Print the channel name headers
        labels = ['Index']
        for ch_num in range(low_chan, high_chan + 1):
            labels.append('CH' + str(ch_num))
        print(row_format.format(*labels))

        # Print the data
        for index in range(points_per_channel):
            display_data = [index]
            for data_index in range(num_chans):
                display_data.append('{:.3f}'.format(ctypes_array[data_index]))
            # Print this row
            print(row_format.format(*display_data))
    except Exception as e:
        print('\n', e)
    finally:
        # Free the buffer in a finally block to prevent a memory leak.
        if memhandle:
            ul.win_buf_free(memhandle)
        if use_device_detection:
            ul.release_daq_device(board_num)
示例#8
0
def apply_and_listen(waveform_1d,
                     nzeros_front,
                     nzeros_back,
                     in_channel_start=0,
                     in_channel_end=0,
                     out_channel_start=0,
                     out_channel_end=0,
                     rate=1000000,
                     board_number=0,
                     ul_range=ULRange.BIP10VOLTS,
                     quiet=False,
                     **kwargs):
    """
    Apply a waveform and listen to collect data. Simultaneous output and collection of data. 

    args:
        waveform_1d (numpy.array): Serialized waveform
        nzeros_front (int): Number of zeros padding front of waveform
        nzeros_back (int): Number of zeros padding back of waveform
        in_channel_start (int= 0): Specify which start channel to use when listening and collecting incoming waveform.
        in_channel_end (int= 0): Specify which end channel to use when listening and collecting incoming waveform.
        out_channel_start (int= 0): Specify which start channel to use when outputting the waveform. 
        out_channel_end (int = 0): Specify which end channel to use when outputting waveform. 
        rate (int = 1000000): Rate for daq
        board_number (int = 0): 
        ul_range (ULRange): Range for daq
        quiet (bool): Specify verbosity

    returns:
        (memhandle_in, memhandle_out, data_array_in, data_array_out, count_in, time)


    waveform_1d should be serialized into 1d for all channels
    
    output comes on channels continuous from out_channel_start to out_channel_end
    
    return: memhandle_in, memhandle_out, data_array_in, data_array_out, count_in
    """
    count_out = len(waveform_1d)
    nchannel_out = out_channel_end - out_channel_start + 1
    nchannel_in = in_channel_end - in_channel_start + 1

    rate = int(rate / nchannel_in)
    len_data_without_zeros = (len(waveform_1d) - nzeros_front - nzeros_back)
    period_of_wf = (int(len_data_without_zeros / nchannel_out) / rate)
    if not quiet:
        print('period:', period_of_wf * 1e6, 'us')

    trigger_rate = int((count_out - nzeros_front - nzeros_back) / nchannel_out)

    # Allocate the buffer and cast it to an unsigned short
    memhandle_out = ul.win_buf_alloc(count_out)
    data_array_out = ctypes.cast(memhandle_out, ctypes.POINTER(
        ctypes.c_ushort))  #data_array now points to the correct memory

    # Calculate and store the waveform in Windows buffer
    for i, y in enumerate(waveform_1d):
        data_array_out[i] = int(y)

    count_in = int(nchannel_in * count_out / (nchannel_out))

    memhandle_in = ul.win_buf_alloc(count_in)
    data_array_in = ctypes.cast(memhandle_in, ctypes.POINTER(ctypes.c_ushort))

    options = (None, )

    # Output the waveform
    #import pdb; pdb.set_trace()
    ul.a_in_scan(board_number, in_channel_start, in_channel_end, count_in,
                 rate, ul_range, memhandle_in,
                 ScanOptions.EXTTRIGGER | ScanOptions.BACKGROUND)
    ul.a_out_scan(board_number, out_channel_start, out_channel_end, count_out,
                  rate, ul_range, memhandle_out,
                  ScanOptions.EXTTRIGGER | ScanOptions.BACKGROUND)
    ul.pulse_out_start(0, 0, rate, 0.5)

    while ul.get_status(
            0, FunctionType.AOFUNCTION).status != 0:  #poor mans foreground
        continue

    ul.pulse_out_stop(0, 0)

    ul.stop_background(0, FunctionType.AOFUNCTION)
    ul.stop_background(0, FunctionType.AIFUNCTION)

    timestep = period_of_wf / len_data_without_zeros

    time = []

    for i in range(int(count_out / nchannel_out)):
        shiftedi = i - nzeros_front
        time.append(shiftedi * timestep)

    time = np.array(time)

    return memhandle_in, memhandle_out, data_array_in, data_array_out, count_in, time
示例#9
0
def run_example():
    board_num = 0
    rate = 100
    file_name = 'scan_data.csv'

    # The size of the UL buffer to create, in seconds
    buffer_size_seconds = 2
    # The number of buffers to write. After this number of UL buffers are
    # written to file, the example will be stopped.
    num_buffers_to_write = 5

    if use_device_detection:
        ul.ignore_instacal()
        if not util.config_first_detected_device(board_num):
            print("Could not find device.")
            return

    ai_props = AnalogInputProps(board_num)
    if (ai_props.num_ai_chans < 1 or
            not ScanOptions.SCALEDATA in ai_props.supported_scan_options):
        util.print_unsupported_example(board_num)
        return

    low_chan = 0
    high_chan = min(3, ai_props.num_ai_chans - 1)
    num_chans = high_chan - low_chan + 1

    # Create a circular buffer that can hold buffer_size_seconds worth of
    # data, or at least 10 points (this may need to be adjusted to prevent
    # a buffer overrun)
    points_per_channel = max(rate * buffer_size_seconds, 10)

    # Some hardware requires that the total_count is an integer multiple
    # of the packet size. For this case, calculate a points_per_channel
    # that is equal to or just above the points_per_channel selected
    # which matches that requirement.
    if ai_props.continuous_requires_packet_size_multiple:
        packet_size = ai_props.packet_size
        remainder = points_per_channel % packet_size
        if remainder != 0:
            points_per_channel += packet_size - remainder

    ul_buffer_count = points_per_channel * num_chans

    # Write the UL buffer to the file num_buffers_to_write times.
    points_to_write = ul_buffer_count * num_buffers_to_write

    # When handling the buffer, we will read 1/10 of the buffer at a time
    write_chunk_size = int(ul_buffer_count / 10)

    ai_range = ai_props.available_ranges[0]

    scan_options = (ScanOptions.BACKGROUND | ScanOptions.CONTINUOUS |
                    ScanOptions.SCALEDATA)

    memhandle = ul.scaled_win_buf_alloc(ul_buffer_count)

    # Allocate an array of doubles temporary storage of the data
    write_chunk_array = (c_double * write_chunk_size)()

    # Check if the buffer was successfully allocated
    if not memhandle:
        print("Failed to allocate memory.")
        return

    try:
        # Start the scan
        ul.a_in_scan(
            board_num, low_chan, high_chan, ul_buffer_count,
            rate, ai_range, memhandle, scan_options)

        status = Status.IDLE
        # Wait for the scan to start fully
        while(status == Status.IDLE):
            status, _, _ = ul.get_status(
                board_num, FunctionType.AIFUNCTION)

        # Create a file for storing the data
        with open(file_name, 'w') as f:
            print('Writing data to ' + file_name, end='')

            # Write a header to the file
            for chan_num in range(low_chan, high_chan + 1):
                f.write('Channel ' + str(chan_num) + ',')
            f.write(u'\n')

            # Start the write loop
            prev_count = 0
            prev_index = 0
            write_ch_num = low_chan
            while status != Status.IDLE:
                # Get the latest counts
                status, curr_count, _ = ul.get_status(
                    board_num, FunctionType.AIFUNCTION)

                new_data_count = curr_count - prev_count

                # Check for a buffer overrun before copying the data, so
                # that no attempts are made to copy more than a full buffer
                # of data
                if new_data_count > ul_buffer_count:
                    # Print an error and stop writing
                    ul.stop_background(board_num, FunctionType.AIFUNCTION)
                    print("A buffer overrun occurred")
                    break

                # Check if a chunk is available
                if new_data_count > write_chunk_size:
                    wrote_chunk = True
                    # Copy the current data to a new array

                    # Check if the data wraps around the end of the UL
                    # buffer. Multiple copy operations will be required.
                    if prev_index + write_chunk_size > ul_buffer_count - 1:
                        first_chunk_size = ul_buffer_count - prev_index
                        second_chunk_size = (
                            write_chunk_size - first_chunk_size)

                        # Copy the first chunk of data to the
                        # write_chunk_array
                        ul.scaled_win_buf_to_array(
                            memhandle, write_chunk_array, prev_index,
                            first_chunk_size)

                        # Create a pointer to the location in
                        # write_chunk_array where we want to copy the
                        # remaining data
                        second_chunk_pointer = cast(
                            addressof(write_chunk_array) + first_chunk_size
                            * sizeof(c_double), POINTER(c_double))

                        # Copy the second chunk of data to the
                        # write_chunk_array
                        ul.scaled_win_buf_to_array(
                            memhandle, second_chunk_pointer,
                            0, second_chunk_size)
                    else:
                        # Copy the data to the write_chunk_array
                        ul.scaled_win_buf_to_array(
                            memhandle, write_chunk_array, prev_index,
                            write_chunk_size)

                    # Check for a buffer overrun just after copying the data
                    # from the UL buffer. This will ensure that the data was
                    # not overwritten in the UL buffer before the copy was
                    # completed. This should be done before writing to the
                    # file, so that corrupt data does not end up in it.
                    status, curr_count, _ = ul.get_status(
                        board_num, FunctionType.AIFUNCTION)
                    if curr_count - prev_count > ul_buffer_count:
                        # Print an error and stop writing
                        ul.stop_background(board_num, FunctionType.AIFUNCTION)
                        print("A buffer overrun occurred")
                        break

                    for i in range(write_chunk_size):
                        f.write(str(write_chunk_array[i]) + ',')
                        write_ch_num += 1
                        if write_ch_num == high_chan + 1:
                            write_ch_num = low_chan
                            f.write(u'\n')
                else:
                    wrote_chunk = False

                if wrote_chunk:
                    # Increment prev_count by the chunk size
                    prev_count += write_chunk_size
                    # Increment prev_index by the chunk size
                    prev_index += write_chunk_size
                    # Wrap prev_index to the size of the UL buffer
                    prev_index %= ul_buffer_count

                    if prev_count >= points_to_write:
                        break
                    print('.', end='')
                else:
                    # Wait a short amount of time for more data to be
                    # acquired.
                    time.sleep(0.1)

        ul.stop_background(board_num, FunctionType.AIFUNCTION)
    except ULError as e:
        util.print_ul_error(e)
    finally:
        print('Done')

        # Free the buffer in a finally block to prevent errors from causing
        # a memory leak.
        ul.win_buf_free(memhandle)

        if use_device_detection:
            ul.release_daq_device(board_num)
示例#10
0
    def read(self, processPulseTrain=False):

        if self.useExtClock:
            # scan_options = ScanOptions.FOREGROUND | ScanOptions.SCALEDATA | ScanOptions.EXTCLOCK
            scan_options = ScanOptions.FOREGROUND | ScanOptions.SCALEDATA | ScanOptions.EXTTRIGGER  # | ScanOptions.RETRIGMODE
        else:
            scan_options = ScanOptions.FOREGROUND | ScanOptions.SCALEDATA
            ul.set_config(
                info_type=InfoType.BOARDINFO,
                board_num=self.board_num,
                dev_num=0,  #value here is ignored
                config_item=BoardInfo.ADTRIGCOUNT,
                config_val=
                0  #number of samples to take per trigger. 0 = continuous triggering
            )

        channelList = []
        channelNumbers = []
        low_chan = min(self.channels['Number'])
        high_chan = max(self.channels['Number'])
        for cnum in range(low_chan, high_chan + 1):
            if cnum in self.channels['Number']:
                cidx = self.channels['Number'].index(cnum)
                cname = self.channels['Label'][cidx]
            else:
                cname = 'Dummy'
            channelList.append(cname)
        num_chans = len(channelList)

        totalCount = num_chans * self.__countsPerChannel
        memhandle = ul.scaled_win_buf_alloc(totalCount)
        ctypesArray = ctypes.cast(memhandle, ctypes.POINTER(ctypes.c_double))

        ul.a_in_scan(board_num=self.board_num,
                     low_chan=low_chan,
                     high_chan=high_chan,
                     num_points=totalCount,
                     rate=self.__rate,
                     ul_range=ULRange.BIP5VOLTS,
                     memhandle=memhandle,
                     options=scan_options)

        data = {}
        for ch in channelList:
            data[ch] = {'Raw': [], 'Mean': None, 'Std': None}

        dataIndex = 0
        for each in range(self.__countsPerChannel):
            for ch in channelList:
                data[ch]['Raw'].append(ctypesArray[dataIndex])
                dataIndex += 1
        data.pop('Dummy')  #toss dummy data from middle channels

        for ch in data.keys():
            data[ch]['Mean'] = np.mean(data[ch]['Raw'])
            data[ch]['Std'] = np.std(data[ch]['Raw'])

        # data['Reference']['Mean'] = np.ones(data['Reference']['Mean'].shape)	#set reference detector readings to 1
        ul.win_buf_free(memhandle)

        if self.useFilter:
            data = self.filterSignal(data)

        if processPulseTrain:
            data = self.processPulseTrain(data)

        return data
示例#11
0
def run_example():
    # By default, the example detects and displays all available devices and
    # selects the first device listed. Use the dev_id_list variable to filter
    # detected devices by device ID (see UL documentation for device IDs).
    # If use_device_detection is set to False, the board_num variable needs to
    # match the desired board number configured with Instacal.
    use_device_detection = True
    dev_id_list = []
    board_num = 0
    rate = 100
    file_name = 'scan_data.csv'
    memhandle = None

    # The size of the UL buffer to create, in seconds
    buffer_size_seconds = 2
    # The number of buffers to write. After this number of UL buffers are
    # written to file, the example will be stopped.
    num_buffers_to_write = 5

    try:
        if use_device_detection:
            config_first_detected_device(board_num, dev_id_list)

        daq_dev_info = DaqDeviceInfo(board_num)
        if not daq_dev_info.supports_analog_input:
            raise Exception('Error: The DAQ device does not support '
                            'analog input')

        print('\nActive DAQ device: ', daq_dev_info.product_name, ' (',
              daq_dev_info.unique_id, ')\n', sep='')

        ai_info = daq_dev_info.get_ai_info()

        low_chan = 0
        high_chan = min(3, ai_info.num_chans - 1)
        num_chans = high_chan - low_chan + 1

        # Create a circular buffer that can hold buffer_size_seconds worth of
        # data, or at least 10 points (this may need to be adjusted to prevent
        # a buffer overrun)
        points_per_channel = max(rate * buffer_size_seconds, 10)

        # Some hardware requires that the total_count is an integer multiple
        # of the packet size. For this case, calculate a points_per_channel
        # that is equal to or just above the points_per_channel selected
        # which matches that requirement.
        if ai_info.packet_size != 1:
            packet_size = ai_info.packet_size
            remainder = points_per_channel % packet_size
            if remainder != 0:
                points_per_channel += packet_size - remainder

        ul_buffer_count = points_per_channel * num_chans

        # Write the UL buffer to the file num_buffers_to_write times.
        points_to_write = ul_buffer_count * num_buffers_to_write

        # When handling the buffer, we will read 1/10 of the buffer at a time
        write_chunk_size = int(ul_buffer_count / 10)

        ai_range = ai_info.supported_ranges[0]

        scan_options = (ScanOptions.BACKGROUND | ScanOptions.CONTINUOUS |
                        ScanOptions.SCALEDATA)

        memhandle = ul.scaled_win_buf_alloc(ul_buffer_count)

        # Allocate an array of doubles temporary storage of the data
        write_chunk_array = (c_double * write_chunk_size)()

        # Check if the buffer was successfully allocated
        if not memhandle:
            raise Exception('Failed to allocate memory')

        # Start the scan
        ul.a_in_scan(
            board_num, low_chan, high_chan, ul_buffer_count,
            rate, ai_range, memhandle, scan_options)

        status = Status.IDLE
        # Wait for the scan to start fully
        while status == Status.IDLE:
            status, _, _ = ul.get_status(board_num, FunctionType.AIFUNCTION)

        # Create a file for storing the data
        with open(file_name, 'w') as f:
            print('Writing data to ' + file_name, end='')

            # Write a header to the file
            for chan_num in range(low_chan, high_chan + 1):
                f.write('Channel ' + str(chan_num) + ',')
            f.write(u'\n')

            # Start the write loop
            prev_count = 0
            prev_index = 0
            write_ch_num = low_chan
            while status != Status.IDLE:
                # Get the latest counts
                status, curr_count, _ = ul.get_status(board_num,
                                                      FunctionType.AIFUNCTION)

                new_data_count = curr_count - prev_count

                # Check for a buffer overrun before copying the data, so
                # that no attempts are made to copy more than a full buffer
                # of data
                if new_data_count > ul_buffer_count:
                    # Print an error and stop writing
                    ul.stop_background(board_num, FunctionType.AIFUNCTION)
                    print('A buffer overrun occurred')
                    break

                # Check if a chunk is available
                if new_data_count > write_chunk_size:
                    wrote_chunk = True
                    # Copy the current data to a new array

                    # Check if the data wraps around the end of the UL
                    # buffer. Multiple copy operations will be required.
                    if prev_index + write_chunk_size > ul_buffer_count - 1:
                        first_chunk_size = ul_buffer_count - prev_index
                        second_chunk_size = (
                            write_chunk_size - first_chunk_size)

                        # Copy the first chunk of data to the
                        # write_chunk_array
                        ul.scaled_win_buf_to_array(
                            memhandle, write_chunk_array, prev_index,
                            first_chunk_size)

                        # Create a pointer to the location in
                        # write_chunk_array where we want to copy the
                        # remaining data
                        second_chunk_pointer = cast(addressof(write_chunk_array)
                                                    + first_chunk_size
                                                    * sizeof(c_double),
                                                    POINTER(c_double))

                        # Copy the second chunk of data to the
                        # write_chunk_array
                        ul.scaled_win_buf_to_array(
                            memhandle, second_chunk_pointer,
                            0, second_chunk_size)
                    else:
                        # Copy the data to the write_chunk_array
                        ul.scaled_win_buf_to_array(
                            memhandle, write_chunk_array, prev_index,
                            write_chunk_size)

                    # Check for a buffer overrun just after copying the data
                    # from the UL buffer. This will ensure that the data was
                    # not overwritten in the UL buffer before the copy was
                    # completed. This should be done before writing to the
                    # file, so that corrupt data does not end up in it.
                    status, curr_count, _ = ul.get_status(
                        board_num, FunctionType.AIFUNCTION)
                    if curr_count - prev_count > ul_buffer_count:
                        # Print an error and stop writing
                        ul.stop_background(board_num, FunctionType.AIFUNCTION)
                        print('A buffer overrun occurred')
                        break

                    for i in range(write_chunk_size):
                        f.write(str(write_chunk_array[i]) + ',')
                        write_ch_num += 1
                        if write_ch_num == high_chan + 1:
                            write_ch_num = low_chan
                            f.write(u'\n')
                else:
                    wrote_chunk = False

                if wrote_chunk:
                    # Increment prev_count by the chunk size
                    prev_count += write_chunk_size
                    # Increment prev_index by the chunk size
                    prev_index += write_chunk_size
                    # Wrap prev_index to the size of the UL buffer
                    prev_index %= ul_buffer_count

                    if prev_count >= points_to_write:
                        break
                    print('.', end='')
                else:
                    # Wait a short amount of time for more data to be
                    # acquired.
                    sleep(0.1)

        ul.stop_background(board_num, FunctionType.AIFUNCTION)
    except Exception as e:
        print('\n', e)
    finally:
        print('Done')
        if memhandle:
            # Free the buffer in a finally block to prevent  a memory leak.
            ul.win_buf_free(memhandle)
        if use_device_detection:
            ul.release_daq_device(board_num)
示例#12
0
def run_example():
    board_num = 0
    low_chan = 0
    high_chan = 3
    num_chans = high_chan - low_chan + 1

    if use_device_detection:
        ul.ignore_instacal()
        if not util.config_first_detected_device_of_type(
                board_num, supported_pids):
            print("Could not find a supported device.")
            return

    rate = 10
    points_per_channel = 10
    total_count = points_per_channel * num_chans

    scan_options = ScanOptions.FOREGROUND | ScanOptions.SCALEDATA

    memhandle = ul.scaled_win_buf_alloc(total_count)
    # Convert the memhandle to a ctypes array.
    # Use the memhandle_as_ctypes_array_scaled method for scaled
    # buffers.
    ctypes_array = util.memhandle_as_ctypes_array_scaled(memhandle)
    # Note: the ctypes array will no longer be valid after win_buf_free is
    # called.
    # A copy of the buffer can be created using win_buf_to_array or
    # win_buf_to_array_32 before the memory is freed. The copy can be used
    # at any time.

    # Check if the buffer was successfully allocated
    if not memhandle:
        print("Failed to allocate memory.")
        return

    try:
        # Set channel settings
        set_channel_settings(board_num)

        # Start the scan
        ul.a_in_scan(
            board_num, low_chan, high_chan, total_count,
            rate, ULRange.BIP10VOLTS, memhandle, scan_options)

        print("Scan completed successfully. Data:")

        # Create a format string that aligns the data in columns
        row_format = "{:>5}" + "{:>10}" * num_chans

        # Print the channel name headers
        labels = []
        labels.append("Index")
        for ch_num in range(low_chan, high_chan + 1):
            labels.append("CH" + str(ch_num))
        print(row_format.format(*labels))

        # Print the data
        data_index = 0
        for index in range(points_per_channel):
            display_data = [index]
            for _ in range(num_chans):
                display_data.append(
                    '{:.3f}'.format(ctypes_array[data_index]))
                data_index += 1
            # Print this row
            print(row_format.format(*display_data))
    except ULError as e:
        util.print_ul_error(e)
    finally:
        # Free the buffer in a finally block to prevent errors from causing
        # a memory leak.
        ul.win_buf_free(memhandle)

        if use_device_detection:
            ul.release_daq_device(board_num)
示例#13
0
def run_example():
    # By default, the example detects and displays all available devices and
    # selects the first device listed. Use the dev_id_list variable to filter
    # detected devices by device ID (see UL documentation for device IDs).
    # If use_device_detection is set to False, the board_num variable needs to
    # match the desired board number configured with Instacal.
    use_device_detection = True
    dev_id_list = []
    board_num = 0
    rate = 100
    points_per_channel = 10
    memhandle = None

    try:
        if use_device_detection:
            config_first_detected_device(board_num, dev_id_list)

        daq_dev_info = DaqDeviceInfo(board_num)
        if not daq_dev_info.supports_analog_input:
            raise Exception('Error: The DAQ device does not support '
                            'analog input')

        print('\nActive DAQ device: ',
              daq_dev_info.product_name,
              ' (',
              daq_dev_info.unique_id,
              ')\n',
              sep='')

        ai_info = daq_dev_info.get_ai_info()

        low_chan = 0
        high_chan = min(3, ai_info.num_chans - 1)
        num_chans = high_chan - low_chan + 1

        total_count = points_per_channel * num_chans

        ai_range = ai_info.supported_ranges[0]

        scan_options = ScanOptions.FOREGROUND

        if ScanOptions.SCALEDATA in ai_info.supported_scan_options:
            # If the hardware supports the SCALEDATA option, it is easiest to
            # use it.
            scan_options |= ScanOptions.SCALEDATA

            memhandle = ul.scaled_win_buf_alloc(total_count)
            # Convert the memhandle to a ctypes array.
            # Use the memhandle_as_ctypes_array_scaled method for scaled
            # buffers.
            ctypes_array = cast(memhandle, POINTER(c_double))
        elif ai_info.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution <= 16
            memhandle = ul.win_buf_alloc(total_count)
            # Convert the memhandle to a ctypes array.
            # Use the memhandle_as_ctypes_array method for devices with a
            # resolution <= 16.
            ctypes_array = cast(memhandle, POINTER(c_ushort))
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution > 16
            memhandle = ul.win_buf_alloc_32(total_count)
            # Convert the memhandle to a ctypes array.
            # Use the memhandle_as_ctypes_array_32 method for devices with a
            # resolution > 16
            ctypes_array = cast(memhandle, POINTER(c_ulong))

        # Note: the ctypes array will no longer be valid after win_buf_free is
        # called.
        # A copy of the buffer can be created using win_buf_to_array or
        # win_buf_to_array_32 before the memory is freed. The copy can be used
        # at any time.

        # Check if the buffer was successfully allocated
        if not memhandle:
            raise Exception('Error: Failed to allocate memory')

        # Start the scan
        ul.a_in_scan(board_num, low_chan, high_chan, total_count, rate,
                     ai_range, memhandle, scan_options)

        print('Scan completed successfully. Data:')

        # Create a format string that aligns the data in columns
        row_format = '{:>5}' + '{:>10}' * num_chans

        # Print the channel name headers
        labels = ['Index']
        for ch_num in range(low_chan, high_chan + 1):
            labels.append('CH' + str(ch_num))
        print(row_format.format(*labels))

        # Print the data
        data_index = 0
        for index in range(points_per_channel):
            display_data = [index]
            for _ in range(num_chans):
                if ScanOptions.SCALEDATA in scan_options:
                    # If the SCALEDATA ScanOption was used, the values
                    # in the array are already in engineering units.
                    eng_value = ctypes_array[data_index]
                else:
                    # If the SCALEDATA ScanOption was NOT used, the
                    # values in the array must be converted to
                    # engineering units using ul.to_eng_units().
                    eng_value = ul.to_eng_units(board_num, ai_range,
                                                ctypes_array[data_index])
                data_index += 1
                display_data.append('{:.3f}'.format(eng_value))
            # Print this row
            print(row_format.format(*display_data))
    except Exception as e:
        print('\n', e)
    finally:
        if memhandle:
            # Free the buffer in a finally block to prevent a memory leak.
            ul.win_buf_free(memhandle)
        if use_device_detection:
            ul.release_daq_device(board_num)
示例#14
0
def run():
    
    DaqDeviceScan(master=tk.Tk()).mainloop()
    board_num = 0
    rate = 1000
    points_per_channel = 30

    if use_device_detection:
        ul.ignore_instacal()
        if not configDevice(board_num):
            print("Gerät konnte nicht gefunden werden!")
            return
        
    ai_props = aiProps(board_num)

    low_channel = 0
    high_channel = min(7, ai_props.num_ai_chans - 1)
    num_channels = high_channel - low_channel + 1

    total_amount = points_per_channel * num_channels

    ai_range = ai_props.available_ranges[0]

    scan_opt = ScanOptions.FOREGROUND

    if ScanOptions.SCALEDATA in ai_props.supported_scan_options:

        scan_opt |= ScanOptions.SCALEDATA
        memhandle = ul.scaled_win_buf_alloc(total_amount)

        c_array = memhandle_as_ctypes_array_scaled(memhandle)
    elif ai_props.resolution <= 16:

        memhandle = ul.win_buf_alloc(total_amount)

        c_array = memhandle_as_ctypes_array(memhandle)

    else: memhandle = ul.win_buf_alloc_32(memhandle)



    if not memhandle:
        print("Speicher konnte nicht allokiert werden")

    restart = False

  
    try:
        wr = csv.writer(open("test5.csv","w"),delimiter=";")
        ul.a_in_scan(board_num, low_channel, high_channel, total_amount, rate, ai_range, memhandle, scan_opt)
        print("Scan erfolgreich!")
        print("Daten: ")
        test = ul.a_in_32(board_num, 0, ai_range, scan_opt)
        test = ul.to_eng_units_32(board_num, ai_range, test)
        print("test value:")
        print(test)
        row_format = "{:>5}" + "{:>10}" * num_channels

        labels = []
        labels.append("Index")
        for ch_num in range(low_channel, high_channel + 1):
            labels.append("CH" + str(ch_num))
        print(row_format.format(*labels))

        
        data_index = 0
        for index in range(points_per_channel):
        
            display_data = [index]

            for _ in range(num_channels):
                if ScanOptions.SCALEDATA in scan_opt:
                    
                    eng_value = c_array[data_index]
                else:
                   
                    eng_value = ul.to_eng_units(
                        board_num, ai_range, c_array[data_index])
                data_index += 1
                display_data.append('{:.3f}'.format(eng_value))
            
            wr.writerow(display_data)
            print(row_format.format(*display_data))
            
           
    except ULError as e:
        pass
    finally:
        ul.win_buf_free(memhandle)

        if use_device_detection:
            ul.release_daq_device(board_num)
示例#15
0
    def start_scan(self):
        low_chan = self.get_low_channel_num()
        high_chan = self.get_high_channel_num()

        if low_chan > high_chan:
            messagebox.showerror(
                "Error", "Low Channel Number must be greater than or equal to "
                "High Channel Number")
            self.start_button["state"] = tk.NORMAL
            return

        rate = 1000
        points_per_channel = 10
        num_channels = high_chan - low_chan + 1
        total_count = points_per_channel * num_channels
        range_ = self.ai_props.available_ranges[0]

        trig_type = TrigType.TRIG_ABOVE
        low_threshold_volts = 0.1
        high_threshold_volts = 1.53

        # Allocate a buffer for the scan
        if self.ai_props.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution <= 16
            memhandle = ul.win_buf_alloc(total_count)
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution >
            # 16
            memhandle = ul.win_buf_alloc_32(total_count)

        # Check if the buffer was successfully allocated
        if not memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            self.start_button["state"] = tk.NORMAL
            return

        try:
            low_threshold, high_threshold = self.get_threshold_counts(
                range_, low_threshold_volts, high_threshold_volts)

            ul.set_trigger(self.board_num, trig_type, low_threshold,
                           high_threshold)

            # Run the scan
            ul.a_in_scan(self.board_num, low_chan, high_chan, total_count,
                         rate, range_, memhandle, ScanOptions.EXTTRIGGER)

            # Convert the memhandle to a ctypes array
            # Note: the ctypes array will only be valid until win_buf_free
            # is called.
            # A copy of the buffer can be created using win_buf_to_array
            # or win_buf_to_array_32 before the memory is freed. The copy can
            # be used at any time.
            if self.ai_props.resolution <= 16:
                # Use the memhandle_as_ctypes_array method for devices with a
                # resolution <= 16
                array = self.memhandle_as_ctypes_array(memhandle)
            else:
                # Use the memhandle_as_ctypes_array_32 method for devices with
                # a resolution > 16
                array = self.memhandle_as_ctypes_array_32(memhandle)

            # Display the values
            self.display_values(array, range_, total_count, low_chan,
                                high_chan)
        except ULError as e:
            self.show_ul_error(e)
        finally:
            # Free the allocated memory
            ul.win_buf_free(memhandle)
            self.start_button["state"] = tk.NORMAL
示例#16
0
    def start_scan(self):
        self.low_chan = self.get_low_channel_num()
        self.high_chan = self.get_high_channel_num()
        self.num_chans = self.high_chan - self.low_chan + 1
        if self.low_chan > self.high_chan:
            messagebox.showerror(
                "Error",
                "Low Channel Number must be greater than or equal to High "
                "Channel Number")
            self.set_ui_idle_state()
            return

        rate = 100
        points_per_channel = 1000
        total_count = points_per_channel * self.num_chans
        ai_range = self.ai_info.supported_ranges[0]

        # Allocate a buffer for the scan
        if self.ai_info.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution <=
            # 16
            self.memhandle = ul.win_buf_alloc(total_count)
            # Convert the memhandle to a ctypes array
            # Use the memhandle_as_ctypes_array method for devices with a
            # resolution <= 16
            self.ctypes_array = cast(self.memhandle, POINTER(c_ushort))
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution
            # > 16
            self.memhandle = ul.win_buf_alloc_32(total_count)
            # Use the memhandle_as_ctypes_array_32 method for devices with a
            # resolution > 16
            self.ctypes_array = cast(self.memhandle, POINTER(c_ulong))

        # Note: the ctypes array will no longer be valid after
        # win_buf_free is called.
        # A copy of the buffer can be created using win_buf_to_array
        # or win_buf_to_array_32 before the memory is freed. The copy
        # can be used at any time.

        # Check if the buffer was successfully allocated
        if not self.memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            self.set_ui_idle_state()
            return

        # Create the frames that will hold the data
        self.recreate_data_frame()

        try:
            # Start the scan
            ul.a_in_scan(self.board_num, self.low_chan, self.high_chan,
                         total_count, rate, ai_range, self.memhandle,
                         ScanOptions.BACKGROUND)
        except ULError as e:
            show_ul_error(e)
            self.set_ui_idle_state()
            return

        # Start updating the displayed values
        self.update_displayed_values()
示例#17
0
def run_example():
    board_num = 0
    rate = 100
    points_per_channel = 10

    if use_device_detection:
        ul.ignore_instacal()
        if not util.config_first_detected_device(board_num):
            print("Could not find device.")
            return

    ai_props = AnalogInputProps(board_num)
    if ai_props.num_ai_chans < 1:
        util.print_unsupported_example(board_num)
        return

    low_chan = 0
    high_chan = min(3, ai_props.num_ai_chans - 1)
    num_chans = high_chan - low_chan + 1

    total_count = points_per_channel * num_chans

    ai_range = ai_props.available_ranges[0]

    scan_options = ScanOptions.FOREGROUND

    if ScanOptions.SCALEDATA in ai_props.supported_scan_options:
        # If the hardware supports the SCALEDATA option, it is easiest to
        # use it.
        scan_options |= ScanOptions.SCALEDATA

        memhandle = ul.scaled_win_buf_alloc(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array_scaled method for scaled
        # buffers.
        ctypes_array = util.memhandle_as_ctypes_array_scaled(memhandle)
    elif ai_props.resolution <= 16:
        # Use the win_buf_alloc method for devices with a resolution <= 16
        memhandle = ul.win_buf_alloc(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array method for devices with a
        # resolution <= 16.
        ctypes_array = util.memhandle_as_ctypes_array(memhandle)
    else:
        # Use the win_buf_alloc_32 method for devices with a resolution > 16
        memhandle = ul.win_buf_alloc_32(total_count)
        # Convert the memhandle to a ctypes array.
        # Use the memhandle_as_ctypes_array_32 method for devices with a
        # resolution > 16
        ctypes_array = util.memhandle_as_ctypes_array_32(memhandle)

    # Note: the ctypes array will no longer be valid after win_buf_free is
    # called.
    # A copy of the buffer can be created using win_buf_to_array or
    # win_buf_to_array_32 before the memory is freed. The copy can be used
    # at any time.

    # Check if the buffer was successfully allocated
    if not memhandle:
        print("Failed to allocate memory.")
        return

    try:
        # Start the scan
        ul.a_in_scan(board_num, low_chan, high_chan, total_count, rate,
                     ai_range, memhandle, scan_options)

        print("Scan completed successfully. Data:")

        # Create a format string that aligns the data in columns
        row_format = "{:>5}" + "{:>10}" * num_chans

        # Print the channel name headers
        labels = []
        labels.append("Index")
        for ch_num in range(low_chan, high_chan + 1):
            labels.append("CH" + str(ch_num))
        print(row_format.format(*labels))

        # Print the data
        data_index = 0
        for index in range(points_per_channel):
            display_data = [index]
            for _ in range(num_chans):
                if ScanOptions.SCALEDATA in scan_options:
                    # If the SCALEDATA ScanOption was used, the values
                    # in the array are already in engineering units.
                    eng_value = ctypes_array[data_index]
                else:
                    # If the SCALEDATA ScanOption was NOT used, the
                    # values in the array must be converted to
                    # engineering units using ul.to_eng_units().
                    eng_value = ul.to_eng_units(board_num, ai_range,
                                                ctypes_array[data_index])
                data_index += 1
                display_data.append('{:.3f}'.format(eng_value))
            # Print this row
            print(row_format.format(*display_data))
    except ULError as e:
        util.print_ul_error(e)
    finally:
        # Free the buffer in a finally block to prevent errors from causing
        # a memory leak.
        ul.win_buf_free(memhandle)

        if use_device_detection:
            ul.release_daq_device(board_num)
示例#18
0
    def start_scan(self):
        self.low_chan = self.get_low_channel_num()
        self.high_chan = self.get_high_channel_num()
        self.num_chans = self.high_chan - self.low_chan + 1

        if self.low_chan > self.high_chan:
            messagebox.showerror(
                "Error",
                "Low Channel Number must be greater than or equal to High "
                "Channel Number")
            self.set_ui_idle_state()
            return

        rate = 100
        points_per_channel = 1000

        # Some hardware requires that the total_count is an integer multiple
        # of the packet size. For this case, calculate a points_per_channel
        # that is equal to or just above the points_per_channel selected
        # which matches that requirement.
        if self.ai_props.continuous_requires_packet_size_multiple:
            packet_size = self.ai_props.packet_size
            remainder = points_per_channel % packet_size
            if remainder != 0:
                points_per_channel += packet_size - remainder

        total_count = points_per_channel * self.num_chans
        range_ = self.ai_props.available_ranges[0]
        scan_options = ScanOptions.BACKGROUND | ScanOptions.CONTINUOUS

        # Allocate a buffer for the scan
        if self.ai_props.resolution <= 16:
            # Use the win_buf_alloc method for devices with a resolution <=
            # 16
            self.memhandle = ul.win_buf_alloc(total_count)
        else:
            # Use the win_buf_alloc_32 method for devices with a resolution
            # > 16
            self.memhandle = ul.win_buf_alloc_32(total_count)

        if not self.memhandle:
            messagebox.showerror("Error", "Failed to allocate memory")
            self.set_ui_idle_state()
            return

        # Create the frames that will hold the data
        self.recreate_data_frame()

        try:
            # Run the scan
            ul.a_in_scan(self.board_num, self.low_chan, self.high_chan,
                         total_count, rate, range_, self.memhandle,
                         scan_options)
        except ULError as e:
            self.show_ul_error(e)
            self.set_ui_idle_state()
            return

        # Convert the memhandle to a ctypes array
        # Note: the ctypes array will no longer be valid after win_buf_free
        # is called.
        # A copy of the buffer can be created using win_buf_to_array
        # or win_buf_to_array_32 before the memory is freed. The copy can
        # be used at any time.
        if self.ai_props.resolution <= 16:
            # Use the memhandle_as_ctypes_array method for devices with a
            # resolution <= 16
            self.ctypes_array = self.memhandle_as_ctypes_array(self.memhandle)
        else:
            # Use the memhandle_as_ctypes_array_32 method for devices with a
            # resolution > 16
            self.ctypes_array = self.memhandle_as_ctypes_array_32(
                self.memhandle)

        # Start updating the displayed values
        self.update_displayed_values(range_)
示例#19
0
ai_range = ULRange.BIP5VOLTS
sample_rate = 2000
no_samples = 20000


#convert memhandle to array
def memhandle_as_ctypes_array(memhandle):
    return ctypes.cast(memhandle, ctypes.POINTER(ctypes.c_ushort))


#store data as an array
memhandle = ul.win_buf_alloc(no_samples)
ctypes_array = memhandle_as_ctypes_array(memhandle)

#taking measurements
ul.a_in_scan(board_num, channel1, channel2, no_samples, sample_rate,
             ULRange.BIP5VOLTS, memhandle, ScanOptions.FOREGROUND)

#create empty arrays for each channel
array_ch1 = [0] * int(no_samples / 2)
array_ch2 = [0] * int(no_samples / 2)

angle = np.arctan2(array_ch1, array_ch2)

for i in range(int(no_samples / 2)):
    array_ch1[i] = ctypes_array[2 * i]
    array_ch2[i] = ctypes_array[2 * i + 1]

#time array
t = (1 / sample_rate) * np.linspace(0, 1 + no_samples / 2, no_samples / 2)

array_ch1 = array_ch1 - np.mean(array_ch1)