示例#1
0
def noise_learning_test():
    
    import numpy
    from mclp import LPBoostMulticlassClassifier
    
    # do all of the setup implicitly this time
    c = LPBoostMulticlassClassifier(3, 0.1)

    # ok to use numpy arrays
    c.add_multiclass_classifier(numpy.eye(3))

    # junk / noise
    c.add_multiclass_classifier([[1.0, 0.4, 0.2],
                                 [0.4, 0.4, 0.4],
                                 [0.6, 0.1, 0.2]])
                  
    # junk / noise              
    c.add_multiclass_classifier([[0.3, 0.3, 0.3],
                                 [0.4, 0.4, 0.4],
                                 [0.5, 0.5, 0.5]])

    c.update()

    assert(c.weights[0][0] - 1.0 <  1e-8)
    assert(c.rho - 1.0 < 1e-8)
示例#2
0
def simple_learning_test():
    import numpy
    from mclp import *

    c = LPBoostMulticlassClassifier(3, 0.1)

    c.initialize_boosting([0,1,2], False, "clp")
    c.add_multiclass_classifier([[1.0, 0.0, 0.0],
                                 [0.0, 1.0, 0.0],
                                 [0.0, 0.0, 1.0]])

    c.update()

    assert(c.weights[0][0] - 1.0 <  1e-8)
    assert(c.rho - 1.0 < 1e-8)
示例#3
0
fmean = train_features.mean(1)
train_features -= fmean[:, None]
test_features -= fmean[:, None]
fstd = train_features.std(1)
train_features /= fstd[:, None]
test_features /= fstd[:, None]

from mclp import LPBoostMulticlassClassifier

lp = LPBoostMulticlassClassifier(2, 0.1)
# lp.initialize_boosting([0,1], False, "clp")

for tf in train_features:
    lp.add_multiclass_classifier([tf - 1, tf])

lp.update()
print "rho:", lp.rho


train_predictions = sp.zeros(train_labels.shape)
for i in xrange(len(train_features)):
    # print i, lp.weights[0][i]
    train_predictions += lp.weights[0][i] * train_features[i]
print "train perf=", 100.0 * (sp.sign(train_predictions) == train_labels).sum() / train_labels.size

test_predictions = sp.zeros(test_labels.shape)
for i in xrange(len(test_features)):
    # print i, lp.weights[0][i]
    test_predictions += lp.weights[0][i] * test_features[i]
print "test perf=", 100.0 * (sp.sign(test_predictions) == test_labels).sum() / test_labels.size