def main(argv): parser = MdpArgs(description="debug") parser.add_model_version() parser.add_paramsfile_single() args = parser.get_args() params = cl.get_params_single(args.version, args.paramsfile) mdp_model = cl.get_mdp_model(args.version, [params]) mdp_fh = cl.get_mdp_instance_single(mdp_model, params) # Iterations set to 1, timerange set to 0-20 yr. mdp_data = MdpDataGatherer(mdp_model, 1, [0, 20]) # Variable pulled out of _adjust_co2_tax function in MdpCostCalculator. y_base = mdp_data.co2_base(mdp_fh) # Variable pulled from y_l = mdp_data.get_state_variable(mdp_fh, 'l') y_price = mdp_data.co2_current_price(mdp_fh) y_e = mdp_data.get_state_variable(mdp_fh, 'e') y_inc = mdp_data.co2_inc(mdp_fh) # # Use if changing iterations to > 1. # y_base = np.mean(mdp_data.co2_base(mdp_fh), axis=0) # y_l = np.mean(mdp_data.get_state_variable(mdp_fh, 'l'), axis=0) # y_price = np.mean(mdp_data.co2_current_price(mdp_fh), axis=0) # y_e = np.mean(mdp_data.get_state_variable(mdp_fh, 'e'), axis=0) # y_inc = np.mean(mdp_data.co2_inc(mdp_fh), axis=0) np.set_printoptions(linewidth=200) with open("debug_co2_output.txt", "a+") as debugfile: sys.stdout = debugfile print("### DEBUGGING CO2 ###\n\n") print(params, "\n") time = 0 # for l, e, base, inc in zip(y_l, y_e, y_base, y_inc): # print("TIME: ", time) # print("level: ", l) # print("act: ", e) # print("base: ", base) # print("inc: ", inc) # time += 1 print("inc: ", y_inc) print("base: ", y_base) print("level: ", y_l) print("price: ", y_price) print("act: ", y_e) print("\n\n") sys.stdout = og debugfile.close()
def main(argv): parser = MdpArgs( description= "find set of params with least MSE delta from target CO2 emissions") parser.add_paramsfile_multiple() parser.add_model_version() parser.add_targetsfile() parser.add_iterations() parser.add_use_data() args = parser.get_args() if not parser.check_version( 4, 4, "get_mse_emissions only supported for MDP V4 or higher."): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) params_all = cl.get_params_multiple(args.version, args.paramsfiles) mdp_model = cl.get_mdp_model(args.version, params_all) t_range = [0, params_all[0]['n_years']] mdp_data = MdpDataGatherer(mdp_model, args.iterations, t_range) y_emit = [] if args.usedata: for paramfile in args.paramsfiles: data = cl.get_mdp_data(args.version, paramfile) y_emit.append( mdp_data.get_data_component(data, 'co2_emissions', mean_only=True)) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model, params_all) for mdp_fh in mdp_fh_all: y_emit.append( cl.calc_data_bounds(mdp_data.co2_emissions(mdp_fh))['middle']) targets = cl.get_emissions_target( args.version, args.targetsfile.replace("3", "1").replace("5", "1")) y_mse = [mean_squared_error(targets['y'], y, squared=True) for y in y_emit] y_rmse = [ mean_squared_error(targets['y'], y, squared=False) for y in y_emit ] print("\nCO2 emissions MSE and RMSE:\n") for mse, rmse, paramsfile in zip(y_mse, y_rmse, args.paramsfiles): print("{}: {:.3e} {:.3e}".format(paramsfile, mse, rmse)) print("\n\nParams closest to target emissions:\n") idx = y_mse.index(min(y_mse)) print("{}: {:.3e} {:.3e}".format(args.paramsfiles[idx], y_mse[idx], y_rmse[idx]))
def main(argv): parser = MdpArgs( description= "extract mean CO2 emissions at intervals of following MDP instance optimal policy" ) parser.add_paramsfile_single() parser.add_cycle_length() parser.add_iterations(default=500) parser.add_save() args = parser.get_args() if not args.paramsfile: print("error: must pass in paramsfile.") sys.exit(2) params = cl.get_params_single(MDP_VERSION, args.paramsfile) mdp_model = cl.get_mdp_model(MDP_VERSION, [params]) mdp_fh = cl.get_mdp_instance_single(mdp_model, params) t_range = [0, mdp_fh.n_years] _, _, y_emit, _ = mv.avg_co2_probabilistic_v(mdp_fh, t_range[0], t_range[1], args.iterations, True) y_emit = np.sum(y_emit, axis=0) / args.iterations for y in args.cycle: targets_mean, targets_dec = (dict() for i in range(2)) emit_dec = calc_emit_dec(mdp_fh, y_emit, y) years_sampled = [i * y for i in range(0, (mdp_fh.n_years // y))] # Sampled from mean of optimal policy. targets_mean['x'] = years_sampled targets_mean['y'] = [y_emit[i] for i in years_sampled] # Decrement evenly to align with optimal policy. targets_dec['x'] = years_sampled targets_dec['y'] = [ y_emit[0] - i * emit_dec for i in range(mdp_fh.n_years // y) ] targets_dir = Path("visuals/v{}/targets".format(DIR_VERSION)) name = args.paramsfile.replace("_exp", "").replace("_lin", "") tf_mean = targets_dir / "e_v{}_{}_{}_mean.txt".format( DIR_VERSION, y, name) with open(tf_mean, 'w+') as targetsfile: targetsfile.write(str(targets_mean)) tf_dec = targets_dir / "e_v{}_{}_{}_dec.txt".format( DIR_VERSION, y, name) with open(tf_dec, 'w+') as targetsfile: targetsfile.write(str(targets_dec)) targetsfile.close()
def main(argv): parser = MdpArgs( description= "plot CO2 related metrics of following MDP instance optimal policy") parser.add_model_version() parser.add_paramsfile_multiple() parser.add_time_range() parser.add_iterations() parser.add_confidence_interval() parser.add_use_data() parser.add_save() args = parser.get_args() if not parser.check_version( 4, 4, "visualize_co2 only supported for MDP V4 or higher."): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) params_all = cl.get_params_multiple(args.version, args.paramsfiles) mdp_model = cl.get_mdp_model(args.version, params_all) t_range = cl.get_time_range(args, params_all[0]) if not t_range: sys.exit(3) mdp_data = MdpDataGatherer(mdp_model, args.iterations, t_range) if args.confidenceinterval: mdp_data.set_ci(ci_type=args.confidenceinterval) x = mdp_data.get_time_range(t_range) y_l, y_price, y_tax, y_emit = ([] for i in range(4)) if args.usedata: for pf in args.paramsfiles: data = cl.get_mdp_data(args.version, pf) y_l.append( mdp_data.get_data_component(data, 'tax_level', mean_only=True)) y_price.append(mdp_data.get_data_component(data, 'co2_price')) y_tax.append(mdp_data.get_data_component(data, 'co2_tax')) y_emit.append(mdp_data.get_data_component(data, 'co2_emissions')) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model, params_all) for mdp_fh in mdp_fh_all: y_l.append( mdp_data.calc_data_bounds( mdp_data.get_state_variable(mdp_fh, 'l'))['middle']) y_price.append( mdp_data.calc_data_bounds(mdp_data.co2_current_price(mdp_fh))) y_tax.append( mdp_data.calc_data_bounds(mdp_data.co2_tax_collected(mdp_fh))) y_emit.append( mdp_data.calc_data_bounds(mdp_data.co2_emissions(mdp_fh))) params_names = args.paramsfiles colors = None figs_co2 = [] mdp_plot = MdpPlotter() # Tax level mdp_plot.initialize("State Variable: Tax Level", "Time (years)", "Tax Delta (USD)") mdp_plot.plot_scatter(x, y_l, params_names, colors=colors) fig = mdp_plot.finalize() figs_co2.append(fig) # Current CO2 price mdp_plot.initialize("Current CO2 Price", "Time (years)", "Cost (USD/ton)") mdp_plot.plot_lines(x, y_price, params_names, CI=args.confidenceinterval, colors=colors) fig = mdp_plot.finalize() figs_co2.append(fig) # CO2 tax collected mdp_plot.initialize("Annual CO2 Tax Collected", "Time (years)", "Cost (USD/yr)") mdp_plot.plot_lines(x, y_tax, params_names, CI=args.confidenceinterval, colors=colors) fig = mdp_plot.finalize() figs_co2.append(fig) # CO2 emissions mdp_plot.initialize("Annual CO2 Emissions", "Time (years)", "CO2 Emissions (ton/yr)") mdp_plot.plot_lines(x, y_emit, params_names, CI=args.confidenceinterval, colors=colors) fig = mdp_plot.finalize() figs_co2.append(fig) names = ["level", "price", "tax", "emit"] visuals_dir = Path("visuals/v{}/plots".format(args.version)) if args.save: for fig, name in zip(figs_co2, names): fig.savefig(visuals_dir / "g_v{}_co2_{}_{}.png".format( args.version, name, args.paramsfile)) plt.show()
def main(argv): parser = MdpArgs( description="plot costs of following MDP instance optimal policy") parser.add_model_version() parser.add_paramsfile_multiple() parser.add_time_range() parser.add_iterations() parser.add_confidence_interval() parser.add_use_data() parser.add_granular() parser.add_save() args = parser.get_args() if not parser.check_version(4, 4, "visualize_costs supported for MDP V4 only."): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) params_all = cl.get_params_multiple(args.version, args.paramsfiles) mdp_model = cl.get_mdp_model(args.version, params_all) t_range = cl.get_time_range(args, params_all[0]) if not t_range: sys.exit(3) if args.granular: components = cl.COMPONENTS_GRANULAR else: components = cl.COMPONENTS mdp_data = MdpDataGatherer(mdp_model, args.iterations, t_range) if args.confidenceinterval: mdp_data.set_ci(ci_type=args.confidenceinterval) x = mdp_data.get_time_range(t_range) y_total, y_cum, y_breakdown, y_percents = ([] for i in range(4)) if args.usedata: for pf in args.paramsfiles: data = cl.get_mdp_data(args.version, pf) y_total.append(mdp_data.get_data_component(data, 'cost_total')) y_cum.append( mdp_data.convert_to_cumulative( mdp_data.get_data_component(data, 'cost_total'))) y_breakdown.append( mdp_data.get_data_component(data, 'cost_breakdown')) y_percents.append(mdp_data.get_data_component( data, 'cost_percent')) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model, params_all) for mdp_fh in mdp_fh_all: y_total.append( mdp_data.calc_data_bounds(mdp_data.cost_total(mdp_fh))) y_cum.append( mdp_data.convert_to_cumulative( mdp_data.calc_data_bounds(mdp_data.cost_total(mdp_fh)))) y_breakdown.append( mdp_data.cost_breakdown_components(mdp_fh, components)) y_percents.append( mdp_data.cost_breakdown_components(mdp_fh, components, is_percent=True)) params_names = args.paramsfiles colors = None mdp_plot = MdpPlotter() # Total annual cost mdp_plot.initialize("Total Annual Cost", "Time (years)", "Cost (USD/yr)") mdp_plot.plot_lines(x, y_total, params_names, colors=colors, CI=args.confidenceinterval) fig_total = mdp_plot.finalize() # Total cumulative cost mdp_plot.initialize("Total Cumulative Cost", "Time (years)", "Cost (USD/yr)") mdp_plot.plot_lines(x, y_cum, params_names, colors=colors, CI=args.confidenceinterval) fig_total = mdp_plot.finalize() # Absolute cost breakdown mdp_plot.initialize("Absolute Annual Cost Breakdown", "Time (years)", "Cost (USD/yr)") mdp_plot.plot_stacked_bars(x, y_breakdown, components) fig_breakdown = mdp_plot.finalize() # Percentage cost breakdown mdp_plot.initialize("Percentage Annual Cost Breakdown", "Time (years)", "Cost (%/yr)") mdp_plot.plot_stacked_bars(x, y_percents, components) fig_percents = mdp_plot.finalize() visuals_dir = Path("visuals/v{}/plots".format(args.version)) if args.save: fig_total.savefig(visuals_dir / "g_v{}_total.png".format(args.version)) fig_breakdown.savefig(visuals_dir / "g_v{}_breakdown.png".format(args.version)) fig_percents.savefig(visuals_dir / "g_v{}_percents.png".format(args.version)) plt.show()
def main(argv): parser = MdpArgs( description= "plot CO2 and RES actual vs. target of following MDP instance optimal policy" ) parser.add_model_version() parser.add_paramsfile_multiple() parser.add_targetsfile() parser.add_time_range() parser.add_iterations() parser.add_confidence_interval() parser.add_use_data() parser.add_save() args = parser.get_args() if not parser.check_version( 4, 4, "error: visualize_co2 only supported for MDP V4 or higher."): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) if not args.targetsfile: print("error: must pass in targetsfile.") sys.exit(4) params_all = cl.get_params_multiple(args.version, args.paramsfiles) mdp_model = cl.get_mdp_model(args.version, params_all) t_range = cl.get_time_range(args, params_all[0]) if not t_range: sys.exit(3) mdp_data = MdpDataGatherer(mdp_model, args.iterations, t_range) if args.confidenceinterval: mdp_data.set_ci(ci_type=args.confidenceinterval) x = mdp_data.get_time_range(t_range) y_res, y_emit = ([] for i in range(2)) if args.usedata: for pf in args.paramsfiles: data = cl.get_mdp_data(args.version, pf) y_res.append( mdp_data.convert_to_percent( mdp_data.get_data_component(data, 'res_penetration'))) y_emit.append(mdp_data.get_data_component(data, 'co2_emissions')) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model, params_all) for mdp_fh in mdp_fh_all: y_res.append( mdp_data.convert_to_percent( mdp_data.calc_data_bounds( mdp_data.res_penetration(mdp_fh)))) y_emit.append( mdp_data.calc_data_bounds(mdp_data.co2_emissions(mdp_fh))) targets = cl.get_emissions_target(args.version, args.targetsfile) targets['x'] = [x + START_YEAR for x in targets['x']] mdp_plot = MdpPlotter() # RES penetration mdp_plot.initialize("RES Penetration", "Time (years)", "RES Penetration (%)") mdp_plot.plot_lines(x, y_res, args.paramsfiles, CI=args.confidenceinterval) fig_res = mdp_plot.finalize() # CO2 emissions (actual vs. target) mdp_plot.initialize("Annual CO2 Emissions", "Time (years)", "CO2 Emissions (ton/yr)") mdp_plot.plot_lines(x, y_emit, args.paramsfiles, CI=args.confidenceinterval) mdp_plot.add_scatter_points(targets['x'], targets['y'], "Target") fig_emit = mdp_plot.finalize() visuals_dir = Path("visuals/v{}/plots".format(args.version)) if args.save: fig_res.savefig(visuals_dir / "g_v{}_res_{}.png".format(args.version)) fig_emit.savefig(visuals_dir / "g_v{}_target_{}.png".format(args.version)) plt.show()
def main(argv): parser = MdpArgs(description="plot tax adjusted vs. non-adjusted targets of following optimal MDP policy") parser.add_model_version() parser.add_paramsfile_multiple() parser.add_time_range() parser.add_iterations() parser.add_confidence_interval() parser.add_use_data() parser.add_save() args = parser.get_args() if not parser.check_version(4, 4, "visualize_adjust only supported for MDP V3 with MDP V4 or higher."): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) paramsfiles3 = [] paramsfiles4 = [] for i in range(0, len(args.paramsfiles)): if i % 2: paramsfiles4.append(args.paramsfiles[i]) else: paramsfiles3.append(args.paramsfiles[i]) # MDP V3. params3_all = cl.get_params_multiple(COMP_VERSION, paramsfiles3) mdp_model3 = cl.get_mdp_model(COMP_VERSION, params3_all) mdp_fh3_all = cl.get_mdp_instance_multiple(mdp_model3, params3_all) # MDP V4. params4_all = cl.get_params_multiple(args.version, paramsfiles4) mdp_model4 = cl.get_mdp_model(args.version, params4_all) t_range = cl.get_time_range(args, params4_all[0]) if not t_range: sys.exit(3) mdp_data = MdpDataGatherer(mdp_model4, args.iterations, t_range) if args.confidenceinterval: mdp_data.set_ci(ci_type=args.confidenceinterval) x = mdp_data.get_time_range(t_range) y_res3, y_emit3, y_tax3 = ([] for i in range(3)) for mdp_fh3 in mdp_fh3_all: _, res, emit, tax = mv.avg_co2_probabilistic_v(mdp_fh3, t_range[0], t_range[1], args.iterations, True, res_percent=True) y_res3.append(mdp_data.convert_to_percent(mdp_data.calc_data_bounds(res))) y_emit3.append(mdp_data.calc_data_bounds(emit)) y_tax3.append(mdp_data.calc_data_bounds(tax)) y_res4, y_emit4, y_tax4 = ([] for i in range(3)) if args.usedata: for pf in paramsfiles4: data = cl.get_mdp_data(args.version, pf) y_res4.append(mdp_data.convert_to_percent(mdp_data.get_data_component(data, 'res_penetration'))) y_emit4.append(mdp_data.get_data_component(data, 'co2_emissions')) y_tax4.append(mdp_data.get_data_component(data, 'co2_tax')) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model4, params4_all) for mdp_fh4 in mdp_fh_all: y_res4.append(mdp_data.convert_to_percent(mdp_data.calc_data_bounds(mdp_data.res_penetration(mdp_fh4)))) y_emit4.append(mdp_data.calc_data_bounds(mdp_data.co2_emissions(mdp_fh4))) y_tax4.append(mdp_data.calc_data_bounds(mdp_data.co2_tax_collected(mdp_fh4))) params3_names = paramsfiles3 params4_names = paramsfiles4 colors = None figs_compare = [] mdp_plot = MdpPlotter() # RES penetration mdp_plot.initialize("RES Penetration", "Time (years)", "RES Penetration (%)") mdp_plot.plot_lines(x, y_res3, params3_names, y_max=100, colors=colors, CI=args.confidenceinterval) mdp_plot.plot_lines(x, y_res4, params4_names, y_max=100, colors=colors, CI=args.confidenceinterval, linestyle='dashed') fig = mdp_plot.finalize() figs_compare.append(fig) # CO2 emissions mdp_plot.initialize("Annual CO2 Emissions", "Time (years)", "CO2 (million ton/yr)") mdp_plot.plot_lines(x, y_emit3, params3_names, scale=1e6, colors=colors, CI=args.confidenceinterval) mdp_plot.plot_lines(x, y_emit4, params4_names, scale=1e6, colors=colors, CI=args.confidenceinterval, linestyle='dashed') fig = mdp_plot.finalize() figs_compare.append(fig) # CO2 tax collected mdp_plot.initialize("Annual CO2 Tax Collected", "Time (years)", "Cost (million USD/yr)") mdp_plot.plot_lines(x, y_tax3, params3_names, scale=1e6, colors=colors, CI=args.confidenceinterval) mdp_plot.plot_lines(x, y_tax4, params4_names, scale=1e6, colors=colors, CI=args.confidenceinterval, linestyle='dashed') fig = mdp_plot.finalize() figs_compare.append(fig) names = ['res', 'emit', 'target'] visuals_dir = Path("visuals/v{}/plots".format(args.version)) if args.save: for fig, name in zip(figs_compare, names): fig.savefig(visuals_dir / "g_v{}_compare_{}.png".format(args.version, name)) plt.show()
def main(argv): parser = MdpArgs( description= "plot tax adjusted vs. non-adjusted targets of following optimal MDP policy" ) parser.add_model_version() parser.add_paramsfile_multiple() parser.add_targetsfile() parser.add_time_range() parser.add_iterations() parser.add_confidence_interval() parser.add_use_data() parser.add_save() args = parser.get_args() if not parser.check_version( 4, 4, "visualize_adjust only supported for MDP V3 with MDP V4 or higher." ): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) # MDP V3. params3 = cl.get_params_single(COMP_VERSION, args.paramsfiles[0]) mdp_model3 = cl.get_mdp_model(COMP_VERSION, [params3]) mdp_fh3 = cl.get_mdp_instance_single(mdp_model3, params3) # MDP V4. params4_all = cl.get_params_multiple(args.version, args.paramsfiles[1:]) mdp_model4 = cl.get_mdp_model(args.version, params4_all) t_range = cl.get_time_range(args, params4_all[0]) if not t_range: sys.exit(3) mdp_data = MdpDataGatherer(mdp_model4, args.iterations, t_range) if args.confidenceinterval: mdp_data.set_ci(ci_type=args.confidenceinterval) x = mdp_data.get_time_range(t_range) _, y_res3, y_emit3, y_tax3 = mv.avg_co2_probabilistic_v(mdp_fh3, t_range[0], t_range[1], args.iterations, True, res_percent=True) y_res3 = mdp_data.convert_to_percent(mdp_data.calc_data_bounds(y_res3)) y_emit3 = mdp_data.calc_data_bounds(y_emit3) y_tax3 = mdp_data.calc_data_bounds(y_tax3) y_res4, y_emit4, y_tax4 = ([] for i in range(3)) if args.usedata: for pf in args.paramsfiles[1:]: data = cl.get_mdp_data(args.version, pf) y_res4.append( mdp_data.convert_to_percent( mdp_data.get_data_component(data, 'res_penetration'))) y_emit4.append(mdp_data.get_data_component(data, 'co2_emissions')) y_tax4.append(mdp_data.get_data_component(data, 'co2_tax')) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model4, params4_all) for mdp_fh4 in mdp_fh_all: y_res4.append( mdp_data.convert_to_percent( mdp_data.calc_data_bounds( mdp_data.res_penetration(mdp_fh4)))) y_emit4.append( mdp_data.calc_data_bounds(mdp_data.co2_emissions(mdp_fh4))) y_tax4.append( mdp_data.calc_data_bounds(mdp_data.co2_tax_collected(mdp_fh4))) y_res = [y_res3] + y_res4 y_emit = [y_emit3] + y_emit4 y_tax = [y_tax3] + y_tax4 if args.targetsfile: targets = cl.get_emissions_target(args.version, args.targetsfile) targets['x'] = [x + START_YEAR for x in targets['x']] targets['x'] = targets['x'][0:7] targets['y'] = targets['y'][0:7] else: targets = None # params_names = args.paramsfiles params_names = ["{}: static".format(args.paramsfiles[0])] + [ "{}: adjusted".format(pf) for pf in args.paramsfiles[1:] ] colors = None figs_compare = [] mdp_plot = MdpPlotter() # RES penetration mdp_plot.initialize("RES Penetration", "Time (years)", "RES Penetration (%)") mdp_plot.plot_lines(x, y_res, params_names, y_max=100, colors=colors, CI=args.confidenceinterval) fig = mdp_plot.finalize() figs_compare.append(fig) # CO2 emissions mdp_plot.initialize("Annual CO2 Emissions", "Time (years)", "CO2 (million ton/yr)") mdp_plot.plot_lines(x, y_emit, params_names, scale=1e6, colors=colors, CI=args.confidenceinterval) if targets: mdp_plot.add_scatter_points(targets['x'], targets['y'], "Emissions target", scale=1e6, marker='o') fig = mdp_plot.finalize() figs_compare.append(fig) # CO2 tax collected mdp_plot.initialize("Annual CO2 Tax Collected", "Time (years)", "Cost (billion USD/yr)") mdp_plot.plot_lines(x, y_tax, params_names, scale=1e9, colors=colors, CI=args.confidenceinterval) fig = mdp_plot.finalize() figs_compare.append(fig) names = ['res', 'emit', 'target'] visuals_dir = Path("visuals/v{}/plots".format(args.version)) if args.save: for fig, name in zip(figs_compare, names): fig.savefig(visuals_dir / "g_v{}_compare_{}.png".format(args.version, name)) plt.show()
def main(argv): parser = MdpArgs( description= "plot state variables of following MDP instance optimal policy") parser.add_model_version() parser.add_paramsfile_multiple() parser.add_time_range() parser.add_iterations() parser.add_use_data() parser.add_save() args = parser.get_args() if not parser.check_version( 4, 4, "visualize_state only supported for MDP V4 or higher."): sys.exit(1) if not parser.check_paramfile_multiple(): sys.exit(2) params_all = cl.get_params_multiple(args.version, args.paramsfiles) mdp_model = cl.get_mdp_model(args.version, params_all) t_range = cl.get_time_range(args, params_all[0]) if not t_range: sys.exit(3) mdp_data = MdpDataGatherer(mdp_model, args.iterations, t_range) x = mdp_data.get_time_range(t_range) y_v, y_r, y_l, y_e = ([] for i in range(4)) if args.usedata: for pf in args.paramsfiles: data = cl.get_mdp_data(args.version, pf) y_v.append( mdp_data.get_data_component(data, 'tech_stage', mean_only=True)) y_r.append( mdp_data.get_data_component(data, 'res_plants', mean_only=True)) y_l.append( mdp_data.get_data_component(data, 'tax_level', mean_only=True)) y_e.append( mdp_data.get_data_component(data, 'tax_adjustment', mean_only=True)) else: mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model, params_all) for mdp_fh in mdp_fh_all: y_v.append( mdp_data.calc_data_bounds( mdp_data.get_state_variable(mdp_fh, 'v'))['middle']) y_r.append( mdp_data.calc_data_bounds( mdp_data.get_state_variable(mdp_fh, 'r'))['middle']) y_l.append( mdp_data.calc_data_bounds( mdp_data.get_state_variable(mdp_fh, 'l'))['middle']) y_e.append( mdp_data.calc_data_bounds( mdp_data.get_state_variable(mdp_fh, 'e'))['middle']) params_names = args.paramsfiles figs_state = [] mdp_plot = MdpPlotter() # Tech stage mdp_plot.initialize("State Variable: Tech Stage", "Time (years)", "Tech Stage") mdp_plot.plot_bars(x, y_v, params_names, y_min=0, y_max=params_all[0]['n_tech_stages'] - 1) fig = mdp_plot.finalize() figs_state.append(fig) # RES plants mdp_plot.initialize("State Variable: RES Plants", "Time (years)", "RES Plants") mdp_plot.plot_bars(x, y_r, params_names, y_min=0, y_max=params_all[0]['n_plants']) fig = mdp_plot.finalize() figs_state.append(fig) # Tax level mdp_plot.initialize("State Variable: Tax Level", "Time (years)", "Tax Delta (USD)") mdp_plot.plot_scatter(x, y_l, params_names) fig = mdp_plot.finalize() figs_state.append(fig) # Tax adjustment mdp_plot.initialize("State Variable: Tax Adjustment", "Time (years)", "Tax Adjustment") mdp_plot.plot_scatter(x, y_e, params_names, y_min=-2.5 * (params_all[0]['n_tax_levels'] // 2), y_max=2.5 * (params_all[0]['n_tax_levels'] // 2)) fig = mdp_plot.finalize() figs_state.append(fig) codes = ['v', 'r', 'l', 'e'] visuals_dir = Path("visuals/v{}/plots".format(args.version)) if args.save: for fig, code in zip(figs_state, codes): fig.savefig(visuals_dir / "g_v{}_state_{}.png".format(args.version, code)) plt.show()