func = F18 epoch = 100 problem_size = 100 from mealpy.swarm_based.WOA import BaseWOA from mealpy.swarm_based.SpaSA import BaseSpaSA from mealpy.evolutionary_based.GA import BaseGA from mealpy.swarm_based.GWO import BaseGWO from mealpy.human_based.TLO import BaseTLO from mealpy.human_based.QSA import ImprovedQSA from mealpy.physics_based.EFO import BaseEFO temp1 = BaseTLO(func, problem_size=problem_size, domain_range=(-100, 100), log=True, epoch=epoch, pop_size=50) temp1._train__() temp1 = BaseSpaSA(func, problem_size=problem_size, domain_range=(-100, 100), log=True, epoch=epoch, pop_size=50) temp1._train__() temp2 = BaseEFO(func, problem_size=problem_size, domain_range=(-100, 100),
from opfunu.cec_basic.cec2014 import * ## Setting parameters problem_size = 30 func = ObjFunc14(problem_size) domain_range = [-15, 15] log = True epoch = 500 pop_size = 50 # pc = 0.95 # pm = 0.025 # md = BaseGA(func.F1, problem_size, domain_range, log, epoch, pop_size, pc, pm) # best_position, best_fit, list_loss = md._train__() # print(best_fit) md2 = BaseWOA(F18, problem_size, domain_range, log, epoch, pop_size) best_position2, best_fit2, list_loss2 = md2._train__() print(best_fit2) md3 = BaseTLO(F18, problem_size, domain_range, log, epoch, pop_size) best_position3, best_fit3, list_loss3 = md3._train__() print(best_fit3) md4 = BaseHGSO(F18, problem_size, domain_range, log, epoch, pop_size) best_position4, best_fit4, list_loss4 = md4._train__() print(best_fit4) md5 = LevyHGSO(F18, problem_size, domain_range, log, epoch, pop_size) best_position5, best_fit5, list_loss5 = md5._train__() print(best_fit5)
#-------------------------------------------------------------------------------------------------------% from opfunu.cec_basic.cec2014_nobias import * from mealpy.human_based.TLO import BaseTLO, OriginalTLO ## Setting parameters obj_func = F3 # lb = [-15, -10, -3, -15, -10, -3, -15, -10, -3, -15, -10, -3, -15, -10, -3] # ub = [15, 10, 3, 15, 10, 3, 15, 10, 3, 15, 10, 3, 15, 10, 3] lb = [-100] ub = [100] problem_size = 2000 batch_size = 25 verbose = True epoch = 1000 pop_size = 50 md1 = OriginalTLO(obj_func, lb, ub, problem_size, batch_size, verbose, epoch, pop_size) best_pos1, best_fit1, list_loss1 = md1.train() print(md1.solution[0]) print(md1.solution[1]) print(md1.loss_train) md1 = BaseTLO(obj_func, lb, ub, problem_size, batch_size, verbose, epoch, pop_size) best_pos1, best_fit1, list_loss1 = md1.train() print(md1.solution[0]) print(md1.solution[1]) print(md1.loss_train)
from opfunu.cec_basic.cec2014_nobias import * from mealpy.human_based.TLO import BaseTLO, OriginalTLO # Setting parameters obj_func = F5 verbose = False epoch = 10 pop_size = 50 # A - Different way to provide lower bound and upper bound. Here are some examples: ## 1. When you have different lower bound and upper bound for each parameters lb1 = [-3, -5, 1] ub1 = [5, 10, 100] md1 = BaseTLO(obj_func, lb1, ub1, verbose, epoch, pop_size) best_pos1, best_fit1, list_loss1 = md1.train() print(md1.solution[1]) ## 2. When you have same lower bound and upper bound for each parameters, then you can use: ## + int or float: then you need to specify your problem size (number of dimensions) problemSize = 10 lb2 = -5 ub2 = 10 md2 = BaseTLO(obj_func, lb2, ub2, verbose, epoch, pop_size, problem_size=problemSize) # Remember the keyword "problem_size"