print(ms.val("λ4", ld4_p1, d_ld4_p1, unit='m')) print() print(ms.sig("λ_α1,l", ld2_p1, d_ld2_p1, 71.1e-12, perc=True)) print(ms.sig("λ_α2,l", ld4_p1, d_ld4_p1, 71.1e-12, perc=True)) print(ms.sig("λ_β1,l", ld1_p1, d_ld1_p1, 63.1e-12, perc=True)) print(ms.sig("λ_β2,l", ld3_p1, d_ld3_p1, 63.1e-12, perc=True)) print(ms.sig("λ_α", ld2_p1, d_ld2_p1, ld4_p1, d_ld4_p1, perc=True)) print(ms.sig("λ_β", ld1_p1, d_ld1_p1, ld3_p1, d_ld3_p1, perc=True)) print() # Counting rate - Voltage dependency Measurement t = 20 beta = 7.5 * cs.degree d_beta = 0.1 * cs.degree U = np.arange(20.0, 36.0, 1.0) * cs.kilo n = npf([1.35, 1.35, 2.75, 5.55, 32.95, 78.35, 122.8, 163.3, 200.6, 237.0, 270.2, 307.6, 337.1, 374.7, 403.7, 433.3]) d_n = sqrt(n * t) / t n_0 = ms.mv(n[:3]) d_n_0 = ms.dsto_mv(n[:3]) ms.pltext.initplot(num=3, title=titles[2], xlabel=r'$U$ / V', ylabel=r'$n$ / (1/s)', fignum=True) s, d_s, b, d_b = ms.linreg(U, n, d_n, fit_range=range(3, len(U)), plot=True) U_G = (n_0 - b) / s d_U_G = U_G * sqrt((d_n_0**2 + d_b**2) / (n_0 - b)**2 + (d_s / s)**2) h = (2 * cs.e * d_LiF / cs.c) * sin(beta) * U_G d_h = h * sqrt((d_U_G / U_G)**2 + (d_beta / tan(beta))**2) print(ms.val("n0", n_0, d_n_0, unit='1/s', prefix=False)) print(ms.val("s", s, d_s)) print(ms.val("b", b, d_b))
import measure as ms from measure import npfarray as npf import numpy as np from numpy import pi as π from numpy import sqrt, exp import scipy.constants as sc from scipy.optimize import curve_fit from scipy.stats import chi2 from scipy.special import gamma # Measured values # Measurement of the plateau-sector V_E = 440 t0 = 30.0 U = npf([500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750]) n = npf([2462, 2606, 2636, 2738, 2753, 2671, 2618, 2685, 2742, 2715, 2792]) d_n = sqrt(n) / t0 n = n / t0 # Determination of the plateau-sector ms.pltext.initplot(num=1, title='Plateaubereich, Abhängigkeit der Zählrate n von der Zählrohrspannung U', xlabel='U/V', ylabel='n', fignum=True) [s, d_s, i, d_i] = ms.linreg(U, n, d_n, fit_range=range(1, len(U)), plot=True) U_0 = 600 # Measurement of the plateau-slope t1 = sc.minute U1 = npf([U_0, U_0 + 100]) n1 = npf([12022, 12172]) d_n1 = sqrt(n1) / t1 n1 = n1 / t1
# Measurement of the background t0 = 5 * cs.minute n0 = 122 d_n0 = sqrt(n0) / t0 n0 = n0 / t0 print(ms.val("n0", n0, d_n0, unit='1/s', prefix=False)) # Measurement of β-Radiation absorption, Sr 90, GS 527 A_Sr = 74 * cs.kilo a_Sr = 60 * cs.milli d_a_Sr = 2 * cs.milli t1_Sr = 30 t2_Sr = 2 * cs.minute t3_Sr = 5 * cs.minute n_Sr = npf([1136, 665, 412, 273, 180, 110, 306, 208, 131, 76, 60, 42]) d_n_Sr = sqrt(n_Sr) n_Sr = np.append(n_Sr[:6] / t1_Sr, n_Sr[6:] / t2_Sr) d_n_Sr = np.append(d_n_Sr[:6] / t1_Sr, d_n_Sr[6:] / t2_Sr) d_Sr = np.arange(0.0, 0.3 * cs.milli * len(n_Sr), 0.3 * cs.milli) n0_Sr = 51 d_n0_Sr = sqrt(n0_Sr) / t3_Sr n0_Sr = n0_Sr / t3_Sr n_Sr -= n0_Sr d_n_Sr = sqrt(d_n_Sr**2 + d_n0_Sr**2) ms.pltext.initplot(num=1, title=titles[0], xlabel=r'$d$ / mm', ylabel=r'$\lg(n)$ / (1/s)',
import measure as ms from measure import npfarray as npf from measure import sqrt import numpy as np import scipy.constants as cs ms.plt.rc('text', usetex=True) ms.plt.rc('font', family='serif') titles = [ r'Abhängigkeit der Energie $E_\alpha$ der $K_\alpha$-Strahlung der Elemente in Abhängigkeit der Kernladungszahl $Z$.', r'Abhängigkeit der Energie $E_\beta$ der $K_\beta$-Strahlung der Elemente in Abhängigkeit der Kernladungszahl $Z$.' ] # Determination of the Rydberg-energy and the screening constant for the K_α-Radiation Z1 = npf([26, 29, 47, 22, 40, 30, 28, 42]) E_alpha = npf([6.42, 8.05, 21.93, 4.64, 15.80, 8.65, 7.48, 17.47 ]) * cs.kilo * cs.e d_E_alpha = npf([0.15, 0.17, 0.20, 0.16, 0.17, 0.17, 0.17, 0.18 ]) * cs.kilo * cs.e sr_E_alpha = sqrt(E_alpha) d_sr_E_alpha = d_E_alpha / (2 * sr_E_alpha) ms.pltext.initplot(num=1, title=titles[0], xlabel=r'$Z$', ylabel=r'$\sqrt{E_\alpha} / \sqrt{\mathrm{eV}}$', fignum=True) s1, d_s1, b1, d_b1 = ms.linreg(Z1, sr_E_alpha / sqrt(cs.e), d_sr_E_alpha / sqrt(cs.e),
# Measured values # Resistance and maximum allowed supply voltage I_max = 5.0 I_test = 1.83 d_I_test = 0.01 U_test = 2.2 d_U_test = 0.1 R_sp = U_test / I_test d_R_sp = R_sp * ms.sqrt((d_U_test / U_test)**2 + (d_I_test / I_test)**2) U_max = R_sp * I_max # Frequency and induced voltage at constant current I1 = 8.0 / 2 d_I1 = 0.1 / 2 f1 = npf([3.0, 5.6, 9.3, 11.93, 14.90]) d_f1 = npf([0.1, 0.1, 0.1, 0.40, 0.40]) U1_i = npf([0.81, 2.40, 5.08, 6.96, 9.04]) / 2 d_U1_i = npf([0.02, 0.03, 0.04, 0.01, 0.01]) / 2 # Current, voltage and induced voltage at constant frequency f2 = 9.96 d_f2 = 0.05 I2 = npf([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]) d_I2 = npf([0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1]) U2 = npf([0.6, 1.2, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4]) d_U2 = npf([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) U2_i = npf([0.855, 1.540, 2.240, 2.940, 3.560, 4.240, 4.920, 5.620, 6.260]) / 2 d_U2_i = npf([0.010, 0.010, 0.020, 0.020, 0.040, 0.020, 0.040, 0.020, 0.020]) / 2 # Rotation angle and induced voltage at constant a.c. voltage