## other settings ## plot_fit = True show_guess = True fit_results = [] cum_pts = 0 cum_sweep_pts = np.empty(0) cum_p0 = np.empty(0) cum_u_p0 = np.empty(0) cum_normalized_ssro = np.empty(0) #for k in range(0,len(measurement_name)): for kk in range(len(timestamp)): folder = toolbox.data_from_time(timestamp[kk]) a = mbi.MBIAnalysis(folder) a.get_sweep_pts() a.get_readout_results(name='adwindata') a.get_electron_ROC() cum_pts += a.pts if kk == 0: cum_sweep_pts = a.sweep_pts cum_p0 = a.p0 cum_u_p0 = a.u_p0 else: cum_sweep_pts = np.concatenate((cum_sweep_pts, a.sweep_pts)) cum_p0 = np.concatenate((cum_p0, a.p0)) cum_u_p0 = np.concatenate((cum_u_p0, a.u_p0))
import numpy as np from matplotlib import pyplot as plt from analysis.lib.m2.ssro import mbi from measurement.lib.tools import toolbox # settings msmnt_folders = [ '20130207175652', '20130207180726', ] fig = plt.figure(figsize=(12,4)) ax = fig.add_subplot(111) for f in msmnt_folders: a = mbi.ConditionalPrecessionAnalysis(toolbox.data_from_time(f)) a.get_sweep_pts() a.get_readout_results() of = min(a.normalized_ssro[:,0]) ax.errorbar(a.sweep_pts, a.normalized_ssro[:,0], fmt='o-', yerr=a.u_normalized_ssro[:,0], label=a.name + ' (%s)' % f) ax.legend() ax.set_ylim(0.5,0.8) ax.set_xlim(0,500) ax.set_title('conditional precession') ax.set_xlabel('delay ($\mu$s)') ax.set_ylabel(r'readout results $|0\rangle$')
import h5py import logging from matplotlib import pyplot as plt from analysis.lib.fitting import fit, common from measurement.lib.tools import toolbox from analysis.lib.tools import plot from analysis.lib.m2.ssro import ssro folder = None timestamp = None if folder == None: if timestamp != None: folder = toolbox.data_from_time(timestamp) else: folder = toolbox.latest_data('AdwinSSRO') a = ssro.SSROAnalysis(folder) pwrs = [] taus = [] u_taus = [] for g in a.g.items(): gn = g[0] if 'instrument_settings' in gn: continue a.get_run(gn)
E_y = np.array( [51.08, 51.53, 51.96, 52.33, 52.61, 53.03, 53.36, 53.58, 53.5, 54.84]) E_x = np.array( [53.75, 53.7, 53.73, 53.79, 54.15, 54.57, 55.04, 56.01, 57.04, 59.09]) ssro_data_E_y = np.array([ '20140513124215', '20140513125308', '20140513125914', '20140513130340', '20140513130712', '20140513131304', '20140513131824', '20140513132605', '20140513134100', '20140513134217' ]) cpsh = [] fid = [] fid_err = [] for i, d in enumerate(ssro_data_E_y): folder = toolbox.data_from_time(d) a = ssro.SSROAnalysis(folder) a.get_run('ms0') cpsh_run = np.sum(a.ro_counts[:, 0:-1], axis=1) cpsh.append(sum(cpsh_run) / float(reps)) #f = h5py.File(folder, 'r') #cts_m0 = #times = f['fidelity/time'].value fig = plt.figure() ax = fig.add_subplot(111) ax.plot(gate_V, cpsh, 'bo', ms=8) ax.set_xlabel('strain splitting [GHz]') ax.set_ylabel('counts per shot $E_y$')