示例#1
0
def _hess_freqs(geo, geo_save_fs, save_path, locs, run_prefix, overwrite):
    """ Calculate harmonic frequencies using Hessian
    """
    if _json_database(save_path):
        exists = geo_save_fs[-1].json.harmonic_frequencies.exists(locs)
    else:
        exists = geo_save_fs[-1].file.harmonic_frequencies.exists(locs)
    if not exists:
        ioprinter.info_message(
            'No harmonic frequencies found in save filesys...')
        _run = True
    elif overwrite:
        ioprinter.info_message(
            'User specified to overwrite frequencies with new run...')
        _run = True
    else:
        _run = False

    if _run:

        # Read the Hessian from the filesystem
        if _json_database(save_path):
            hess = geo_save_fs[-1].json.hessian.read(locs)
        else:
            hess = geo_save_fs[-1].file.hessian.read(locs)

        # Calculate and save the harmonic frequencies
        ioprinter.info_message(
            " - Calculating harmonic frequencies from Hessian...")
        script_str = autorun.SCRIPT_DCT['projrot']
        fml_str = automol.geom.formula_string(geo)
        vib_path = job_path(run_prefix, 'PROJROT', 'FREQ', fml_str)
        rt_freqs, _, rt_imags, _ = autorun.projrot.frequencies(
            script_str, vib_path, [geo], [[]], [hess])
        rt_imags = tuple(-1 * imag_freq for imag_freq in rt_imags)
        freqs = sorted(rt_imags + rt_freqs)
        ioprinter.frequencies(freqs)
        ioprinter.geometry(geo)
        if _json_database(save_path):
            geo_save_fs[-1].json.harmonic_frequencies.write(freqs, locs)
        else:
            geo_save_fs[-1].file.harmonic_frequencies.write(freqs, locs)
        ioprinter.save_frequencies(save_path)

    else:
        ioprinter.existing_path('Harmonic frequencies', save_path)
        freqs = geo_save_fs[-1].file.harmonic_frequencies.read(locs)
        ioprinter.frequencies(freqs)
示例#2
0
def build_rotors(spc_dct_i, pf_filesystems, spc_mod_dct_i,
                 read_potentials=True):
    """ Add more rotor info
    """

    run_prefix = pf_filesystems['run_prefix']
    spc_info = sinfo.from_dct(spc_dct_i)
    spc_fml = automol.inchi.formula_string(spc_info[0])
    if spc_fml is None:
        spc_fml = 'TS'
    run_path = job_path(run_prefix, 'PROJROT', 'FREQ', spc_fml, locs_idx=None)

    # Set up tors level filesystem and model and level
    tors_model = spc_mod_dct_i['tors']['mod']
    tors_ene_info = spc_mod_dct_i['tors']['enelvl'][1][1]
    mod_tors_ene_info = tinfo.modify_orb_label(
        tors_ene_info, sinfo.from_dct(spc_dct_i))

    rotors = None
    if pf_filesystems['tors'] is not None:
        [cnf_fs, cnf_save_path, min_cnf_locs, _, _] = pf_filesystems['tors']

        # Build the rotors
        ref_ene = filesys.read.energy(cnf_fs, min_cnf_locs, mod_tors_ene_info)
        zma_fs = fs.zmatrix(cnf_fs[-1].path(min_cnf_locs))
        if (
            zma_fs[-1].file.torsions.exists([0]) and
            zma_fs[-1].file.zmatrix.exists([0]) and
            tors_model != 'rigid'
        ):
            rotors = automol.rotor.from_data(
                zma=zma_fs[-1].file.zmatrix.read([0]),
                tors_inf_dct=zma_fs[-1].file.torsions.read([0]),
                tors_names=spc_dct_i.get('tors_names', None),
                multi=bool('1d' in tors_model))

        # Read the potential grids
        if read_potentials and rotors is not None:
            rotors = _read_potentials(
                rotors, spc_dct_i, run_path, cnf_save_path,
                ref_ene, mod_tors_ene_info,
                tors_model)

    return rotors
示例#3
0
def saddle_point_hessian(opt_ret, ts_info, method_dct, run_fs, run_prefix,
                         overwrite):
    """ run things for checking Hessian
    """

    mod_thy_info = tinfo.modify_orb_label(tinfo.from_dct(method_dct), ts_info)
    script_str, kwargs = qchem_params(method_dct)

    # Obtain geometry from optimization
    opt_inf_obj, _, opt_out_str = opt_ret
    opt_prog = opt_inf_obj.prog
    geo = elstruct.reader.opt_geometry(opt_prog, opt_out_str)

    # Run a Hessian
    hess_success, hess_ret = es_runner.execute_job(
        job='hessian',
        script_str=script_str,
        run_fs=run_fs,
        geo=geo,
        spc_info=ts_info,
        thy_info=mod_thy_info,
        overwrite=overwrite,
        **kwargs,
    )

    # If successful, Read the geom and energy from the optimization
    if hess_success:
        hess_inf_obj, _, hess_out_str = hess_ret
        hess = elstruct.reader.hessian(hess_inf_obj.prog, hess_out_str)

        fml_str = automol.geom.formula_string(geo)
        vib_path = job_path(run_prefix, 'PROJROT', 'FREQ', fml_str)

        run_fs[-1].create(['hessian'])
        script_str = autorun.SCRIPT_DCT['projrot']
        freqs, _, imags, _ = autorun.projrot.frequencies(
            script_str, vib_path, [geo], [[]], [hess])
    else:
        freqs, imags = [], []

    return hess_ret, freqs, imags
示例#4
0
def run(pes_rlst, ktp_tsk_lst, spc_dct, glob_dct, thy_dct, pes_mod_dct,
        spc_mod_dct, run_prefix, save_prefix):
    """ main driver for generation of full set of rate constants on a single PES
    """

    # --------------------------------------- #
    # LOOP OVER ALL OF THE SUBPES in PES_RLST #
    # --------------------------------------- #

    for pes_inf, rxn_lst in pes_rlst.items():

        # ---------------------------------------------- #
        # PREPARE INFORMATION TO PASS TO KTPDRIVER TASKS #
        # ---------------------------------------------- #

        # Set objects
        pes_formula, pes_idx, subpes_idx = pes_inf
        label_dct = None

        # Print PES Channels that are being run
        ioprinter.runlst(pes_inf, rxn_lst)

        # Set paths where files will be written and read
        mess_path = job_path(run_prefix,
                             'MESS',
                             'RATE',
                             pes_formula,
                             locs_idx=subpes_idx)

        # --------------------------------- #
        # RUN THE REQUESTED KTPDRIVER TASKS #
        # --------------------------------- #

        # Write the MESS file
        write_rate_tsk = parser.run.extract_task('write_mess', ktp_tsk_lst)
        if write_rate_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = write_rate_tsk[-1]
            pes_mod = tsk_key_dct['kin_model']
            spc_mod = tsk_key_dct['spc_model']

            spc_dct, rxn_lst, label_dct = _process(pes_idx, rxn_lst,
                                                   ktp_tsk_lst, spc_mod_dct,
                                                   spc_mod, thy_dct, spc_dct,
                                                   glob_dct, run_prefix,
                                                   save_prefix)

            ioprinter.messpf('write_header')

            mess_inp_str, dats = ktproutines.rates.make_messrate_str(
                pes_idx, rxn_lst, pes_mod, spc_mod, spc_dct, thy_dct,
                pes_mod_dct, spc_mod_dct, label_dct, mess_path, run_prefix,
                save_prefix)

            autorun.write_input(mess_path,
                                mess_inp_str,
                                aux_dct=dats,
                                input_name='mess.inp')

        # Run mess to produce rates (currently nothing from tsk lst keys used)
        run_rate_tsk = parser.run.extract_task('run_mess', ktp_tsk_lst)
        if run_rate_tsk is not None:

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.running('MESS for the input file', mess_path)
            autorun.run_script(autorun.SCRIPT_DCT['messrate'], mess_path)

        # Fit rate output to modified Arrhenius forms, print in ChemKin format
        run_fit_tsk = parser.run.extract_task('run_fits', ktp_tsk_lst)
        if run_fit_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = run_fit_tsk[-1]
            spc_mod = tsk_key_dct['spc_model']
            pes_mod = tsk_key_dct['kin_model']
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']

            if label_dct is None:
                spc_dct, rxn_lst, label_dct = _process(pes_idx, rxn_lst,
                                                       ktp_tsk_lst,
                                                       spc_mod_dct, spc_mod,
                                                       thy_dct, spc_dct,
                                                       run_prefix, save_prefix)

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.info_message(
                'Fitting Rate Constants for PES to Functional Forms',
                newline=1)

            # Read and fit rates; write to ckin string
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']
            ckin_dct = ratefit.fit.fit_ktp_dct(
                mess_path=mess_path,
                inp_fit_method=ratefit_dct['fit_method'],
                pdep_dct=ratefit_dct['pdep_fit'],
                arrfit_dct=ratefit_dct['arrfit_fit'],
                chebfit_dct=ratefit_dct['chebfit_fit'],
                troefit_dct=ratefit_dct['troefit_fit'],
                label_dct=label_dct,
                fit_temps=pes_mod_dct[pes_mod]['rate_temps'],
                fit_pressures=pes_mod_dct[pes_mod]['pressures'],
                fit_tunit=pes_mod_dct[pes_mod]['temp_unit'],
                fit_punit=pes_mod_dct[pes_mod]['pressure_unit'])

            # Write the header part
            ckin_dct.update(
                {'header': writer.ckin.model_header((spc_mod, ), spc_mod_dct)})

            ckin_path = output_path('CKIN')
            writer.ckin.write_rxn_file(ckin_dct, pes_formula, ckin_path)
示例#5
0
def run(spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, run_prefix,
        save_prefix):
    """ main driver for thermo run
    """

    # Print Header fo
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    split_spc_lst = split_unstable_spc(spc_rlst, spc_dct,
                                       spc_mod_dct[spc_mods[0]], save_prefix)
    spc_queue = parser.rlst.spc_queue('spc', tuple(split_spc_lst.values())[0])

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod], run_prefix,
                    save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(thm_paths[idx][spc_mod][0],
                                    messpf_inp_str,
                                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(autorun.SCRIPT_DCT['messpf'],
                                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    pfrunner.mess.read_messpf(thm_paths[idx][spc_mod][0]))
            final_pf = pfrunner.mess.combine_pfs(_pfs, coeffs, operators)

            # need to clean thm path build
            tot_idx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (job_path(run_prefix,
                                                'MESS',
                                                'PF',
                                                thm_prefix,
                                                locs_idx=tot_idx),
                                       job_path(run_prefix,
                                                'THERM',
                                                'NASA',
                                                thm_prefix,
                                                locs_idx=tot_idx))
            pfrunner.mess.write_mess_output(fstring(
                spc_dct[spc_name]['inchi']),
                                            final_pf,
                                            thm_paths[idx]['final'][0],
                                            filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thmroutines.basis.prepare_refs(
                ref_scheme, spc_dct, [[spc_name, None]], run_prefix,
                save_prefix)

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: ' +
                        spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: ' +
                        spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(spc_dct[spc_name],
                                                           spc_mod_dct_i,
                                                           run_prefix,
                                                           save_prefix,
                                                           saddle=False)
                ene_spc = ene.read_energy(spc_dct[spc_name],
                                          pf_filesystems,
                                          spc_mod_dct_i,
                                          run_prefix,
                                          read_ene=True,
                                          read_zpe=True,
                                          saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct, spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thmroutines.heatform.calc_hform_0k(ene_spc,
                                                      ene_basis,
                                                      spc_basis,
                                                      coeff_basis,
                                                      ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct, thm_paths[idx]['final'][0],
                thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'

            print(ckin_nasa_str)
        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        # print('ckin_nasa_str test', ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES           H(0 K)  H(298 K)  S(298 K)  Cp(300 K) Cp(500 K) Cp(1000 K) Cp(1500 K)\n'
        )
        ioprinter.info_message(
            '                 kcal/mol kcal/mol cal/(mol K) ... \n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            whitespace = 18 - len(spc_name)
            h0 = spc_dct[spc_name]['Hfs'][0]
            h298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15) / 1000.
            s298 = mechanalyzer.calculator.thermo.entropy(nasa7_params, 298.15)
            cp300 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 300)
            cp500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 500)
            cp1000 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1000)
            cp1500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1500)
            whitespace = whitespace * ' '
            ioprinter.info_message(
                '{}{}{:>7.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}'.
                format(spc_name, whitespace, h0, h298, s298, cp300, cp500,
                       cp1000, cp1500))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
示例#6
0
def run(pes_rlst, spc_rlst,
        therm_tsk_lst,
        pes_mod_dct, spc_mod_dct,
        spc_dct,
        run_prefix, save_prefix):
    """ Executes all thermochemistry tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
            tuple(tuple(obj, tsk, keyword_dict))
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
            dict[spc_name: spc_information]
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
            dict[spc_name: spc_information]
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
            dict[thy name: inf]
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    # Print Header
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    spc_mod_dct_i = spc_mod_dct[spc_mods[0]]
    split_rlst = split_unstable_full(
        pes_rlst, spc_rlst, spc_dct, spc_mod_dct_i, save_prefix)
    spc_queue = parser.rlst.spc_queue(
        tuple(split_rlst.values())[0], 'SPC')

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'],
                    spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod],
                    run_prefix, save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(
                    thm_paths[idx][spc_mod][0], messpf_inp_str,
                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(
                   autorun.SCRIPT_DCT['messpf'],
                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    reader.mess.messpf(thm_paths[idx][spc_mod][0]))
            final_pf = thermfit.pf.combine(_pfs, coeffs, operators)

            # need to clean thm path build
            tdx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (
                job_path(run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=tdx),
                job_path(run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=tdx)
            )
            writer.mess.output(
                fstring(spc_dct[spc_name]['inchi']),
                final_pf, thm_paths[idx]['final'][0],
                filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thermfit.prepare_refs(
                ref_scheme, spc_dct, (spc_name,))

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: '
                        + spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: '
                        + spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(
                    spc_dct[spc_name], spc_mod_dct_i,
                    run_prefix, save_prefix, saddle=False)
                ene_spc = ene.read_energy(
                    spc_dct[spc_name], pf_filesystems, spc_mod_dct_i,
                    run_prefix, read_ene=True, read_zpe=True, saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct,
                    spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thermfit.heatform.calc_hform_0k(
                ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct,
                thm_paths[idx]['final'][0], thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'
        print('CKIN NASA STR\n')
        print(ckin_nasa_str)

        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES\t\tH(0 K)[kcal/mol]\tH(298 K)[kcal/mol]\t' +
            'S(298 K)[cal/mol K]\n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            ht0 = spc_dct[spc_name]['Hfs'][0]
            ht298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15)
            st298 = mechanalyzer.calculator.thermo.entropy(
                nasa7_params, 298.15)
            ioprinter.info_message(
                '{}\t{:3.2f}\t{:3.2f}\t{:3.2f}'.format(
                    spc_name, ht0, ht298/1000., st298))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
示例#7
0
def run(pes_rlst, ktp_tsk_lst, spc_dct, glob_dct, pes_mod_dct, spc_mod_dct,
        run_prefix, save_prefix):
    """ Executes all kinetics tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
            tuple(tuple(obj, tsk, keyword_dict))
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
            dict[spc_name: spc_information]
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
            dict[spc_name: spc_information]
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
            dict[thy name: inf]
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    # --------------------------------------- #
    # LOOP OVER ALL OF THE SUBPES in PES_RLST #
    # --------------------------------------- #

    for pes_inf, rxn_lst in pes_rlst.items():

        # ---------------------------------------------- #
        # PREPARE INFORMATION TO PASS TO KTPDRIVER TASKS #
        # ---------------------------------------------- #

        # Set objects
        pes_formula, pes_idx, subpes_idx = pes_inf
        label_dct = None

        # Print PES Channels that are being run
        ioprinter.runlst(pes_inf, rxn_lst)

        # Set paths where files will be written and read
        mess_path = job_path(run_prefix,
                             'MESS',
                             'RATE',
                             pes_formula,
                             locs_idx=subpes_idx)

        # --------------------------------- #
        # RUN THE REQUESTED KTPDRIVER TASKS #
        # --------------------------------- #

        # Write the MESS file
        write_rate_tsk = parser.run.extract_task('write_mess', ktp_tsk_lst)
        if write_rate_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = write_rate_tsk[-1]
            pes_mod = tsk_key_dct['kin_model']
            spc_mod = tsk_key_dct['spc_model']

            spc_dct, rxn_lst, instab_chnls, label_dct = _process(
                pes_idx, rxn_lst, ktp_tsk_lst, spc_mod_dct, spc_mod, spc_dct,
                glob_dct, run_prefix, save_prefix)

            ioprinter.messpf('write_header')

            # Doesn't give full string
            mess_inp_str, dats = ktproutines.rates.make_messrate_str(
                pes_idx,
                rxn_lst,
                pes_mod,
                spc_mod,
                spc_dct,
                pes_mod_dct,
                spc_mod_dct,
                instab_chnls,
                label_dct,
                mess_path,
                run_prefix,
                save_prefix,
                make_lump_well_inp=tsk_key_dct['lump_wells'])

            autorun.write_input(mess_path,
                                mess_inp_str,
                                aux_dct=dats,
                                input_name='mess.inp')

        # Run mess to produce rates (currently nothing from tsk lst keys used)
        run_rate_tsk = parser.run.extract_task('run_mess', ktp_tsk_lst)
        if run_rate_tsk is not None:

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.running('MESS for the input file', mess_path)
            autorun.run_script(autorun.SCRIPT_DCT['messrate'], mess_path)

        # Fit rate output to modified Arrhenius forms, print in ChemKin format
        run_fit_tsk = parser.run.extract_task('run_fits', ktp_tsk_lst)
        if run_fit_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = run_fit_tsk[-1]
            spc_mod = tsk_key_dct['spc_model']
            pes_mod = tsk_key_dct['kin_model']
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']

            if label_dct is None:
                spc_dct, rxn_lst, _, label_dct = _process(
                    pes_idx, rxn_lst, ktp_tsk_lst, spc_mod_dct, spc_mod,
                    spc_dct, glob_dct, run_prefix, save_prefix)

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.info_message(
                'Fitting Rate Constants for PES to Functional Forms',
                newline=1)

            # Read and fit rates; write to ckin string
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']
            ckin_dct = ratefit.fit.fit_ktp_dct(
                mess_path=mess_path,
                inp_fit_method=ratefit_dct['fit_method'],
                pdep_dct=ratefit_dct['pdep_fit'],
                arrfit_dct=ratefit_dct['arrfit_fit'],
                chebfit_dct=ratefit_dct['chebfit_fit'],
                troefit_dct=ratefit_dct['troefit_fit'],
                label_dct=label_dct,
                fit_temps=pes_mod_dct[pes_mod]['rate_temps'],
                fit_pressures=pes_mod_dct[pes_mod]['pressures'],
                fit_tunit=pes_mod_dct[pes_mod]['temp_unit'],
                fit_punit=pes_mod_dct[pes_mod]['pressure_unit'])

            # Write the header part
            ckin_dct.update(
                {'header': writer.ckin.model_header((spc_mod, ), spc_mod_dct)})

            ckin_path = output_path('CKIN')
            writer.ckin.write_rxn_file(ckin_dct, pes_formula, ckin_path)