示例#1
0
def test(model, test_loader, task, device):
    model.eval()
    test_loss = 0

    y_true = torch.tensor([]).to(device)
    y_score = torch.tensor([]).to(device)
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(test_loader):

            data = data.to(device)
            target = target.to(device)
            output = model(data)
            # output = F.softmax(output,dim=1)
            if task == 'multi-label, binary-class':
                loss = F.binary_cross_entropy_with_logits(
                    output, target.float())
            else:
                loss = F.cross_entropy(output, target.long().squeeze())
                target = target.float()
            test_loss += loss.item()
            y_true = torch.cat((y_true, target))
            y_score = torch.cat((y_score, F.softmax(output, dim=1)))

    y_true = y_true.cpu().numpy()
    y_score = y_score.cpu().numpy()
    auc = getAUC(y_true, y_score, task)
    acc = getACC(y_true, y_score, task)
    test_loss /= len(test_loader)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {:.4f}\n'.format(
        test_loss, acc))

    return test_loss, auc, acc
示例#2
0
def val(model, val_loader, task, device):
    model.eval()

    val_loss = 0
    y_true = torch.tensor([]).to(device)
    y_score = torch.tensor([]).to(device)
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(val_loader):
            data = data.to(device)
            target = target.to(device)

            output = model(data)

            if task == 'multi-label, binary-class':
                loss = F.binary_cross_entropy_with_logits(
                    output, target.float())
            else:
                loss = F.cross_entropy(output, target.long().squeeze())
                target = target.float()
            val_loss += loss.item()
            y_true = torch.cat((y_true, target))
            y_score = torch.cat((y_score, F.softmax(output, dim=1)))

    y_true = y_true.cpu().numpy()
    y_score = y_score.cpu().numpy()
    auc = getAUC(y_true, y_score, task)
    acc = getACC(y_true, y_score, task)
    val_loss /= len(val_loader)
    return val_loss, auc, acc
示例#3
0
def val(model, val_loader, device, task, dir_path, epoch, criterion):
    ''' validation function
    :param model: the model to validate
    :param val_loader: DataLoader of validation set
    :param device: cpu or cuda
    :param val_auc_list: the list to save AUC score of each epoch
    :param task: task of current dataset, binary-class/multi-class/multi-label, binary-class
    :param dir_path: where to save model and data
    :param epoch: current epoch
    :param criterion: loss function

    '''

    model.eval()
    val_loss = []
    y_true = torch.tensor([]).to(device)
    y_score = torch.tensor([]).to(device)
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(val_loader):
            outputs = model(inputs.to(device))

            if task == 'multi-label, binary-class':
                targets = targets.to(torch.float32).to(device)
                loss = criterion(outputs, targets)
                m = nn.Sigmoid()
                outputs = m(outputs).to(device)
            else:
                targets = targets.squeeze().long().to(device)
                loss = criterion(outputs, targets)
                m = nn.Softmax(dim=1)
                outputs = m(outputs).to(device)
                targets = targets.float().resize_(len(targets), 1)

            y_true = torch.cat((y_true, targets), 0)
            y_score = torch.cat((y_score, outputs), 0)
            val_loss.append(loss.item())

        y_true = y_true.cpu().numpy()
        y_score = y_score.detach().cpu().numpy()
        auc = getAUC(y_true, y_score, task)
        acc = getACC(y_true, y_score, task)

    state = {
        'net': model.state_dict(),
        'auc': auc,
        'epoch': epoch,
    }

    path = os.path.join(dir_path, 'ckpt_%d_auc_%.5f.pth' % (epoch, auc))
    torch.save(state, path)

    valloss = open(os.path.join(dir_path, 'val_loss.txt'), 'a')
    valloss.write(str(np.mean(val_loss)) + "\n")
    valloss.close()

    data_file = open(os.path.join(dir_path, 'save_data.txt'), 'a')
    data_file.write(str(epoch) + ' ' + str(auc) + ' ' + str(acc) + "\n")
    data_file.close()
示例#4
0
def val(model, val_loader, device, val_auc_list, task, dir_path, epoch):
    ''' validation function
    :param model: the model to validate
    :param val_loader: DataLoader of validation set
    :param device: cpu or cuda
    :param val_auc_list: the list to save AUC score of each epoch
    :param task: task of current dataset, binary-class/multi-class/multi-label, binary-class
    :param dir_path: where to save model
    :param epoch: current epoch

    '''

    model.eval()
    y_true = torch.tensor([]).to(device)
    y_score = torch.tensor([]).to(device)
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(val_loader):
            outputs = model(inputs.to(device))

            if task == 'multi-label, binary-class':
                targets = targets.to(torch.float32).to(device)
                m = nn.Sigmoid()
                outputs = m(outputs).to(device)
            else:
                targets = targets.squeeze().long().to(device)
                m = nn.Softmax(dim=1)
                outputs = m(outputs).to(device)
                targets = targets.float().resize_(len(targets), 1)

            y_true = torch.cat((y_true, targets), 0)
            y_score = torch.cat((y_score, outputs), 0)

        y_true = y_true.cpu().numpy()
        y_score = y_score.detach().cpu().numpy()
        auc = getAUC(y_true, y_score, task)
        val_auc_list.append(auc)

    state = {
        'net': model.state_dict(),
        'auc': auc,
        'epoch': epoch,
    }

    path = os.path.join(dir_path, 'ckpt_%d_auc_%.5f.pth' % (epoch, auc))
    torch.save(state, path)
示例#5
0
def test(model, split, data_loader, device, task, dir_path):
    ''' testing function
    :param model: the model to test
    :param split: the data to test, 'train/val/test'
    :param data_loader: DataLoader of data
    :param device: cpu or cuda
    :param task: task of current dataset, binary-class/multi-class/multi-label, binary-class
    :param dir_path: where to save data

    '''

    model.eval()
    y_true = torch.tensor([]).to(device)
    y_score = torch.tensor([]).to(device)

    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(data_loader):
            outputs = model(inputs.to(device))

            if task == 'multi-label, binary-class':
                targets = targets.to(torch.float32).to(device)
                m = nn.Sigmoid()
                outputs = m(outputs).to(device)
            else:
                targets = targets.squeeze().long().to(device)
                m = nn.Softmax(dim=1)
                outputs = m(outputs).to(device)
                targets = targets.float().resize_(len(targets), 1)

            y_true = torch.cat((y_true, targets), 0)
            y_score = torch.cat((y_score, outputs), 0)

        y_true = y_true.cpu().numpy()
        y_score = y_score.detach().cpu().numpy()
        auc = getAUC(y_true, y_score, task)
        acc = getACC(y_true, y_score, task)
        print('%s AUC: %.5f ACC: %.5f' % (split, auc, acc))

        # if args.output_root is not None:
        #     output_dir = os.path.join(args.output_root, args.data_name)
        #     if not os.path.exists(output_dir):
        #         os.mkdir(output_dir)
        # output_path = os.path.join(output_dir, '%s.csv' % (split))
        output_path = os.path.join(dir_path, '%s.csv' % (split))
        save_results(y_true, y_score, output_path)
示例#6
0
def test(model, split, data_loader, device, flag, task, output_root=None):
    """
        testing function
        :param model: the model to test
        :param split: the data to test, 'train/val/test'
        :param data_loader: DataLoader of data
        :param device: cpu or cuda
        :param flag: subset name
        :param task: task of current dataset, binary-class/multi-class/multi-label, binary-class
        :param data_name: data name
    """
    configuration = {
        "pathmnist": {
            "classes": ['0', '1', '2', '3', '4', '5', '6', '7', '8']
        },
        "chestmnist": {
            "classes": [
                '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11',
                '12', '13'
            ]
        },
        "dermamnist": {
            "classes": ['0', '1', '2', '3', '4', '5', '6']
        },
        "octmnist": {
            "classes": ['0', '1', '2', '3']
        },
        "retinamnist": {
            "classes": ['0', '1', '2', '3', '4']
        },
        "pneumoniamnist": {
            "classes": ['0', '1']
        },
        "breastmnist": {
            "classes": ['0', '1']
        },
        "organmnist_axial": {
            "classes":
            ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
        },
        "organmnist_coronal": {
            "classes":
            ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
        },
        "organmnist_sagittal": {
            "classes":
            ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
        }
    }
    args = configuration[flag]
    model.eval()

    y_true = torch.tensor([]).to(device)
    y_score = torch.tensor([]).to(device)
    pred_labels = []
    true_labels = []
    scores = []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(data_loader):
            outputs = model(inputs.to(device))

            if task == 'multi-label, binary-class':
                targets = targets.to(torch.float32).to(device)
                m = nn.Sigmoid()
                outputs = m(outputs).to(device)
            else:
                targets = targets.squeeze().long().to(device)
                m = nn.Softmax(dim=1)
                outputs = m(outputs).to(device)
                targets = targets.float().resize_(len(targets), 1)

            predict_label = outputs.data.max(1)[1].cpu().numpy()
            pred_labels.extend(predict_label)
            true_label = targets.data.cpu().numpy()
            true_labels.extend(true_label)
            scores.extend(outputs.data.cpu().numpy().tolist())

            y_true = torch.cat((y_true, targets), 0)
            y_score = torch.cat((y_score, outputs), 0)

        y_true = y_true.cpu().numpy()
        y_score = y_score.detach().cpu().numpy()
        if split == 'test' and flag != 'chestmnist':
            result = metric_results(pred_labels, true_labels)
            printMetricResults(result)
            plot_confusion_matrix(result['confusion_matrix'],
                                  classes=args["classes"],
                                  normalize=False,
                                  title=flag)
            confusion_matrixPath = os.path.join(config.confusionMatrixPath,
                                                flag)
            plt.savefig(confusion_matrixPath, dpi=600)
            plt.clf()
            rocPicName = flag
            plotRocCurve(flag, true_labels, scores, config.rocPic_path,
                         rocPicName)

        auc = getAUC(y_true, y_score, task)
        acc = getACC(y_true, y_score, task)
        print('%s AUC: %.5f ACC: %.5f' % (split, auc, acc))

        if output_root is not None:
            output_dir = os.path.join(output_root, flag)
            if not os.path.exists(output_dir):
                os.mkdir(output_dir)
            output_path = os.path.join(output_dir, '%s.csv' % (split))
            save_results(y_true, y_score, output_path)