def __init__(self, cfg, method="base", confidence_threshold=0.7, output_folder="demo/visulaization"): self.cfg = cfg.clone() self.model = build_detection_model(cfg) self.model.eval() self.device = torch.device(cfg.MODEL.DEVICE) self.model.to(self.device) save_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) self.transforms = self.build_transform() # used to make colors for each class self.palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1]) self.cpu_device = torch.device("cpu") self.confidence_threshold = confidence_threshold self.method = method self.output_folder = output_folder if not os.path.exists(output_folder): os.makedirs(output_folder) # for video output self.vprocessor = VideoProcessor(None)
def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") parser.add_argument( '--launcher', choices=['pytorch', 'mpi'], default='pytorch', help='job launcher') parser.add_argument( "--config-file", default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--ckpt", help="The path to the checkpoint for test, default is the latest checkpoint.", default=None, ) parser.add_argument( "--motion-specific", "-ms", action="store_true", help="if True, evaluate motion-specific iou" ) parser.add_argument("--master_port", "-mp", type=str, default='29999') parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() if args.launcher == "pytorch": num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 elif args.launcher == "mpi": num_gpus = int(os.environ["OMPI_COMM_WORLD_SIZE"]) if "OMPI_COMM_WORLD_SIZE" in os.environ else 1 else: num_gpus = 1 distributed = num_gpus > 1 if distributed: init_dist(args.launcher, args=args) synchronize() BASE_CONFIG = "configs/BASE_RCNN_{}gpu.yaml".format(num_gpus) cfg.merge_from_file(BASE_CONFIG) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("mega_core", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) # Initialize mixed-precision if necessary use_mixed_precision = cfg.DTYPE == 'float16' amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt _ = checkpointer.load(ckpt, use_latest=args.ckpt is None, flownet=None) iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( cfg, model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, motion_specific=args.motion_specific, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, bbox_aug=cfg.TEST.BBOX_AUG.ENABLED, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) synchronize()
def train(cfg, local_rank, distributed): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, ) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT, ignore=cfg.MODEL.VID.IGNORE) if cfg.MODEL.VID.METHOD in ("fgfa", ): checkpointer.load_flownet(cfg.MODEL.VID.FLOWNET_WEIGHT) if not cfg.MODEL.VID.IGNORE: arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) test_period = cfg.SOLVER.TEST_PERIOD if test_period > 0: data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed, is_for_period=True) else: data_loader_val = None checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD do_train( cfg, model, data_loader, data_loader_val, optimizer, scheduler, checkpointer, device, checkpoint_period, test_period, arguments, ) return model