示例#1
0
    def __init__(self,
                 cfg,
                 method="base",
                 confidence_threshold=0.7,
                 output_folder="demo/visulaization"):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg,
                                             self.model,
                                             save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        # used to make colors for each class
        self.palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold

        self.method = method
        self.output_folder = output_folder
        if not os.path.exists(output_folder):
            os.makedirs(output_folder)

        # for video output
        self.vprocessor = VideoProcessor(None)
示例#2
0
def main():
    parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
    parser.add_argument(
        '--launcher',
        choices=['pytorch', 'mpi'],
        default='pytorch',
        help='job launcher')
    parser.add_argument(
        "--config-file",
        default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "--ckpt",
        help="The path to the checkpoint for test, default is the latest checkpoint.",
        default=None,
    )
    parser.add_argument(
        "--motion-specific",
        "-ms",
        action="store_true",
        help="if True, evaluate motion-specific iou"
    )
    parser.add_argument("--master_port", "-mp", type=str, default='29999')
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    if args.launcher == "pytorch":
        num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    elif args.launcher == "mpi":
        num_gpus = int(os.environ["OMPI_COMM_WORLD_SIZE"]) if "OMPI_COMM_WORLD_SIZE" in os.environ else 1
    else:
        num_gpus = 1
    distributed = num_gpus > 1

    if distributed:
        init_dist(args.launcher, args=args)
        synchronize()

    BASE_CONFIG = "configs/BASE_RCNN_{}gpu.yaml".format(num_gpus)
    cfg.merge_from_file(BASE_CONFIG)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("mega_core", save_dir, get_rank())
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    model = build_detection_model(cfg)
    model.to(cfg.MODEL.DEVICE)

    # Initialize mixed-precision if necessary
    use_mixed_precision = cfg.DTYPE == 'float16'
    amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE)

    output_dir = cfg.OUTPUT_DIR

    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt
    _ = checkpointer.load(ckpt, use_latest=args.ckpt is None, flownet=None)

    iou_types = ("bbox",)
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm",)
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints",)
    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
    for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
        inference(
            cfg,
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            motion_specific=args.motion_specific,
            box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
            bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
            device=cfg.MODEL.DEVICE,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
        )
        synchronize()
示例#3
0
def train(cfg, local_rank, distributed):
    model = build_detection_model(cfg)
    device = torch.device(cfg.MODEL.DEVICE)
    model.to(device)

    optimizer = make_optimizer(cfg, model)
    scheduler = make_lr_scheduler(cfg, optimizer)

    # Initialize mixed-precision training
    use_mixed_precision = cfg.DTYPE == "float16"
    amp_opt_level = 'O1' if use_mixed_precision else 'O0'
    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=amp_opt_level)

    if distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[local_rank],
            output_device=local_rank,
            # this should be removed if we update BatchNorm stats
            broadcast_buffers=False,
        )

    arguments = {}
    arguments["iteration"] = 0

    output_dir = cfg.OUTPUT_DIR

    save_to_disk = get_rank() == 0
    checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler,
                                         output_dir, save_to_disk)
    extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT,
                                              ignore=cfg.MODEL.VID.IGNORE)
    if cfg.MODEL.VID.METHOD in ("fgfa", ):
        checkpointer.load_flownet(cfg.MODEL.VID.FLOWNET_WEIGHT)

    if not cfg.MODEL.VID.IGNORE:
        arguments.update(extra_checkpoint_data)

    data_loader = make_data_loader(
        cfg,
        is_train=True,
        is_distributed=distributed,
        start_iter=arguments["iteration"],
    )

    test_period = cfg.SOLVER.TEST_PERIOD
    if test_period > 0:
        data_loader_val = make_data_loader(cfg,
                                           is_train=False,
                                           is_distributed=distributed,
                                           is_for_period=True)
    else:
        data_loader_val = None

    checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD

    do_train(
        cfg,
        model,
        data_loader,
        data_loader_val,
        optimizer,
        scheduler,
        checkpointer,
        device,
        checkpoint_period,
        test_period,
        arguments,
    )

    return model