def test_compute_affinity_matrix_args(almost_equal_decimals=5): """ test the compute_affinity_matrix parameter arguments """ input_types = ['data', 'adjacency', 'affinity'] params = [{'radius': 4}, {'radius': 5}] adjacency_method = 'auto' for affinity_method in affinity_methods(): X = np.random.uniform(size=(10, 2)) D = compute_adjacency_matrix(X, adjacency_method, **params[1]) A = compute_affinity_matrix(D, affinity_method, **params[1]) for init_params in params: for kwarg_params in params: true_params = init_params.copy() true_params.update(kwarg_params) affinity_true = compute_affinity_matrix( D, adjacency_method, **true_params) for input in input_types: G = Geometry(adjacency_method=adjacency_method, adjacency_kwds=params[1], affinity_method=affinity_method, affinity_kwds=init_params) if input in ['data', 'adjacency']: if input in ['data']: G.set_data_matrix(X) else: G.set_adjacency_matrix(D) affinity_queried = G.compute_affinity_matrix( **kwarg_params) assert_array_almost_equal(affinity_true.todense(), affinity_queried.todense(), almost_equal_decimals) else: G.set_affinity_matrix(A) msg = distance_error_msg assert_raise_message(ValueError, msg, G.compute_affinity_matrix)
def test_compute_affinity_matrix_args(almost_equal_decimals=5): """ test the compute_affinity_matrix parameter arguments """ input_types = ['data', 'adjacency', 'affinity'] params = [{'radius':4}, {'radius':5}] adjacency_method = 'auto' for affinity_method in affinity_methods(): X = np.random.uniform(size=(10, 2)) D = compute_adjacency_matrix(X, adjacency_method, **params[1]) A = compute_affinity_matrix(D, affinity_method, **params[1]) for init_params in params: for kwarg_params in params: true_params = init_params.copy() true_params.update(kwarg_params) affinity_true = compute_affinity_matrix(D, adjacency_method, **true_params) for input in input_types: G = Geometry(adjacency_method = adjacency_method, adjacency_kwds = params[1], affinity_method = affinity_method, affinity_kwds = init_params) if input in ['data', 'adjacency']: if input in ['data']: G.set_data_matrix(X) else: G.set_adjacency_matrix(D) affinity_queried = G.compute_affinity_matrix(**kwarg_params) assert_array_almost_equal(affinity_true.todense(), affinity_queried.todense(), almost_equal_decimals) else: G.set_affinity_matrix(A) msg = distance_error_msg assert_raise_message(ValueError, msg, G.compute_affinity_matrix)
def test_affinity_vs_matlab(): """Test that the affinity calculation matches the matlab result""" matlab = io.loadmat(TEST_DATA) D = np.sqrt(matlab['S']) # matlab outputs squared distances A_matlab = matlab['A'] radius = matlab['rad'][0] # check dense affinity computation A_dense = compute_affinity_matrix(D, radius=radius) assert_allclose(A_dense, A_matlab) # check sparse affinity computation A_sparse = compute_affinity_matrix(csr_matrix(D), radius=radius) assert_allclose(A_sparse.toarray(), A_matlab)
def test_compute_laplacian_matrix_args(almost_equal_decimals=5): input_types = ['data', 'adjacency', 'affinity'] params = [{}, {'radius': 4}, {'radius': 5}] lapl_params = [{}, {'scaling_epps': 4}, {'scaling_epps': 10}] adjacency_method = 'auto' affinity_method = 'auto' for laplacian_method in laplacian_methods(): X = np.random.uniform(size=(10, 2)) D = compute_adjacency_matrix(X, adjacency_method, **params[1]) A = compute_affinity_matrix(D, affinity_method, **params[1]) for init_params in lapl_params: for kwarg_params in lapl_params: true_params = init_params.copy() true_params.update(kwarg_params) laplacian_true = compute_laplacian_matrix( A, laplacian_method, **true_params) for input in input_types: G = Geometry(adjacency_method=adjacency_method, adjacency_kwds=params[1], affinity_method=affinity_method, affinity_kwds=params[1], laplacian_method=laplacian_method, laplacian_kwds=lapl_params[0]) if input in ['data']: G.set_data_matrix(X) if input in ['adjacency']: G.set_adjacency_matrix(D) else: G.set_affinity_matrix(A) laplacian_queried = G.compute_laplacian_matrix(**kwarg_params) assert_array_almost_equal(laplacian_true.todense(), laplacian_queried.todense(), almost_equal_decimals)
def test_compute_laplacian_matrix_args(almost_equal_decimals=5): input_types = ['data', 'adjacency', 'affinity'] params = [{}, {'radius':4}, {'radius':5}] lapl_params = [{}, {'scaling_epps':4}, {'scaling_epps':10}] adjacency_method = 'auto' affinity_method = 'auto' for laplacian_method in laplacian_methods(): X = np.random.uniform(size=(10, 2)) D = compute_adjacency_matrix(X, adjacency_method, **params[1]) A = compute_affinity_matrix(D, affinity_method, **params[1]) for init_params in lapl_params: for kwarg_params in lapl_params: true_params = init_params.copy() true_params.update(kwarg_params) laplacian_true = compute_laplacian_matrix(A, laplacian_method, **true_params) for input in input_types: G = Geometry(adjacency_method = adjacency_method, adjacency_kwds = params[1], affinity_method = affinity_method, affinity_kwds = params[1], laplacian_method = laplacian_method, laplacian_kwds = lapl_params[0]) if input in ['data']: G.set_data_matrix(X) if input in ['adjacency']: G.set_adjacency_matrix(D) else: G.set_affinity_matrix(A) laplacian_queried = G.compute_laplacian_matrix(**kwarg_params) assert_array_almost_equal(laplacian_true.todense(), laplacian_queried.todense(), almost_equal_decimals)
def test_compute_adjacency_matrix_args(almost_equal_decimals=5): """ test the compute_adjacency_matrix parameter arguments """ input_types = ['data', 'adjacency', 'affinity'] params = [{'radius':1}, {'radius':2}] for adjacency_method in adjacency_methods(): if adjacency_method == 'pyflann': try: import pyflann as pyf except ImportError: raise SkipTest("pyflann not installed.") X = np.random.uniform(size=(10, 2)) D = compute_adjacency_matrix(X, adjacency_method, **params[1]) A = compute_affinity_matrix(D, radius=1) for init_params in params: for kwarg_params in params: true_params = init_params.copy() true_params.update(kwarg_params) adjacency_true = compute_adjacency_matrix(X, adjacency_method, **true_params) G = Geometry(adjacency_method=adjacency_method, adjacency_kwds=init_params) for input in input_types: G = Geometry(adjacency_kwds = init_params) if input in ['data']: G.set_data_matrix(X) adjacency_queried = G.compute_adjacency_matrix(**kwarg_params) assert_allclose(adjacency_true.toarray(), adjacency_queried.toarray(), rtol=1E-5) else: if input in ['adjacency']: G.set_adjacency_matrix(D) else: G.set_affinity_matrix(A) msg = distance_error_msg assert_raise_message(ValueError, msg, G.compute_adjacency_matrix)
def check_affinity(adjacency_radius, affinity_radius, symmetrize): adj = compute_adjacency_matrix(X, radius=adjacency_radius) aff = compute_affinity_matrix(adj, radius=affinity_radius, symmetrize=True) A = np.exp(-(D / affinity_radius) ** 2) A[D > adjacency_radius] = 0 assert_allclose(aff.toarray(), A)
def check_symmetric(method, adjacency_radius, affinity_radius): adj = compute_adjacency_matrix(X, radius=adjacency_radius) aff = compute_affinity_matrix(adj, radius=affinity_radius) lap, lapsym, w = compute_laplacian_matrix(aff, method=method, full_output=True) sym = w[:, np.newaxis] * (lap.toarray() + np.eye(*lap.shape)) assert_allclose(lapsym.toarray(), sym)
def test_affinity_sparse_vs_dense(): """ Test that A_sparse is the same as A_dense for a small A matrix """ rad = 2. n_samples = 6 X = np.arange(n_samples) X = X[ :,np.newaxis] X = np.concatenate((X,np.zeros((n_samples,1),dtype=float)),axis=1) X = np.asarray( X, order="C" ) test_dist_matrix = compute_adjacency_matrix( X, method = 'auto', radius = rad ) A_dense = compute_affinity_matrix(test_dist_matrix.toarray(), method = 'auto', radius = rad, symmetrize = False ) A_sparse = compute_affinity_matrix(csr_matrix(test_dist_matrix), method = 'auto', radius = rad, symmetrize = False) A_spdense = A_sparse.toarray() A_spdense[ A_spdense == 0 ] = 1. assert_allclose(A_dense, A_spdense)
def check_laplacian(input_type, laplacian_method): kwargs = {'scaling_epps': radius} if laplacian_method == 'renormalized': kwargs['renormalization_exponent'] = 1.5 adjacency = input_type(np.sqrt(matlab['S'])) affinity = compute_affinity_matrix(adjacency, radius=radius) laplacian = compute_laplacian_matrix(affinity, method=laplacian_method, **kwargs) if input_type is csr_matrix: laplacian = laplacian.toarray() assert_allclose(laplacian, laplacians[laplacian_method])
def test_custom_affinity(): class CustomAffinity(Affinity): name = "custom" def affinity_matrix(self, adjacency_matrix): return np.exp(-abs(adjacency_matrix.toarray())) rand = np.random.RandomState(42) X = rand.rand(10, 2) D = compute_adjacency_matrix(X, radius=10) A = compute_affinity_matrix(D, method='custom', radius=1) assert_allclose(A, np.exp(-abs(D.toarray()))) Affinity._remove_from_registry("custom")
def test_laplacian_smoketest(): rand = np.random.RandomState(42) X = rand.rand(20, 2) adj = compute_adjacency_matrix(X, radius=0.5) aff = compute_affinity_matrix(adj, radius=0.1) def check_laplacian(method): lap = compute_laplacian_matrix(aff, method=method) assert isspmatrix(lap) assert_equal(lap.shape, (X.shape[0], X.shape[0])) for method in Laplacian.asymmetric_methods(): yield check_laplacian, method
def test_compute_adjacency_matrix_args(almost_equal_decimals=5): """ test the compute_adjacency_matrix parameter arguments """ input_types = ['data', 'adjacency', 'affinity'] params = [{'radius': 1}, {'radius': 2}] for adjacency_method in adjacency_methods(): if adjacency_method == 'pyflann': try: import pyflann as pyf except ImportError: raise SkipTest("pyflann not installed.") X = np.random.uniform(size=(10, 2)) D = compute_adjacency_matrix(X, adjacency_method, **params[1]) A = compute_affinity_matrix(D, radius=1) for init_params in params: for kwarg_params in params: true_params = init_params.copy() true_params.update(kwarg_params) adjacency_true = compute_adjacency_matrix( X, adjacency_method, **true_params) G = Geometry(adjacency_method=adjacency_method, adjacency_kwds=init_params) for input in input_types: G = Geometry(adjacency_kwds=init_params) if input in ['data']: G.set_data_matrix(X) adjacency_queried = G.compute_adjacency_matrix( **kwarg_params) assert_allclose(adjacency_true.toarray(), adjacency_queried.toarray(), rtol=1E-5) else: if input in ['adjacency']: G.set_adjacency_matrix(D) else: G.set_affinity_matrix(A) msg = distance_error_msg assert_raise_message(ValueError, msg, G.compute_adjacency_matrix)