示例#1
0
文件: pooler.py 项目: zzh7982/Models
def roi_pool(
    rpn_fms,
    rois,
    stride,
    pool_shape,
    pooler_type="roi_align",
):
    rois = rois.detach()
    assert len(stride) == len(rpn_fms)
    canonical_level = 4
    canonical_box_size = 224
    min_level = int(math.log2(stride[0]))
    max_level = int(math.log2(stride[-1]))

    num_fms = len(rpn_fms)
    box_area = (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])
    assigned_level = F.floor(canonical_level +
                             F.log(F.sqrt(box_area) / canonical_box_size) /
                             np.log(2)).astype("int32")
    assigned_level = F.minimum(assigned_level, max_level)
    assigned_level = F.maximum(assigned_level, min_level)
    assigned_level = assigned_level - min_level

    # avoid empty assignment
    assigned_level = F.concat([
        assigned_level,
        F.arange(num_fms, dtype="int32", device=assigned_level.device)
    ], )
    rois = F.concat([rois, F.zeros((num_fms, rois.shape[-1]))])

    pool_list, inds_list = [], []
    for i in range(num_fms):
        _, inds = F.cond_take(assigned_level == i, assigned_level)
        level_rois = rois[inds]

        if pooler_type == "roi_pool":
            pool_fm = F.nn.roi_pooling(rpn_fms[i],
                                       level_rois,
                                       pool_shape,
                                       mode="max",
                                       scale=1.0 / stride[i])
        elif pooler_type == "roi_align":
            pool_fm = F.nn.roi_align(
                rpn_fms[i],
                level_rois,
                pool_shape,
                mode="average",
                spatial_scale=1.0 / stride[i],
                sample_points=2,
                aligned=True,
            )
        pool_list.append(pool_fm)
        inds_list.append(inds)

    fm_order = F.argsort(F.concat(inds_list, axis=0))
    pool_feature = F.concat(pool_list, axis=0)
    pool_feature = pool_feature[fm_order][:-num_fms]

    return pool_feature
示例#2
0
def roi_pool(
    rpn_fms,
    rois,
    stride,
    pool_shape,
    roi_type="roi_align",
):
    assert len(stride) == len(rpn_fms)
    canonical_level = 4
    canonical_box_size = 224
    min_level = math.log2(stride[0])
    max_level = math.log2(stride[-1])

    num_fms = len(rpn_fms)
    box_area = (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])
    level_assignments = F.floor(canonical_level +
                                F.log(box_area.sqrt() / canonical_box_size) /
                                np.log(2))
    level_assignments = F.minimum(level_assignments, max_level)
    level_assignments = F.maximum(level_assignments, min_level)
    level_assignments = level_assignments - min_level

    # avoid empty assignment
    level_assignments = F.concat(
        [level_assignments,
         mge.tensor(np.arange(num_fms, dtype=np.int32))], )
    rois = F.concat([rois, mge.zeros((num_fms, rois.shapeof(-1)))])

    pool_list, inds_list = [], []
    for i in range(num_fms):
        mask = level_assignments == i
        _, inds = F.cond_take(mask == 1, mask)
        level_rois = rois.ai[inds]
        if roi_type == "roi_pool":
            pool_fm = F.roi_pooling(rpn_fms[i],
                                    level_rois,
                                    pool_shape,
                                    mode="max",
                                    scale=1.0 / stride[i])
        elif roi_type == "roi_align":
            pool_fm = F.roi_align(
                rpn_fms[i],
                level_rois,
                pool_shape,
                mode="average",
                spatial_scale=1.0 / stride[i],
                sample_points=2,
                aligned=True,
            )
        pool_list.append(pool_fm)
        inds_list.append(inds)

    fm_order = F.concat(inds_list, axis=0)
    fm_order = F.argsort(fm_order.reshape(1, -1))[1].reshape(-1)
    pool_feature = F.concat(pool_list, axis=0)
    pool_feature = pool_feature.ai[fm_order][:-num_fms]

    return pool_feature
示例#3
0
    def find_top_rpn_proposals(
        self, rpn_bbox_offsets_list, rpn_cls_prob_list,
        all_anchors_list, im_info
    ):
        prev_nms_top_n = self.cfg.train_prev_nms_top_n \
            if self.training else self.cfg.test_prev_nms_top_n
        post_nms_top_n = self.cfg.train_post_nms_top_n \
            if self.training else self.cfg.test_post_nms_top_n

        batch_per_gpu = self.cfg.batch_per_gpu if self.training else 1
        nms_threshold = self.cfg.rpn_nms_threshold

        list_size = len(rpn_bbox_offsets_list)

        return_rois = []

        for bid in range(batch_per_gpu):
            batch_proposals_list = []
            batch_probs_list = []
            batch_level_list = []
            for l in range(list_size):
                # get proposals and probs
                offsets = rpn_bbox_offsets_list[l][bid].dimshuffle(2, 3, 0, 1).reshape(-1, 4)
                all_anchors = all_anchors_list[l]
                proposals = self.box_coder.decode(all_anchors, offsets)

                probs = rpn_cls_prob_list[l][bid, 1].dimshuffle(1, 2, 0).reshape(1, -1)
                # prev nms top n
                probs, order = F.argsort(probs, descending=True)
                num_proposals = F.minimum(probs.shapeof(1), prev_nms_top_n)
                probs = probs.reshape(-1)[:num_proposals]
                order = order.reshape(-1)[:num_proposals]
                proposals = proposals.ai[order, :]

                batch_proposals_list.append(proposals)
                batch_probs_list.append(probs)
                batch_level_list.append(mge.ones(probs.shapeof(0)) * l)

            proposals = F.concat(batch_proposals_list, axis=0)
            scores = F.concat(batch_probs_list, axis=0)
            level = F.concat(batch_level_list, axis=0)

            proposals = layers.get_clipped_box(proposals, im_info[bid, :])
            # filter empty
            keep_mask = layers.filter_boxes(proposals)
            _, keep_inds = F.cond_take(keep_mask == 1, keep_mask)
            proposals = proposals.ai[keep_inds, :]
            scores = scores.ai[keep_inds]
            level = level.ai[keep_inds]

            # gather the proposals and probs
            # sort nms by scores
            scores, order = F.argsort(scores.reshape(1, -1), descending=True)
            order = order.reshape(-1)
            proposals = proposals.ai[order, :]
            level = level.ai[order]

            # apply total level nms
            rois = F.concat([proposals, scores.reshape(-1, 1)], axis=1)
            keep_inds = batched_nms(proposals, scores, level, nms_threshold, post_nms_top_n)
            rois = rois.ai[keep_inds]

            # rois shape (N, 5), info [batch_id, x1, y1, x2, y2]
            batch_inds = mge.ones((rois.shapeof(0), 1)) * bid
            batch_rois = F.concat([batch_inds, rois[:, :4]], axis=1)
            return_rois.append(batch_rois)

        return F.zero_grad(F.concat(return_rois, axis=0))
示例#4
0
 def fwd(data):
     return F.argsort(data, True)
示例#5
0
def find_top_rpn_proposals(is_train, rpn_bbox_offsets_list, rpn_cls_prob_list,
                           all_anchors_list, im_info):
    prev_nms_top_n = config.train_prev_nms_top_n \
        if is_train else config.test_prev_nms_top_n
    post_nms_top_n = config.train_post_nms_top_n \
        if is_train else config.test_post_nms_top_n
    batch_per_gpu = config.batch_per_gpu if is_train else 1
    nms_threshold = config.rpn_nms_threshold
    box_min_size = config.rpn_min_box_size
    bbox_normalize_targets = config.rpn_bbox_normalize_targets
    bbox_normalize_means = config.bbox_normalize_means
    bbox_normalize_stds = config.bbox_normalize_stds

    list_size = len(rpn_bbox_offsets_list)

    return_rois, return_probs = [], []
    batch_per_gpu = rpn_cls_prob_list[0].shape[0]
    for bid in range(batch_per_gpu):
        batch_proposals_list = []
        batch_probs_list = []
        for l in range(list_size):
            # get proposals and probs
            offsets = rpn_bbox_offsets_list[l][bid] \
                .transpose(1, 2, 0).reshape(-1, 4)
            if bbox_normalize_targets:
                std_opr = tensor(config.bbox_normalize_stds[None, :])
                mean_opr = tensor(config.bbox_normalize_means[None, :])
                pred_offsets = pred_offsets * std_opr
                pred_offsets = pred_offsets + mean_opr
            all_anchors = all_anchors_list[l]

            proposals = bbox_transform_inv_opr(all_anchors, offsets)
            if config.anchor_within_border:
                proposals = clip_boxes_opr(proposals, im_info[bid, :])
            probs = rpn_cls_prob_list[l][bid] \
                    .transpose(1,2,0).reshape(-1, 2)
            probs = F.softmax(probs)[:, 1]
            # gather the proposals and probs
            batch_proposals_list.append(proposals)
            batch_probs_list.append(probs)

        batch_proposals = F.concat(batch_proposals_list, axis=0)
        batch_probs = F.concat(batch_probs_list, axis=0)
        # filter the boxes with small size.
        wh = batch_proposals[:, 2:4] - batch_proposals[:, :2] + 1
        thresh = box_min_size * im_info[bid, 2]
        keep_mask = F.prod((wh >= thresh), axis=1)
        keep_mask = keep_mask + F.equal(keep_mask.sum(), 0)
        keep_mask, inds = F.cond_take(keep_mask > 0, keep_mask)

        inds = inds.astype(np.int32)
        # batch_proposals = F.nn.indexing_one_hot(batch_proposals, inds, 0)
        # batch_probs = F.nn.indexing_one_hot(batch_probs, inds, 0)
        batch_proposals, batch_probs = batch_proposals[inds], batch_probs[inds]

        # prev_nms_top_n
        num_proposals = F.minimum(prev_nms_top_n, batch_proposals.shape[0])
        idx = F.argsort(batch_probs, descending=True)
        topk_idx = idx[:num_proposals].reshape(-1)
        batch_proposals = batch_proposals[topk_idx].detach()
        batch_probs = batch_probs[topk_idx].detach()

        # For each image, run a total-level NMS, and choose topk results.
        keep_inds = nms(batch_proposals,
                        batch_probs,
                        nms_threshold,
                        max_output=2000)
        # num = F.minimum(post_nms_top_n, keep_inds.shape[0])
        # keep_inds = keep_inds[:num]

        batch_rois, batch_probs = batch_proposals[keep_inds], batch_probs[
            keep_inds]

        # cons the rois
        batch_inds = F.ones((batch_rois.shape[0], 1)) * bid
        batch_rois = F.concat([batch_inds, batch_rois[:, :4]], axis=1)
        return_rois.append(batch_rois)
        return_probs.append(batch_probs)

    if batch_per_gpu == 1:
        return batch_rois, batch_probs
    else:
        concated_rois = F.concat(return_rois, axis=0)
        concated_probs = F.concat(return_probs, axis=0)
        return concated_rois, concated_probs
示例#6
0
def cascade_roi_target(rpn_rois, im_info, gt_boxes, pos_threshold=0.5, top_k=1):
    return_rois = []
    return_labels = []
    return_bbox_targets = []
    # get per image proposals and gt_boxes
    for bid in range(config.batch_per_gpu):
        gt_boxes_perimg = gt_boxes[bid, :im_info[bid, 5], :]
        batch_inds = mge.ones((gt_boxes_perimg.shapeof()[0], 1)) * bid
        #if config.proposal_append_gt:
        gt_rois = F.concat([batch_inds, gt_boxes_perimg[:, :4]], axis=1)
        batch_roi_mask = rpn_rois[:, 0] == bid
        batch_roi_inds = mask_to_inds(batch_roi_mask)
        all_rois = F.concat([rpn_rois.ai[batch_roi_inds], gt_rois], axis=0)
        overlaps_normal, overlaps_ignore = box_overlap_ignore_opr(
                all_rois[:, 1:5], gt_boxes_perimg)
        overlaps_normal, overlaps_normal_indices = F.argsort(overlaps_normal, descending=True)
        overlaps_ignore, overlaps_ignore_indices = F.argsort(overlaps_ignore, descending=True)
        # gt max and indices, ignore max and indices
        max_overlaps_normal = overlaps_normal[:, :top_k].reshape(-1)
        gt_assignment_normal = overlaps_normal_indices[:, :top_k].reshape(-1)
        max_overlaps_ignore = overlaps_ignore[:, :top_k].reshape(-1)
        gt_assignment_ignore = overlaps_ignore_indices[:, :top_k].reshape(-1)
        # cons masks
        ignore_assign_mask = (max_overlaps_normal < config.fg_threshold) * (
                max_overlaps_ignore > max_overlaps_normal)
        max_overlaps = max_overlaps_normal * (1 - ignore_assign_mask) + \
                max_overlaps_ignore * ignore_assign_mask
        gt_assignment = gt_assignment_normal * (1- ignore_assign_mask) + \
                gt_assignment_ignore * ignore_assign_mask
        gt_assignment = gt_assignment.astype(np.int32)
        labels = gt_boxes_perimg.ai[gt_assignment, 4]
        fg_mask = (max_overlaps >= config.fg_threshold) * (1 - F.equal(labels, config.ignore_label))
        bg_mask = (max_overlaps < config.bg_threshold_high) * (
                max_overlaps >= config.bg_threshold_low)
        fg_mask = fg_mask.reshape(-1, top_k)
        bg_mask = bg_mask.reshape(-1, top_k)
        #pos_max = config.num_rois * config.fg_ratio
        #fg_inds_mask = _bernoulli_sample_masks(fg_mask[:, 0], pos_max, 1)
        #neg_max = config.num_rois - fg_inds_mask.sum()
        #bg_inds_mask = _bernoulli_sample_masks(bg_mask[:, 0], neg_max, 1)
        labels = labels * fg_mask.reshape(-1)
        #keep_mask = fg_inds_mask + bg_inds_mask
        #keep_inds = mask_to_inds(keep_mask)
        #keep_inds = keep_inds[:F.minimum(config.num_rois, keep_inds.shapeof()[0])]
        # labels
        labels = labels.reshape(-1, top_k)
        gt_assignment = gt_assignment.reshape(-1, top_k).reshape(-1)
        target_boxes = gt_boxes_perimg.ai[gt_assignment, :4]
        #rois = all_rois.ai[keep_inds]
        target_shape = (all_rois.shapeof()[0], top_k, all_rois.shapeof()[-1])
        target_rois = F.add_axis(all_rois, 1).broadcast(target_shape).reshape(-1, all_rois.shapeof()[-1])
        bbox_targets = bbox_transform_opr(target_rois[:, 1:5], target_boxes)
        if config.rcnn_bbox_normalize_targets:
            std_opr = mge.tensor(config.bbox_normalize_stds[None, :])
            mean_opr = mge.tensor(config.bbox_normalize_means[None, :])
            minus_opr = mean_opr / std_opr
            bbox_targets = bbox_targets / std_opr - minus_opr
        bbox_targets = bbox_targets.reshape(-1, top_k * 4)
        return_rois.append(all_rois)
        return_labels.append(labels)
        return_bbox_targets.append(bbox_targets)
    if config.batch_per_gpu == 1:
        return F.zero_grad(all_rois), F.zero_grad(labels), F.zero_grad(bbox_targets)
    else:
        return_rois = F.concat(return_rois, axis=0)
        return_labels = F.concat(return_labels, axis=0)
        return_bbox_targets = F.concat(return_bbox_targets, axis=0)
        return F.zero_grad(return_rois), F.zero_grad(return_labels), F.zero_grad(return_bbox_targets)
def find_top_rpn_proposals(is_train, rpn_bbox_offsets_list, rpn_cls_prob_list,
                           all_anchors_list, im_info):
    prev_nms_top_n = config.train_prev_nms_top_n \
        if is_train else config.test_prev_nms_top_n
    post_nms_top_n = config.train_post_nms_top_n \
        if is_train else config.test_post_nms_top_n
    batch_per_gpu = config.batch_per_gpu if is_train else 1
    nms_threshold = config.rpn_nms_threshold
    box_min_size = config.rpn_min_box_size
    bbox_normalize_targets = config.rpn_bbox_normalize_targets
    bbox_normalize_means = config.bbox_normalize_means
    bbox_normalize_stds = config.bbox_normalize_stds

    list_size = len(rpn_bbox_offsets_list)

    return_rois = []
    return_probs = []
    for bid in range(batch_per_gpu):
        batch_proposals_list = []
        batch_probs_list = []
        for l in range(list_size):
            # get proposals and probs
            offsets = rpn_bbox_offsets_list[l][bid] \
                .dimshuffle(1, 2, 0).reshape(-1, 4)
            if bbox_normalize_targets:
                std_opr = tensor(config.bbox_normalize_stds[None, :])
                mean_opr = tensor(config.bbox_normalize_means[None, :])
                pred_offsets = pred_offsets * std_opr
                pred_offsets = pred_offsets + mean_opr
            all_anchors = all_anchors_list[l]
            proposals = bbox_transform_inv_opr(all_anchors, offsets)
            if config.anchor_within_border:
                proposals = clip_boxes_opr(proposals, im_info[bid, :])
            probs = rpn_cls_prob_list[l][bid] \
                    .dimshuffle(1,2,0).reshape(-1, 2)
            probs = F.softmax(probs)[:, 1]
            # gather the proposals and probs
            batch_proposals_list.append(proposals)
            batch_probs_list.append(probs)
        batch_proposals = F.concat(batch_proposals_list, axis=0)
        batch_probs = F.concat(batch_probs_list, axis=0)
        # filter the zero boxes.
        batch_keep_mask = filter_boxes_opr(batch_proposals,
                                           box_min_size * im_info[bid, 2])
        batch_probs = batch_probs * batch_keep_mask
        # prev_nms_top_n
        num_proposals = F.minimum(prev_nms_top_n, batch_probs.shapeof()[0])
        batch_probs, idx = F.argsort(batch_probs, descending=True)
        batch_probs = batch_probs[:num_proposals].reshape(-1, 1)
        topk_idx = idx[:num_proposals].reshape(-1)
        batch_proposals = batch_proposals.ai[topk_idx]
        batch_rois = F.concat([batch_proposals, batch_probs], axis=1)
        # For each image, run a total-level NMS, and choose topk results.
        keep_inds = gpu_nms(batch_rois, nms_threshold, post_nms_top_n)
        batch_rois = batch_rois.ai[keep_inds]
        batch_probs = batch_rois[:, -1]
        # cons the rois
        batch_inds = mge.ones((batch_rois.shapeof()[0], 1)) * bid
        batch_rois = F.concat([batch_inds, batch_rois[:, :-1]], axis=1)
        return_rois.append(batch_rois)
        return_probs.append(batch_probs)

    if batch_per_gpu == 1:
        return batch_rois, batch_probs
    else:
        concated_rois = F.concat(return_rois, axis=0)
        concated_probs = F.concat(return_probs, axis=0)
        return concated_rois, concated_probs
示例#8
0
def fpn_roi_target(rpn_rois,
                   im_info,
                   gt_boxes,
                   fg_threshold=config.fg_threshold,
                   top_k=1):

    return_rois, return_labels = [], []
    return_bbox_targets = []
    # get per image proposals and gt_boxes
    batch_per_gpu = im_info.shape[0]
    sampling = True
    # is_sample = True if top_k < 2 else False
    for bid in range(batch_per_gpu):

        gt_boxes_perimg = gt_boxes[bid, :im_info[bid, 5].astype(np.int32), :]
        dummy_gt = F.ones([1, gt_boxes_perimg.shape[1]])

        batch_inds = F.ones((gt_boxes_perimg.shape[0], 1)) * bid
        #if config.proposal_append_gt:
        gt_rois = F.concat([batch_inds, gt_boxes_perimg[:, :4]], axis=1)
        batch_rois_mask = F.equal(rpn_rois[:, 0], bid) > 0
        _, batch_rois_index = F.cond_take(batch_rois_mask, batch_rois_mask)

        # batch_roi_mask = rpn_rois[:, 0] == bid
        # batch_roi_inds = mask_to_inds(batch_roi_mask)
        all_rois= F.concat([rpn_rois[batch_rois_index], gt_rois], axis=0) if sampling \
            else rpn_rois[batch_rois_index]
        # all_rois = F.concat([rpn_rois.ai[batch_roi_inds], gt_rois], axis=0)

        gt_boxes_perimg = F.concat([gt_boxes_perimg, dummy_gt], axis=0)
        overlaps_normal, overlaps_ignore = box_overlap_ignore_opr(
            all_rois[:, 1:5], gt_boxes_perimg)

        # overlaps_normal, overlaps_normal_indices = F.argsort(overlaps_normal, descending=True)
        # overlaps_ignore, overlaps_ignore_indices = F.argsort(overlaps_ignore, descending=True)
        overlaps_normal_indices = F.argsort(overlaps_normal, descending=True)
        overlaps_normal = F.gather(overlaps_normal, 1, overlaps_normal_indices)
        # overlaps_normal = F.nn.indexing_one_hot(overlaps_normal, overlaps_normal_indices, 1)
        overlaps_ignore_indices = F.argsort(overlaps_ignore, descending=True)
        overlaps_ignore = F.gather(overlaps_ignore, 1, overlaps_ignore_indices)
        # overlaps_ignore = F.nn.indexing_one_hot(overlaps_ignore, overlaps_ignore_indices, 1)

        # gt max and indices, ignore max and indices
        max_overlaps_normal = overlaps_normal[:, :top_k].flatten()
        gt_assignment_normal = overlaps_normal_indices[:, :top_k].flatten()
        max_overlaps_ignore = overlaps_ignore[:, :top_k].flatten()
        gt_assignment_ignore = overlaps_ignore_indices[:, :top_k].flatten()
        # cons masks

        ignore_assign_mask = (max_overlaps_normal < fg_threshold).astype(
            np.float32) * (max_overlaps_ignore > max_overlaps_normal).astype(
                np.float32)
        max_overlaps = max_overlaps_normal * (1 - ignore_assign_mask).astype(np.float32) + \
                max_overlaps_ignore * ignore_assign_mask


        gt_assignment = gt_assignment_normal * (1- ignore_assign_mask) + \
                gt_assignment_ignore * ignore_assign_mask

        gt_assignment = gt_assignment.astype(np.int32)

        labels = gt_boxes_perimg[gt_assignment, 4]
        fg_mask = (max_overlaps >= fg_threshold).astype(
            np.float32) * (1 - F.equal(labels, config.ignore_label))
        bg_mask = (max_overlaps < config.bg_threshold_high).astype(
            np.float32) * (max_overlaps >= config.bg_threshold_low).astype(
                np.float32)

        fg_mask = fg_mask.reshape(-1, top_k)
        bg_mask = bg_mask.reshape(-1, top_k)
        pos_max = config.num_rois * config.fg_ratio
        fg_inds_mask = _bernoulli_sample_masks(
            fg_mask[:,
                    0], pos_max, 1) if sampling else F.equal(fg_mask[:, 0], 0)
        neg_max = config.num_rois - fg_inds_mask.sum()
        bg_inds_mask = _bernoulli_sample_masks(
            bg_mask[:,
                    0], neg_max, 1) if sampling else F.equal(bg_mask[:, 0], 0)
        labels = labels * fg_mask.reshape(-1)

        keep_mask = fg_inds_mask + bg_inds_mask
        keep_mask = keep_mask + F.equal(keep_mask.sum(), 0)
        # keep_inds = mask_to_inds(keep_mask)
        _, keep_inds = F.cond_take(keep_mask > 0, keep_mask)
        #keep_inds = keep_inds[:F.minimum(config.num_rois, keep_inds.shapeof()[0])]
        # labels
        labels = labels.reshape(-1, top_k)[keep_inds]
        gt_assignment = gt_assignment.reshape(
            -1, top_k)[keep_inds].reshape(-1).astype(np.int32)
        target_boxes = gt_boxes_perimg[gt_assignment, :4]
        # rois = all_rois.ai[keep_inds]
        rois = all_rois[keep_inds]
        # target_shape = (rois.shapeof()[0], top_k, rois.shapeof()[-1])
        n, c = rois.shape[0], rois.shape[1]
        target_rois = F.broadcast_to(F.expand_dims(rois, 1),
                                     (n, top_k, c)).reshape(-1, c)
        # target_rois = F.add_axis(rois, 1).broadcast(target_shape).reshape(-1, rois.shapeof()[-1])
        bbox_targets = bbox_transform_opr(target_rois[:, 1:5],
                                          target_boxes[:, :4])
        if config.rcnn_bbox_normalize_targets:
            std_opr = mge.tensor(config.bbox_normalize_stds[None, :]).to(
                rois.device)
            mean_opr = mge.tensor(config.bbox_normalize_means[None, :]).to(
                rois.device)
            minus_opr = mean_opr / std_opr
            bbox_targets = bbox_targets / std_opr - minus_opr
        bbox_targets = bbox_targets.reshape(-1, top_k * 4)
        return_rois.append(rois)
        return_labels.append(labels)
        return_bbox_targets.append(bbox_targets)
    if config.batch_per_gpu == 1:
        rois, labels, bbox_targets = rois.detach(), labels.detach(
        ), bbox_targets.detach()
        return rois, labels, bbox_targets
        # return F.zero_grad(rois), F.zero_grad(labels), F.zero_grad(bbox_targets)
    else:
        return_rois = F.concat(return_rois, axis=0)
        return_labels = F.concat(return_labels, axis=0)
        return_bbox_targets = F.concat(return_bbox_targets, axis=0)

        return_rois = return_rois.detach()
        return_labels = return_labels.detach()
        return_bbox_targets = return_bbox_targets.detach()
        return return_rois, return_labels, return_bbox_targets
示例#9
0
def _anchor_double_target(gt_boxes, im_info, all_anchors):

    gt_boxes, im_info = gt_boxes.detach(), im_info.detach()
    all_anchors = all_anchors.detach()

    gt_boxes = gt_boxes[:im_info[5].astype(np.int32), :]
    dummy = -F.ones([1, gt_boxes.shape[1]]).to(gt_boxes.device)
    gt_boxes = F.concat([gt_boxes, dummy], axis=0)
    valid_mask = 1 - (gt_boxes[:, 4] < 0).astype(np.float32)

    anchor_centers = _compute_center(all_anchors)
    gtboxes_centers = _compute_center(gt_boxes)
    # gtboxes_centers = gtboxes_centers * valid_mask.unsqueeze(1)
    gtboxes_centers = gtboxes_centers * F.expand_dims(valid_mask, axis=1)

    N, K = all_anchors.shape[0], gt_boxes.shape[0]
    an_centers = F.expand_dims(anchor_centers, axis=1)
    gt_centers = F.expand_dims(gtboxes_centers, axis=0)
    # an_centers = anchor_centers.unsqueeze(1).repeat(1, K, 1)
    # gt_centers = gtboxes_centers.unsqueeze(0).repeat(N, 1, 1)

    distance = F.abs(an_centers - gt_centers)
    distance = F.sqrt(F.pow(distance, 2).sum(axis=2))

    start = 0
    end = 5
    overlaps = box_overlap_opr(all_anchors[:, :4], gt_boxes[:, :4])
    overlaps *= F.expand_dims(valid_mask, axis=0)
    default_num = 16

    ious_list = []

    for l in range(start, end):

        _, index = F.cond_take(all_anchors[:, 4] == l, all_anchors[:, 4])

        level_dist = distance[index, :].transpose(1, 0)
        ious = overlaps[index, :].transpose(1, 0)
        sorted_index = F.argsort(level_dist, descending=False)
        n = min(sorted_index.shape[1], default_num)
        ious = F.gather(ious, 1, sorted_index[:, :n]).transpose(1, 0)

        ious_list.append(ious)

    ious = F.concat(ious_list, axis=0)
    mean_var = F.mean(ious, axis=0)
    std_var = F.std(ious, 0)
    iou_thresh_per_gt = mean_var + std_var

    iou_thresh_per_gt = F.maximum(iou_thresh_per_gt, 0.2)

    # limits the anchor centers in the gtboxes
    N, K = all_anchors.shape[0], gt_boxes.shape[0]
    anchor_points = an_centers
    pos_area = _compute_pos_area(gt_boxes, 0.3)
    # pos_area = pos_area.unsqueeze(0).repeat(N, 1, 1)
    pos_area = F.broadcast_to(F.expand_dims(pos_area, axis=0),
                              (N, K, pos_area.shape[-1]))

    l = anchor_points[:, :, 0] - pos_area[:, :, 0]
    r = pos_area[:, :, 2] - anchor_points[:, :, 0]
    t = anchor_points[:, :, 1] - pos_area[:, :, 1]
    b = pos_area[:, :, 3] - anchor_points[:, :, 1]

    is_in_gt = F.stack([l, r, t, b], axis=2)
    is_in_gt = is_in_gt.min(axis=2) > 0.1
    valid_mask = (overlaps >= F.expand_dims(
        iou_thresh_per_gt, axis=0)) * is_in_gt.astype(np.float32)
    ious = overlaps * valid_mask

    sorted_index = F.argsort(ious, 1)
    sorted_overlaps = F.gather(ious, 1, sorted_index)
    max_overlaps = sorted_overlaps[:, :2].flatten()
    argmax_overlaps = sorted_index[:, :2].flatten()

    n, c = all_anchors.shape
    device = all_anchors.device
    labels = -F.ones(2 * n).to(device)
    positive_mask = (max_overlaps >= 0.2).to(device).astype(np.float32)
    negative_mask = (max_overlaps < 0.2).to(device).astype(np.float32)
    labels = positive_mask + labels * (1 - positive_mask) * (1 - negative_mask)

    bbox_targets = gt_boxes[argmax_overlaps, :4]
    all_anchors = F.broadcast_to(F.expand_dims(all_anchors, axis=1),
                                 (n, 2, c)).reshape(-1, c)

    bbox_targets = bbox_transform_opr(all_anchors[:, :4], bbox_targets)

    labels_cat = gt_boxes[argmax_overlaps, 4]
    labels_cat = labels_cat * (1 - F.equal(labels, -1).astype(
        np.float32)) - F.equal(labels, -1).astype(np.float32)

    return labels, bbox_targets, labels_cat