示例#1
0
 def forward(self, input):
     """
     Forward pass of the function.
     """
     if self.hard is False:
         return (input >= 0).float() * swish_function(
             input, False, False, None, None
         ) + (input < 0).float() * (F.exp(input) - 1) * F.sigmoid(input)
     else:
         return (input >= 0).float() * input * F.max(
             self.a, F.min(self.b, (input + 1.0) / 2.0)
         ) + (input < 0).float() * (
             F.exp(input - 1) * F.max(self.a, F.min(self.b, (input + 1.0) / 2.0))
         )
示例#2
0
 def forward(self, a):
     if self.mode == "sum":
         return F.sum(a, axis=2)
     elif self.mode == "mean":
         return F.mean(a, axis=2)
     else:
         return F.max(a, axis=2)
示例#3
0
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
    box_corner = F.zeros_like(prediction)
    box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
    box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
    box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
    box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
    prediction[:, :, :4] = box_corner[:, :, :4]

    output = [None for _ in range(len(prediction))]
    for i, image_pred in enumerate(prediction):

        # If none are remaining => process next image
        if not image_pred.shape[0]:
            continue
        # Get score and class with highest confidence
        class_conf = F.max(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
        class_pred = F.argmax(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)

        class_conf_squeeze = F.squeeze(class_conf)
        conf_mask = image_pred[:, 4] * class_conf_squeeze >= conf_thre
        detections = F.concat((image_pred[:, :5], class_conf, class_pred), 1)
        detections = detections[conf_mask]
        if not detections.shape[0]:
            continue

        nms_out_index = F.vision.nms(
            detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre,
        )
        detections = detections[nms_out_index]
        if output[i] is None:
            output[i] = detections
        else:
            output[i] = F.concat((output[i], detections))

    return output
def fpn_anchor_target_opr_core_impl(gt_boxes,
                                    im_info,
                                    anchors,
                                    allow_low_quality_matches=True):
    ignore_label = config.ignore_label
    # get the gt boxes
    valid_gt_boxes = gt_boxes[:im_info[5], :]
    non_ignore_mask = valid_gt_boxes[:, -1] > 0
    non_ignore_inds = mask_to_inds(non_ignore_mask)
    valid_gt_boxes = valid_gt_boxes.ai[non_ignore_inds]
    # compute the iou matrix
    overlaps = box_overlap_opr(anchors, valid_gt_boxes[:, :4])
    # match the dtboxes
    a_shp0 = anchors.shape[0]
    max_overlaps = F.max(overlaps, axis=1)
    argmax_overlaps = F.argmax(overlaps, axis=1)
    # all ignore
    labels = mge.ones(a_shp0).astype(np.int32) * ignore_label
    # set negative ones
    labels = labels * (max_overlaps >= config.rpn_negative_overlap)
    # set positive ones
    fg_mask = (max_overlaps >= config.rpn_positive_overlap)
    const_one = mge.tensor(1.0)
    if allow_low_quality_matches:
        # match the max gt
        gt_max_overlaps = F.max(overlaps, axis=0)
        gt_argmax_overlaps = F.argmax(overlaps, axis=0)
        g_shp0 = valid_gt_boxes.shapeof()[0]
        gt_id = F.linspace(0, g_shp0 - 1, g_shp0).astype(np.int32)
        argmax_overlaps = argmax_overlaps.set_ai(gt_id)[gt_argmax_overlaps]
        max_overlaps = max_overlaps.set_ai(
            const_one.broadcast(g_shp0))[gt_argmax_overlaps]
        fg_mask = (max_overlaps >= config.rpn_positive_overlap)
    # set positive ones
    fg_mask_ind = mask_to_inds(fg_mask)
    labels = labels.set_ai(const_one.broadcast(
        fg_mask_ind.shapeof()))[fg_mask_ind]
    # compute the targets
    bbox_targets = bbox_transform_opr(anchors,
                                      valid_gt_boxes.ai[argmax_overlaps, :4])
    if config.rpn_bbox_normalize_targets:
        std_opr = mge.tensor(config.bbox_normalize_stds[None, :])
        mean_opr = mge.tensor(config.bbox_normalize_means[None, :])
        minus_opr = mean_opr / std_opr
        bbox_targets = bbox_targets / std_opr - minus_opr
    return labels, bbox_targets
示例#5
0
def fpn_anchor_target_opr_core_impl(gt_boxes,
                                    im_info,
                                    anchors,
                                    allow_low_quality_matches=True):

    ignore_label = config.ignore_label
    # get the gt boxes
    gtboxes = gt_boxes[:im_info[5].astype(np.int32)]
    ignore_mask = F.equal(gtboxes[:, 4], config.ignore_label)

    # find the valid gtboxes
    _, index = F.cond_take(1 - ignore_mask > 0, ignore_mask)
    valid_gt_boxes = gtboxes[index.astype(np.int32)]

    # compute the iou matrix
    overlaps = box_overlap_opr(anchors, valid_gt_boxes[:, :4])
    # match the dtboxes
    a_shp0 = anchors.shape[0]
    argmax_overlaps = F.argmax(overlaps, axis=1)
    max_overlaps = F.nn.indexing_one_hot(overlaps,
                                         argmax_overlaps.astype(np.int32), 1)

    labels = F.ones(a_shp0).astype(np.int32) * ignore_label
    # set negative ones
    labels = labels * (max_overlaps >= config.rpn_negative_overlap).astype(
        np.float32)

    # set positive ones
    fg_mask = (max_overlaps >= config.rpn_positive_overlap)
    const_one = mge.tensor(1.0)

    if allow_low_quality_matches:

        # match the max gt
        gt_max_overlaps = F.max(overlaps, axis=0)
        gt_argmax_overlaps = F.argmax(overlaps, axis=0)
        gt_argmax_overlaps = gt_argmax_overlaps.astype(np.int32)

        max_overlaps[gt_argmax_overlaps] = 1.
        m = gt_max_overlaps.shape[0]
        argmax_overlaps[gt_argmax_overlaps] = F.linspace(0, m - 1,
                                                         m).astype(np.int32)
        fg_mask = (max_overlaps >= config.rpn_positive_overlap)

    labels[fg_mask] = 1
    # compute the bbox targets
    bbox_targets = bbox_transform_opr(anchors,
                                      valid_gt_boxes[argmax_overlaps, :4])
    if config.rpn_bbox_normalize_targets:

        std_opr = mge.tensor(config.bbox_normalize_stds[None, :]).to(
            anchors.device)
        mean_opr = mge.tensor(config.bbox_normalize_means[None, :]).to(
            anchors.device)
        minus_opr = mean_opr / std_opr
        bbox_targets = bbox_targets / std_opr - minus_opr
    return labels, bbox_targets
示例#6
0
文件: rpn.py 项目: klsdjft/Models-1
 def per_level_gt(self,
                  gt_boxes,
                  im_info,
                  anchors,
                  allow_low_quality_matches=True):
     ignore_label = self.cfg.ignore_label
     # get the gt boxes
     valid_gt_boxes = gt_boxes[:im_info[4], :]
     # compute the iou matrix
     overlaps = layers.get_iou(anchors, valid_gt_boxes[:, :4])
     # match the dtboxes
     a_shp0 = anchors.shape[0]
     max_overlaps = F.max(overlaps, axis=1)
     argmax_overlaps = F.argmax(overlaps, axis=1)
     # all ignore
     labels = mge.ones(a_shp0).astype("int32") * ignore_label
     # set negative ones
     labels = labels * (max_overlaps >= self.cfg.rpn_negative_overlap)
     # set positive ones
     fg_mask = max_overlaps >= self.cfg.rpn_positive_overlap
     const_one = mge.tensor(1.0)
     if allow_low_quality_matches:
         # make sure that max iou of gt matched
         gt_argmax_overlaps = F.argmax(overlaps, axis=0)
         num_valid_boxes = valid_gt_boxes.shapeof(0)
         gt_id = F.linspace(0, num_valid_boxes - 1,
                            num_valid_boxes).astype("int32")
         argmax_overlaps = argmax_overlaps.set_ai(gt_id)[gt_argmax_overlaps]
         max_overlaps = max_overlaps.set_ai(
             const_one.broadcast(num_valid_boxes))[gt_argmax_overlaps]
         fg_mask = max_overlaps >= self.cfg.rpn_positive_overlap
     # set positive ones
     _, fg_mask_ind = F.cond_take(fg_mask == 1, fg_mask)
     labels = labels.set_ai(const_one.broadcast(
         fg_mask_ind.shapeof(0)))[fg_mask_ind]
     # compute the targets
     bbox_targets = self.box_coder.encode(
         anchors, valid_gt_boxes.ai[argmax_overlaps, :4])
     return labels, bbox_targets
示例#7
0
文件: matcher.py 项目: zzh7982/Models
    def __call__(self, matrix):
        """
        matrix(tensor): A two dim tensor with shape of (N, M). N is number of GT-boxes,
            while M is the number of anchors in detection.
        """
        assert len(matrix.shape) == 2
        max_scores = matrix.max(axis=0)
        match_indices = F.argmax(matrix, axis=0)

        # default ignore label: -1
        labels = F.full_like(match_indices, -1)

        for label, low, high in zip(self.labels, self.thresholds[:-1],
                                    self.thresholds[1:]):
            mask = (max_scores >= low) & (max_scores < high)
            labels[mask] = label

        if self.allow_low_quality_matches:
            mask = (matrix == F.max(matrix, axis=1,
                                    keepdims=True)).sum(axis=0) > 0
            labels[mask] = 1

        return match_indices, labels
示例#8
0
    def get_ground_truth(self, anchors_list, batched_gt_boxes,
                         batched_num_gts):
        labels_list = []
        offsets_list = []
        ctrness_list = []

        all_level_anchors = F.concat(anchors_list, axis=0)
        for bid in range(batched_gt_boxes.shape[0]):
            gt_boxes = batched_gt_boxes[bid, :batched_num_gts[bid]]

            offsets = self.point_coder.encode(
                all_level_anchors, F.expand_dims(gt_boxes[:, :4], axis=1))

            object_sizes_of_interest = F.concat([
                F.broadcast_to(
                    F.expand_dims(mge.tensor(size, dtype=np.float32), axis=0),
                    (anchors_i.shape[0], 2)) for anchors_i, size in zip(
                        anchors_list, self.cfg.object_sizes_of_interest)
            ],
                                                axis=0)
            max_offsets = F.max(offsets, axis=2)
            is_cared_in_the_level = (
                (max_offsets >= F.expand_dims(object_sizes_of_interest[:, 0],
                                              axis=0))
                & (max_offsets <= F.expand_dims(object_sizes_of_interest[:, 1],
                                                axis=0)))

            if self.cfg.center_sampling_radius > 0:
                gt_centers = (gt_boxes[:, :2] + gt_boxes[:, 2:4]) / 2
                is_in_boxes = []
                for stride, anchors_i in zip(self.cfg.stride, anchors_list):
                    radius = stride * self.cfg.center_sampling_radius
                    center_boxes = F.concat([
                        F.maximum(gt_centers - radius, gt_boxes[:, :2]),
                        F.minimum(gt_centers + radius, gt_boxes[:, 2:4]),
                    ],
                                            axis=1)
                    center_offsets = self.point_coder.encode(
                        anchors_i, F.expand_dims(center_boxes, axis=1))
                    is_in_boxes.append(F.min(center_offsets, axis=2) > 0)
                is_in_boxes = F.concat(is_in_boxes, axis=1)
            else:
                is_in_boxes = F.min(offsets, axis=2) > 0

            gt_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] -
                                                           gt_boxes[:, 1])
            # FIXME: use repeat instead of broadcast_to
            areas = F.broadcast_to(F.expand_dims(gt_area, axis=1),
                                   offsets.shape[:2])
            areas[~is_cared_in_the_level] = float("inf")
            areas[~is_in_boxes] = float("inf")

            match_indices = F.argmin(areas, axis=0)
            gt_boxes_matched = gt_boxes[match_indices]
            anchor_min_area = F.indexing_one_hot(areas, match_indices, axis=0)

            labels = gt_boxes_matched[:, 4].astype(np.int32)
            labels[anchor_min_area == float("inf")] = 0
            offsets = self.point_coder.encode(all_level_anchors,
                                              gt_boxes_matched[:, :4])

            left_right = offsets[:, [0, 2]]
            top_bottom = offsets[:, [1, 3]]
            ctrness = F.sqrt(
                F.maximum(
                    F.min(left_right, axis=1) / F.max(left_right, axis=1), 0) *
                F.maximum(
                    F.min(top_bottom, axis=1) / F.max(top_bottom, axis=1), 0))

            labels_list.append(labels)
            offsets_list.append(offsets)
            ctrness_list.append(ctrness)

        return (
            F.stack(labels_list, axis=0).detach(),
            F.stack(offsets_list, axis=0).detach(),
            F.stack(ctrness_list, axis=0).detach(),
        )
示例#9
0
文件: atss.py 项目: zzh7982/Models
    def get_ground_truth(self, anchors_list, batched_gt_boxes,
                         batched_num_gts):
        labels_list = []
        offsets_list = []
        ctrness_list = []

        all_level_anchors = F.concat(anchors_list, axis=0)
        for bid in range(batched_gt_boxes.shape[0]):
            gt_boxes = batched_gt_boxes[bid, :batched_num_gts[bid]]

            ious = []
            candidate_idxs = []
            base = 0
            for stride, anchors_i in zip(self.cfg.stride, anchors_list):
                ious.append(
                    layers.get_iou(
                        gt_boxes[:, :4],
                        F.concat([
                            anchors_i - stride * self.cfg.anchor_scale / 2,
                            anchors_i + stride * self.cfg.anchor_scale / 2,
                        ],
                                 axis=1)))
                gt_centers = (gt_boxes[:, :2] + gt_boxes[:, 2:4]) / 2
                distances = F.sqrt(
                    F.sum((F.expand_dims(gt_centers, axis=1) - anchors_i)**2,
                          axis=2))
                _, topk_idxs = F.topk(distances, self.cfg.anchor_topk)
                candidate_idxs.append(base + topk_idxs)
                base += anchors_i.shape[0]
            ious = F.concat(ious, axis=1)
            candidate_idxs = F.concat(candidate_idxs, axis=1)

            candidate_ious = F.gather(ious, 1, candidate_idxs)
            ious_thr = (F.mean(candidate_ious, axis=1, keepdims=True) +
                        F.std(candidate_ious, axis=1, keepdims=True))
            is_foreground = F.scatter(
                F.zeros(ious.shape), 1, candidate_idxs,
                F.ones(candidate_idxs.shape)).astype(bool) & (ious >= ious_thr)

            is_in_boxes = F.min(self.point_coder.encode(
                all_level_anchors, F.expand_dims(gt_boxes[:, :4], axis=1)),
                                axis=2) > 0

            ious[~is_foreground] = -1
            ious[~is_in_boxes] = -1

            match_indices = F.argmax(ious, axis=0)
            gt_boxes_matched = gt_boxes[match_indices]
            anchor_max_iou = F.indexing_one_hot(ious, match_indices, axis=0)

            labels = gt_boxes_matched[:, 4].astype(np.int32)
            labels[anchor_max_iou == -1] = 0
            offsets = self.point_coder.encode(all_level_anchors,
                                              gt_boxes_matched[:, :4])

            left_right = offsets[:, [0, 2]]
            top_bottom = offsets[:, [1, 3]]
            ctrness = F.sqrt(
                F.clip(F.min(left_right, axis=1) / F.max(left_right, axis=1),
                       lower=0) *
                F.clip(F.min(top_bottom, axis=1) / F.max(top_bottom, axis=1),
                       lower=0))

            labels_list.append(labels)
            offsets_list.append(offsets)
            ctrness_list.append(ctrness)

        return (
            F.stack(labels_list, axis=0).detach(),
            F.stack(offsets_list, axis=0).detach(),
            F.stack(ctrness_list, axis=0).detach(),
        )
示例#10
0
     [(64, 512, 16, 16)],
     True,
     1000,
 ),
 (
     "prelu",
     MF.prelu,
     TF.prelu,
     [(100, 100), (1, )],
     [(64, 512, 16, 16), (1, )],
     True,
     1000,
 ),
 (
     "reduce.max",
     lambda x: MF.max(x, 0),
     lambda x: torch.max(x, 0),
     [(100, 100)],
     [(64, 512, 16, 16)],
     True,
     1000,
 ),
 (
     "reduce.mean",
     lambda x: MF.mean(x, 0),
     lambda x: torch.mean(x, 0),
     [(100, 100)],
     [(64, 512, 16, 16)],
     True,
     1000,
 ),
示例#11
0
    def forward(self, features, label=None, mask=None):
        """
        if label and mask both None, the loss will degenerate to
        SimSLR unsupervised loss.
        Reference:
            "A Simple Framework for Contrastive Learning of Visual Representations"<https://arxiv.org/pdf/2002.05709.pdf>
            "Supervised Contrastive Learning"<https://arxiv.org/abs/2004.11362>
        Args:
            features(tensor): The embedding feature. shape=[bs, n_views, ...]
            label(tensor): The label of images, shape=[bs]
            mask(tensor): contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
                has the same class as sample i. Can be asymmetric.
        return:
            loss
        """
        if len(features.shape) < 3:
            raise ValueError("Features need have 3 dimensions at least")
        bs, num_view = features.shape[:2]
        #if dimension > 3, change the shape of the features to [bs, num_view, ...]
        if len(features.shape) > 3:
            features = features.reshape(bs, num_view, -1)

        #label and mask cannot provided at the same time
        if (label is not None) and (mask is not None):
            raise ValueError("label and mask cannot provided at the same time")
        elif (label is None) and (mask is None):
            mask = F.eye(bs, dtype="float32")
        elif label is not None:
            label = label.reshape(-1, 1)
            if label.shape[0] != bs:
                raise RuntimeError(
                    "Num of labels does not match num of features")
            mask = F.equal(label, label.T)
        else:
            mask = mask.astype("float32")

        contrast_count = features.shape[1]
        features = F.split(features, features.shape[1], axis=1)
        contrast_feature = F.squeeze(F.concat(features, axis=0), axis=1)
        if self.contrast_mode == "one":
            anchor_feature = features[:, 0]
            anchor_count = 1
        elif self.contrast_mode == "all":
            anchor_feature = contrast_feature
            anchor_count = contrast_count
        else:
            raise ValueError("Unknown mode:{}".format(self.contrast_mode))
        #compute logits
        anchor_dot_contrast = F.div(
            F.matmul(anchor_feature, contrast_feature.T), self.temperate)

        #for numerical stability
        logits_max = F.max(anchor_dot_contrast, axis=-1, keepdims=True)
        logits = anchor_dot_contrast - logits_max

        #tile mask
        an1, con = mask.shape[:2]
        nums = anchor_count * contrast_count
        # mask-out self-contrast cases
        mask = F.stack([mask] * nums).reshape(an1 * anchor_count,
                                              con * contrast_count)
        logits_mask = F.scatter(
            F.ones_like(mask), 1,
            F.arange(0, int(bs * anchor_count), dtype="int32").reshape(-1, 1),
            F.zeros(int(bs * anchor_count), dtype="int32").reshape(-1, 1))
        mask = mask * logits_mask
        #compute log_prob
        exp_logits = F.exp(logits) * logits_mask
        log_prob = logits - F.log(F.sum(exp_logits, axis=1,
                                        keepdims=True))  #equation 2

        #mean
        mean_log_prob_pos = F.sum(mask * log_prob, axis=1) / F.sum(mask,
                                                                   axis=1)

        #loss
        loss = -(self.temperate / self.base_temperate) * mean_log_prob_pos
        loss = F.mean(loss.reshape(anchor_count, bs))
        return loss