示例#1
0
def _concat_new_axis(t1, t2, t3, t4, axis=1):
    return Concat(
        [t1.add_axis(-1),
         t2.add_axis(-1),
         t3.add_axis(-1),
         t4.add_axis(-1)],
        axis=axis)
示例#2
0
def dense_block(inp, k, l):
    lay = inp
    for i in range(l):
        cur_lay = bn_relu_conv(lay, 3, 1, 1, k, True, True)
        name = cur_lay.name
        group = k // 4
        #G.P.
        SE = cur_lay.mean(axis=3).mean(axis=2)
        SE = FullyConnected("fc0({})".format(name),
                            SE,
                            output_dim=(k // group)**2 * group,
                            nonlinearity=ReLU())
        SE = FullyConnected("fc1({})".format(name),
                            SE,
                            output_dim=(k // group)**2 * group,
                            nonlinearity=Sigmoid())
        print(SE.name)
        SE = SE.reshape(cur_lay.shape[0] * group, k // group, k // group, 1, 1)
        preshape = cur_lay.shape
        cur_lay = cur_lay.reshape(1, cur_lay.shape[0] * cur_lay.shape[1],
                                  cur_lay.shape[2], cur_lay.shape[3])
        cur_lay = Conv2D("conv({})".format(name),
                         cur_lay,
                         kernel_shape=1,
                         stride=1,
                         padding=0,
                         W=SE,
                         nonlinearity=Identity())
        cur_lay = cur_lay.reshape(preshape)
        #cur_lay = cur_lay * SE.dimshuffle(0, 1, 'x', 'x')
        lay = Concat([lay, cur_lay], axis=1)
    return lay
示例#3
0
def dense_block(inp, k, l):
    lay = inp
    lis_w = []
    for i in range(l):
        cur_lay, w = bn_relu_conv(lay, 3, 1, 1, k, True, True)
        lis_w.append(w)
        lay = Concat([lay, cur_lay], axis=1)
    return lay, lis_w
示例#4
0
def dense_block(inp, k, l):
	lay = inp
	pre_lay = 0
	for i in range(l):
		cur_lay = pre_lay + bn_relu_conv(lay, 3, 1, 1, k, True, True)
		pre_lay = bn_relu_conv(cur_lay, 3, 1, 1, k, True, True)
		lay = Concat([lay, cur_lay], axis = 1)
	return lay
示例#5
0
def b_resize(name, inp, rate=0.8):
    #inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32)
    f_size = inp.partial_shape[2]
    l = int(f_size * rate)
    s = [[0, l], [f_size - l, f_size]]
    ar0 = Linspace(0, inp.shape[0], inp.shape[0], endpoint=False)
    ar0 = ar0.add_axis(1).add_axis(2).add_axis(3).broadcast(
        inp.shape).add_axis(4)
    ar1 = Linspace(0, inp.shape[1], inp.shape[1], endpoint=False)
    ar1 = ar1.add_axis(0).add_axis(2).add_axis(3).broadcast(
        inp.shape).add_axis(4)

    fmaps = [inp]
    for i in range(4):
        xx = s[i % 2]
        yy = s[i // 2]
        #x = Linspace(xx[0], xx[1], f_size, endpoint = False)
        #y = Linspace(yy[0], yy[1], f_size, endpoint = False)
        x = ConstProvider(np.linspace(xx[0], xx[1], f_size, endpoint=False))
        y = ConstProvider(np.linspace(yy[0], yy[1], f_size, endpoint=False))
        fx, fy = Floor(x), Floor(y)
        cx, cy = Ceil(x), Ceil(y)
        nfmaps = []
        for sx in range(2):
            for sy in range(2):
                ix = fx if sx == 0 else cx
                iy = fy if sy == 0 else cy
                bx = (cx - x + Equal(fx, cx) if sx == 0 else x - fx)
                by = (cy - y + Equal(fy, cy) if sy == 0 else y - fy)
                arx = ix.add_axis(0).add_axis(0).add_axis(3).broadcast(
                    inp.shape).add_axis(4)
                ary = iy.add_axis(0).add_axis(0).add_axis(0).broadcast(
                    inp.shape).add_axis(4)
                idxmap = Astype(Concat([ar0, ar1, arx, ary], axis=4), np.int32)
                sample = IndexingRemap(inp, idxmap)
                sample *= bx.dimshuffle('x', 'x', 0, 'x') * by.dimshuffle(
                    'x', 'x', 'x', 0)
                nfmaps.append(sample)
        fmap = nfmaps[0]
        for i in range(1, 4):
            fmap += nfmaps[i]
        fmaps.append(fmap)
    fmap = Concat(fmaps, axis=1)
    return fmap
示例#6
0
def dense_block(inp, k, l, j):
    lay = inp
    for i in range(l):
        idx = j * l + i + 1
        chl = lay.partial_shape[1]
        p = idx & -idx
        p = max(0, chl - p * k)
        sh_lay = lay[:, p:, :, :]
        cur_lay = bn_relu_conv(sh_lay, 3, 1, 1, k, True, True)
        lay = Concat([lay, cur_lay], axis=1)
    return lay
示例#7
0
def dense_block(inp, k, l):
    lay = inp
    pre_lay = 0
    for i in range(l):
        chl = lay.partial_shape[1]
        sh_lay = lay.reshape(lay.partial_shape[0], chl // k, k,
                             lay.partial_shape[2], lay.partial_shape[3])
        sh_lay = sh_lay.dimshuffle(0, 2, 1, 3, 4)
        sh_lay = sh_lay.reshape(lay.shape)
        cur_lay = bn_relu_conv(sh_lay, 3, 1, 1, k, True, True, group=k // 4)
        lay = Concat([lay, cur_lay], axis=1)

    return lay
示例#8
0
def dense_block(inp, k, l):
    lay = inp
    for i in range(l):
        cur_lay = bn_relu_conv(lay, 3, 1, 1, k, True, True)
        name = cur_lay.name
        #G.P.
        SE = cur_lay.mean(axis=3).mean(axis=2)
        SE = FullyConnected("fc0({})".format(name),
                            SE,
                            output_dim=k,
                            nonlinearity=ReLU())
        SE = FullyConnected("fc1({})".format(name),
                            SE,
                            output_dim=k,
                            nonlinearity=Sigmoid())
        cur_lay = cur_lay * SE.dimshuffle(0, 1, 'x', 'x')
        lay = Concat([lay, cur_lay], axis=1)
    return lay
示例#9
0
def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu):
    global idx
    idx += 1
    l10 = Conv2D("conv{}_0".format(idx),
                 inp,
                 kernel_shape=ker_shape,
                 stride=stride,
                 padding=padding,
                 output_nr_channel=out_chl // 2,
                 W=G(mean=0,
                     std=((1 + int(isrelu)) /
                          (ker_shape**2 * inp.partial_shape[1]))**0.5),
                 nonlinearity=Identity())
    l11 = Conv2D("conv{}_1".format(idx),
                 inp,
                 kernel_shape=ker_shape,
                 stride=stride,
                 padding=padding,
                 output_nr_channel=out_chl // 2,
                 W=G(mean=0,
                     std=((1 + int(isrelu)) /
                          (ker_shape**2 * inp.partial_shape[1]))**0.5),
                 nonlinearity=Identity())
    W = l11.inputs[1].owner_opr
    b = l11.inputs[2].owner_opr
    W.set_freezed()
    b.set_freezed()
    l1 = Concat([l10, l11], axis=1)
    l2 = BN("bn{}".format(idx), l1, eps=1e-9)
    l2 = ElementwiseAffine("bnaff{}".format(idx),
                           l2,
                           shared_in_channels=False,
                           k=C(1),
                           b=C(0))
    if isrelu:
        l2 = arith.ReLU(l2)
    return l2, l1
示例#10
0
def dfconv(inp, chl, isrelu, ker_shape = 3, stride = 1, padding = 1, dx = [-1, 0, 1], dy = [-1, 0, 1]):
	inp = Conv2D(
		name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	inp = BN(name + "BN", inp, eps = 1e-9)

	global idx
	#idx += 1
	gamma = 0.001
	offsetx = inp.partial_shape[2] * Conv2D(
		"conv{}_offsetx".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[2])),
		nonlinearity = Identity()
		)
	offsety = inp.partial_shape[3] * Conv2D(
		"conv{}_offsety".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[3])),
		nonlinearity = Identity()
		)

	outputs = []
	for sx in range(2):
		for sy in range(2):
			if sx == 0:
				ofx = Floor(offsetx)
				bilx = offsetx - ofx
			else:
				ofx = Ceil(offsetx)
				bilx = ofx - offsetx
			if sy == 0:
				ofy = Floor(offsety)
				bily = offsety - ofy
			else:
				ofy = Ceil(offsety)
				bily = ofy - offsety

			"""
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
			arg_fea = inp

			#one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
			one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.partial_shape[2], ofx.partial_shape[3]))
			affx = (Cumsum(one_mat, axis = 0) - 1) * stride
			affy = (Cumsum(one_mat, axis = 1) - 1) * stride

			ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
			ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
			one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
			#ofx[:, :ker_shape, :, :] -= 1
			#ofx[:, ker_shape*2:, :, :] += 1
			ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2)
			#ofy[:, ::3, :, :] -= 1
			#ofy[:, 2::3, :, :] += 1
			one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
			one_mat = Concat([one_mat * i for i in dy], axis = 0)
			one_mat = Concat([one_mat] * ker_shape, axis = 0)
			ofy += one_mat.dimshuffle('x', 0, 1, 2)
			ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
			ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

			def DeformReshape(inp, ker_shape):
				inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.shape[3])
				inp = inp.dimshuffle(0, 3, 1, 4, 2)
				inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4])
				return inp

			ofx = DeformReshape(ofx, ker_shape)
			ofy = DeformReshape(ofy, ker_shape)
			bilx = DeformReshape(bilx, ker_shape)
			bily = DeformReshape(bily, ker_shape)

			of = ofx * arg_fea.shape[2] + ofy
			arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1)
			of = of.reshape(ofx.shape[0], -1)
			of = of.dimshuffle(0, 'x', 1)
			#of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
			of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2]))
			arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False)
			arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
			ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False)
			ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
			of = of.add_axis(3)
			arx = arx.add_axis(3)
			ary = ary.add_axis(3)
			idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32)
			"""
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
			sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1)
			bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			sample *= bilx * bily
			
			outputs.append(sample)
	
	output = outputs[0]
	for i in outputs[1:]:
		output += i
	
	return conv_bn(output, ker_shape, 3, 0, chl, isrelu)
示例#11
0
def dfpooling(name, inp, window = 2, padding = 0, dx = [0, 1], dy = [0, 1]):
	#inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32)
	"""
	Add a new conv&bn to insure that the scale of the feature map is variance 1.
	"""
	ker_shape = window
	stride = window	
	offsetlay = Conv2D(
		name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = ((1) / (3**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	#offsetlay = BN(name + "BN", offsetlay, eps = 1e-9)

	offsetx = Conv2D(
		name + "conv1x", offsetlay, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[2]))**0.5),
		nonlinearity = Identity()
		)
	offsety = Conv2D(
		name + "conv1y", offsetlay, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[3]))**0.5),
		nonlinearity = Identity()
		)
	offset = Concat([offsetx, offsety], axis = 1)

	ndim = ker_shape**2 * offsetx.partial_shape[2] * offsetx.partial_shape[3] * 2
	offset = FullyConnected(
		name + "offset", offsetx, output_dim = ndim,
		W = G(mean = 0, std = (1 / ndim)**2),
		#W = C(0),
		b = C(0),
		nonlinearity = Identity()
		)
	offsetx = offset[:, :ndim // 2].reshape(offsetx.shape)
	offsety = offset[:, ndim // 2:].reshape(offsety.shape)
	"""
	offsetx = FullyConnected(
		name + "offsetx", offsetx, output_dim = ndim,
		W = G(mean = 0, std = gamma / ndim),
		b = C(0),
		nonlinearity = Identity()
		)
	offsetx = offsetx.reshape(offsety.shape)
	offsety = FullyConnected(
		name + "offsety", offsety, output_dim = ndim,
		W = G(mean = 0, std = gamma / ndim),
		b = C(0),
		nonlinearity = Identity()
		)
	offsety = offsety.reshape(offsetx.shape)
	print(offsety.partial_shape)
	"""

	#offsetx = ZeroGrad(offsetx)
	#offsety = ZeroGrad(offsety)
	outputs = []
	for sx in range(2):
		for sy in range(2):
			if sx == 0:
				ofx = Floor(offsetx)
				bilx = 1 - (offsetx - ofx)
			else:
				ofx = Ceil(offsetx)
				bilx = 1 - (ofx - offsetx)
			if sy == 0:
				ofy = Floor(offsety)
				bily = 1 - (offsety - ofy)
			else:
				ofy = Ceil(offsety)
				bily = 1 - (ofy - offsety)
			"""
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
			arg_fea = inp

			#one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
			one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.shape[2], ofx.shape[3]))
			affx = (Cumsum(one_mat, axis = 0) - 1) * stride
			affy = (Cumsum(one_mat, axis = 1) - 1) * stride

			ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
			ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
			one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
			#ofx[:, :ker_shape, :, :] -= 1
			#ofx[:, ker_shape*2:, :, :] += 1
			ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2)
			#ofy[:, ::3, :, :] -= 1
			#ofy[:, 2::3, :, :] += 1
			one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
			one_mat = Concat([one_mat * i for i in dy], axis = 0)
			one_mat = Concat([one_mat] * ker_shape, axis = 0)
			ofy += one_mat.dimshuffle('x', 0, 1, 2)
			ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
			ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

			def DeformReshape(inp, ker_shape):
				inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.partial_shape[3])
				inp = inp.dimshuffle(0, 3, 1, 4, 2)
				inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4])
				return inp

			ofx = DeformReshape(ofx, ker_shape)
			ofy = DeformReshape(ofy, ker_shape)
			bilx = DeformReshape(bilx, ker_shape)
			bily = DeformReshape(bily, ker_shape)

			of = ofx * arg_fea.partial_shape[2] + ofy
			arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1)
			of = of.reshape(ofx.shape[0], -1)
			of = of.dimshuffle(0, 'x', 1)
			#of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
			of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2]))
			arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False)
			arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
			ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False)
			ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
			of = of.add_axis(3)
			arx = arx.add_axis(3)
			ary = ary.add_axis(3)
			idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32)
			"""
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
			sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1)
			bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			sample *= bilx * bily
			
			outputs.append(sample)
	
	output = outputs[0]
	for i in outputs[1:]:
		output += i
	
	return Pooling2D(name, output, window = 2, mode = "AVERAGE")
示例#12
0
def dense_block(inp, k, l, B):
    lay = inp
    for i in range(l):
        cur_lay = dense_layer(lay, k, B)
        lay = Concat([lay, cur_lay], axis=1)
    return lay
示例#13
0
def dfpooling(name, inp, window=2, padding=0, dx=[0, 1], dy=[0, 1]):
    #inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32)

    ker_shape = window
    stride = window
    gamma = 0.1
    offsetx = gamma * inp.partial_shape[2] * Conv2D(name + "offsetx",
                                                    inp,
                                                    kernel_shape=ker_shape,
                                                    stride=stride,
                                                    padding=padding,
                                                    output_nr_channel=ker_shape
                                                    **2,
                                                    W=C(0),
                                                    nonlinearity=Identity())
    offsety = gamma * inp.partial_shape[3] * Conv2D(name + "offsety",
                                                    inp,
                                                    kernel_shape=ker_shape,
                                                    stride=stride,
                                                    padding=padding,
                                                    output_nr_channel=ker_shape
                                                    **2,
                                                    W=C(0),
                                                    nonlinearity=Identity())
    outputs = []
    for sx in range(2):
        for sy in range(2):
            if sx == 0:
                ofx = Floor(offsetx)
                bilx = offsetx - ofx + Equal(Floor(offsetx), Ceil(offsetx))
            else:
                ofx = Ceil(offsetx)
                bilx = ofx - offsetx
            if sy == 0:
                ofy = Floor(offsety)
                bily = offsety - ofy + Equal(Floor(offsety), Ceil(offsety))
            else:
                ofy = Ceil(offsety)
                bily = ofy - offsety
            """
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
            arg_fea = inp

            #one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
            one_mat = ConstProvider(1, dtype=np.int32).add_axis(0).broadcast(
                (ofx.partial_shape[2], ofx.partial_shape[3]))
            affx = (Cumsum(one_mat, axis=0) - 1) * stride
            affy = (Cumsum(one_mat, axis=1) - 1) * stride

            ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
            ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
            one_mat = ConstProvider(
                np.ones(
                    (ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
            #ofx[:, :ker_shape, :, :] -= 1
            #ofx[:, ker_shape*2:, :, :] += 1
            ofx += Concat([one_mat * i for i in dx],
                          axis=0).dimshuffle('x', 0, 1, 2)
            #ofy[:, ::3, :, :] -= 1
            #ofy[:, 2::3, :, :] += 1
            one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
            one_mat = Concat([one_mat * i for i in dy], axis=0)
            one_mat = Concat([one_mat] * ker_shape, axis=0)
            ofy += one_mat.dimshuffle('x', 0, 1, 2)
            ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
            ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

            def DeformReshape(inp, ker_shape):
                inp = inp.reshape(inp.partial_shape[0], ker_shape, ker_shape,
                                  inp.partial_shape[2], inp.partial_shape[3])
                inp = inp.dimshuffle(0, 3, 1, 4, 2)
                inp = inp.reshape(inp.partial_shape[0],
                                  inp.partial_shape[1] * inp.partial_shape[2],
                                  inp.partial_shape[3] * inp.partial_shape[4])
                return inp

            ofx = DeformReshape(ofx, ker_shape)
            ofy = DeformReshape(ofy, ker_shape)
            bilx = DeformReshape(bilx, ker_shape)
            bily = DeformReshape(bily, ker_shape)

            of = ofx * arg_fea.partial_shape[2] + ofy
            arg_fea = arg_fea.reshape(arg_fea.partial_shape[0],
                                      arg_fea.partial_shape[1], -1)
            of = of.reshape(ofx.partial_shape[0], -1)
            of = of.dimshuffle(0, 'x', 1)
            #of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
            of = of.broadcast((of.partial_shape[0], arg_fea.partial_shape[1],
                               of.partial_shape[2]))
            arx = Linspace(0,
                           arg_fea.partial_shape[0],
                           arg_fea.partial_shape[0],
                           endpoint=False)
            arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
            ary = Linspace(0,
                           arg_fea.partial_shape[1],
                           arg_fea.partial_shape[1],
                           endpoint=False)
            ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
            of = of.add_axis(3)
            arx = arx.add_axis(3)
            ary = ary.add_axis(3)
            idxmap = Astype(Concat([arx, ary, of], axis=3), np.int32)
            """
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
            sample = IndexingRemap(arg_fea,
                                   idxmap).reshape(inp.partial_shape[0],
                                                   inp.partial_shape[1],
                                                   bilx.partial_shape[1], -1)
            bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
            bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
            sample *= bilx * bily

            outputs.append(sample)

    output = outputs[0]
    for i in outputs[1:]:
        output += i

    return Pooling2D(name, output, window=2, mode="AVERAGE")