示例#1
0
def test_MST_spanning_diamond():
    stages = setup_diamond_network_extra_edge()
    gsm = GuaranteedServiceModelDAG(stages)
    MST, _ = gsm._find_MST(stages)
    MST_cost = GuaranteedServiceModelDAG._compute_spanning_tree_cost(MST)
    assert MST_cost == calc_edge_cost(MST)
    assert MST_cost == -83.895

    St = namedtuple('St', ['id', 'up', 'down'])
    l = (
        (St('A', [], ['B', 'C']), St('B', ['A'], []), St('C', ['A'], ['D']),
         St('D', ['C'], [])),  # no B->D,A->D
        (St('A', [], ['C', 'D']), St('C', ['A'], []), St('B', [], ['D']),
         St('D', ['B', 'A'], [])),  # no C->D,A->B
        (St('A', [], ['D']), St('C', [], ['D']), St('B', [], ['D']),
         St('D', ['B', 'C', 'A'], [])),  # no A->B,A->C
        (St('A', [], ['B']), St('B', ['A'], ['D']), St('C', [], ['D']),
         St('D', ['B', 'C'], [])),  # no A->C,A->D
        (St('A', [], ['C']), St('B', [], ['D']), St('C', ['A'], ['D']),
         St('D', ['B', 'C'], []))  # no A->D,A->B
    )
    # try some permutations for spanning tree
    for i, spanning_tree in enumerate(l):
        for s in spanning_tree:
            gsm.tree_stages[s.id].up_stages = {u: 1 for u in s.up}
            gsm.tree_stages[s.id].down_stages = {d: 1 for d in s.down}
        assert GuaranteedServiceModelDAG._compute_spanning_tree_cost(
            gsm.tree_stages) >= MST_cost

    check_mst_vs_scipy(stages, MST)
示例#2
0
def test_ext_diamond_demand_bounds():
    """
    The true reference demand bound values in this and all other "test_..._demand_bounds" tests
    were computed by looking at the topology and using the pooling formula from
    Appendix 2.4. Demand Propagation in Humair and Willems 2011 "Optimizing inventory in DAGs"
    and the demand_bound_function for demand stages as in original tree GSM paper (Grave and Willems 2000)
    """
    stages = setup_ext_diamond_network()
    gsm = GuaranteedServiceModelDAG(stages)

    for stage_id, stage in gsm.stages.items():

        if stage_id == "A":
            assert set(stage.demand_stages_phis.keys()) == set(["D", "E"])
            assert stage.demand_stages_phis["D"] == 2
            assert stage.demand_stages_phis["E"] == 1
        elif stage_id in ["B", "C", "D"]:
            assert len(stage.demand_stages_phis.keys()) == 1
            assert stage.demand_stages_phis["D"] == 1
        else:
            assert stage_id == "E"
            assert len(stage.demand_stages_phis.keys()) == 1
            assert stage.demand_stages_phis["E"] == 1

    stage_tau_val_list = [("D", 10, 25.20), ("C", 11, 27.45), ("B", 12, 29.69),
                          ("A", 13, 213.94)]
    for stage_id, tau, d_bound in stage_tau_val_list:
        np.testing.assert_approx_equal(
            gsm.stages[stage_id].demand_bound_func(tau), d_bound, 4)
示例#3
0
def calc_edge_cost(stages: Dict[str, Stage]):
    cost = 0
    for stage_id, stage in stages.items():
        for down_stage_id in stage.down_stages:
            down_stage = stages[down_stage_id]
            cost += GuaranteedServiceModelDAG._get_edge_cost(stage, down_stage)
    return cost
示例#4
0
def check_mst_vs_scipy(stages_full: Dict[str, Stage],
                       mst: Dict[str, Stage]) -> None:
    """
    compare our MST solution to scipy baseline
    :param stages_full: full network
    :param mst: mst solution
    """
    assign_ids = np.array(
        [stage_id for stage_id in sorted(stages_full.keys())])
    N = assign_ids.size
    # create cost array
    cost = np.zeros((len(stages_full), len(stages_full)))
    for stage_id, stage in stages_full.items():
        for down_stage_id in stage.down_stages:
            down_stage = stages_full[down_stage_id]
            i = np.flatnonzero(assign_ids == stage_id)
            j = np.flatnonzero(assign_ids == down_stage_id)
            cost[j, i] = cost[i, j] = GuaranteedServiceModelDAG._get_edge_cost(
                stage, down_stage)
    C = minimum_spanning_tree(cost).toarray()
    assert C.sum() == calc_edge_cost(
        mst), 'different costs for MST and scipy solvers'
    for i, c in enumerate(C):
        for d in range(N):
            if assign_ids[d] in mst[assign_ids[i]].down_stages.keys():
                assert C[i, d] != 0, 'scipy said there is no edge'
            else:
                assert C[i, d] == 0, 'scipy said there must be an edge'
示例#5
0
def test_coc_handling():
    stages = setup_coc_network()
    gsm = GuaranteedServiceModelDAG(stages)
    for stage_id, stage in gsm.stages.items():
        if stage_id in ["A", "B"]:
            assert set(stage.demand_stages_phis.keys()) == set(["C", "D"])
        else:
            assert len(stage.demand_stages_phis) == 1
            assert stage_id in stage.demand_stages_phis
示例#6
0
def test_spanning_tree_basic_scenario():
    stages = setup_diamond_network()
    gsm = GuaranteedServiceModelDAG(stages)
    St = namedtuple('St', ['id', 'up', 'down'])
    l = (
        ((St('A', [], ['B', 'C']), St('B', ['A'], []), St('C', ['A'], ['D']),
          St('D', ['C'], [])), set([("B", "D")])),  # no B->D
        ((St('A', [], ['B', 'C']), St('C', ['A'], []), St('B', ['A'], ['D']),
          St('D', ['B'], [])), set([("C", "D")])),  # no C->D
        ((St('A', [], ['C']), St('C', ['A'], ['D']), St('B', [], ['D']),
          St('D', ['B', 'C'], [])), set([("A", "B")])),  # no A->B
        ((St('A', [], ['B']), St('B', ['A'], ['D']), St('C', [], ['D']),
          St('D', ['B', 'C'], [])), set([("A", "C")]))  # no A->C
    )
    # try all possible permutations for spanning tree
    optimal_cost = None
    for spanning_tree, removed_links in l:
        for s in spanning_tree:
            gsm.tree_stages[s.id].up_stages = {u: 1 for u in s.up}
            gsm.tree_stages[s.id].down_stages = {d: 1 for d in s.down}
            gsm._ordered_removed_links = gsm._order_removed_links(
                removed_links)
        print(gsm.tree_stages)
        gsm.tree_gsm = GuaranteedServiceModelTree(gsm.tree_stages,
                                                  initialise_bounds=False)
        soln = gsm.find_optimal_solution()
        assert optimal_cost is None or np.allclose(soln.cost, optimal_cost)
        optimal_cost = soln.cost
示例#7
0
def run_gsm(path, network, figpath, run_gsm_optimiser, plotting=True):
    # Load data
    supply_chain_filename = os.path.join(path, network)
    stages = read_supply_chain_from_txt(supply_chain_filename)
    # Run GSM
    gsm = GuaranteedServiceModelDAG(stages)

    if not run_gsm_optimiser:
        solution = None
        base_stocks = None
    else:
        solution = gsm.find_optimal_solution()
        base_stocks = tree_gsm.compute_base_stocks(solution.policy, stages)

    if plotting:
        plot_gsm(args.network,
                 filename=os.path.join(figpath, network),
                 stages=stages,
                 base_stocks=base_stocks,
                 solution=solution.serialize(),
                 do_save=True)
    return gsm
示例#8
0
def test_spanning_tree_skip():
    stages = setup_skip_network()
    gsm = GuaranteedServiceModelDAG(stages)
    St = namedtuple('St', ['id', 'up', 'down'])
    l = (
        (St('A', [], ['B', 'C']), St('B', ['A'], []), St('C', ['A'],
                                                         [])),  # no B->C
        (St('A', [], ['C']), St('C', ['A', 'B'], []), St('B', [],
                                                         ['C'])),  # no A->B
        (St('A', [], ['B']), St('B', ['A'], ['C']), St('C', ['B'],
                                                       []))  # no A->C
    )
    # try all possible permutations for spanning tree
    optimal_cost = None
    for spanning_tree in l:
        for s in spanning_tree:
            gsm.tree_stages[s.id].up_stages = {u: 1 for u in s.up}
            gsm.tree_stages[s.id].down_stages = {d: 1 for d in s.down}
        print(gsm.tree_stages)
        gsm.tree_gsm = GuaranteedServiceModelTree(gsm.tree_stages,
                                                  initialise_bounds=False)
        soln = gsm.find_optimal_solution()
        assert optimal_cost is None or np.allclose(soln.cost, optimal_cost)
        optimal_cost = soln.cost
示例#9
0
def test_spanning_tree_basic_diamond():
    stages = setup_diamond_network()
    # It seems to be non-deterministic
    # This causes infinite loop in the recursion in ordered_stages
    num_random_restarts = 100
    for i in range(num_random_restarts):
        spanning_tree_stages, _ = GuaranteedServiceModelDAG._find_spanning_tree(
            stages)
        assert ((spanning_tree_stages['C'].down_stages == {
            'D': 1
        } and spanning_tree_stages['B'].down_stages == {})
                or (spanning_tree_stages['B'].down_stages == {
                    'D': 1
                } and spanning_tree_stages['C'].down_stages
                    == {})), 'B->C or C->D removed'
示例#10
0
def test_compute_spanning_tree_cost():
    stages = setup_diamond_network_extra_edge()
    with pytest.raises(tree_gsm.IncompatibleGraphTopology):
        # Should fail because diamond is not a tree
        GuaranteedServiceModelDAG._compute_spanning_tree_cost(stages)

    gsm = GuaranteedServiceModelDAG(stages)
    MST, _ = gsm._find_MST(stages)
    MST_cost = GuaranteedServiceModelDAG._compute_spanning_tree_cost(MST)
    assert MST_cost == calc_edge_cost(MST)
示例#11
0
def test_skip_demand_bounds():
    stages = setup_skip_network()
    gsm = GuaranteedServiceModelDAG(stages)

    for stage_id, stage in gsm.stages.items():
        assert len(stage.demand_stages_phis) == 1
        assert "C" in stage.demand_stages_phis
        if stage_id == "A":
            assert stage.demand_stages_phis["C"] == 2
        else:
            assert stage.demand_stages_phis["C"] == 1

    stage_tau_val_list = [("C", 5, 86.78), ("B", 11, 164.56), ("A", 7, 227.04)]
    for stage_id, tau, d_bound in stage_tau_val_list:
        np.testing.assert_approx_equal(
            gsm.stages[stage_id].demand_bound_func(tau), d_bound, 4)
示例#12
0
def test_diamond_demand_bounds():
    stages = setup_diamond_network()
    gsm = GuaranteedServiceModelDAG(stages)

    for stage_id, stage in gsm.stages.items():
        assert len(stage.demand_stages_phis) == 1
        assert "D" in stage.demand_stages_phis, stage.demand_stages_phis
        if stage_id == "A":
            assert stage.demand_stages_phis["D"] == 2
        else:
            assert stage.demand_stages_phis["D"] == 1

    stage_tau_val_list = [("D", 10, 25.20), ("C", 11, 27.45), ("B", 12, 29.69),
                          ("A", 13, 63.86)]
    for stage_id, tau, d_bound in stage_tau_val_list:
        np.testing.assert_approx_equal(
            gsm.stages[stage_id].demand_bound_func(tau), d_bound, 4)
示例#13
0
def test_dist_demand_bounds():
    stages = setup_dist_network()
    gsm = GuaranteedServiceModelDAG(stages)

    for stage_id, stage in gsm.stages.items():
        assert all(v == 1 for v in stage.demand_stages_phis.values())
        if stage_id == "A":
            assert set(stage.demand_stages_phis.keys()) == set(["F", "G", "E"])
        elif stage_id in ["B", "D"]:
            assert set(stage.demand_stages_phis.keys()) == set(["F", "G"])
        elif stage_id in ["C", "E"]:
            assert set(stage.demand_stages_phis.keys()) == set(["E"])
        else:
            assert len(stage.demand_stages_phis) == 1
            assert stage_id in stage.demand_stages_phis

    stage_tau_val_list = [("B", 10, 634.68), ("C", 11, 274.55),
                          ("A", 13, 1088.31)]
    for stage_id, tau, d_bound in stage_tau_val_list:
        np.testing.assert_approx_equal(
            gsm.stages[stage_id].demand_bound_func(tau), d_bound, 4)
示例#14
0
def test_skip_handling():
    stages = setup_skip_network()
    gsm = GuaranteedServiceModelDAG(stages)
示例#15
0
def test_diamond_handling():
    stages = setup_diamond_network()
    gsm = GuaranteedServiceModelDAG(stages)
示例#16
0
def test_cyclic_handling():
    stages = setup_cyclic_network()
    with pytest.raises(tree_gsm.IncompatibleGraphTopology):
        # Should fail because of cycles
        GuaranteedServiceModelDAG(stages)