示例#1
0
def find_unconserved_metabolites(model):
    """
    Detect unconserved metabolites.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.

    Notes
    -----
    See [1]_ section 3.2 for a complete description of the algorithm.


    .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell.
           "Detection of Stoichiometric Inconsistencies in Biomolecular Models."
           Bioinformatics 24, no. 19 (2008): 2245.

    """
    Model, Constraint, Variable, Objective = con_helpers.get_interface(model)
    stoich_trans = Model()
    internal_rxns = con_helpers.get_internals(model)
    metabolites = set(met for rxn in internal_rxns for met in rxn.metabolites)
    # The binary variables k[i] in the paper.
    k_vars = list()
    for met in metabolites:
        # The element m[i] of the mass vector.
        m_var = Variable(met.id)
        k_var = Variable("k_{}".format(met.id), type="binary")
        k_vars.append(k_var)
        stoich_trans.add([m_var, k_var])
        # This constraint is equivalent to 0 <= k[i] <= m[i].
        stoich_trans.add(
            Constraint(k_var - m_var, ub=0, name="switch_{}".format(met.id)))
    stoich_trans.update()
    con_helpers.add_reaction_constraints(stoich_trans, internal_rxns,
                                         Constraint)
    # The objective is to maximize the binary indicators k[i], subject to the
    # above inequality constraints.
    stoich_trans.objective = Objective(1)
    stoich_trans.objective.set_linear_coefficients({var: 1. for var in k_vars})
    stoich_trans.objective.direction = "max"
    status = stoich_trans.optimize()
    if status == "optimal":
        # TODO: See if that could be a Boolean test `bool(var.primal)`.
        return set([
            model.metabolites.get_by_id(var.name[2:]) for var in k_vars
            if var.primal < 0.8
        ])
    else:
        raise RuntimeError(
            "Could not compute list of unconserved metabolites."
            " Solver status is '{}'"
            " (only optimal or infeasible expected).".format(status))
示例#2
0
def check_stoichiometric_consistency(model):
    """
    Verify the consistency of the model stoichiometry.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.

    Notes
    -----
    See [1]_ section 3.1 for a complete description of the algorithm.

    .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell.
           "Detection of Stoichiometric Inconsistencies in Biomolecular Models."
           Bioinformatics 24, no. 19 (2008): 2245.

    """
    Model, Constraint, Variable, Objective = con_helpers.get_interface(model)
    # The transpose of the stoichiometric matrix N.T in the paper.
    stoich_trans = Model()
    internal_rxns = con_helpers.get_internals(model)
    metabolites = set(met for rxn in internal_rxns for met in rxn.metabolites)
    LOGGER.info("model '%s' has %d internal reactions", model.id,
                len(internal_rxns))
    LOGGER.info("model '%s' has %d internal metabolites", model.id,
                len(metabolites))
    for metabolite in metabolites:
        stoich_trans.add(Variable(metabolite.id, lb=1))
    stoich_trans.update()
    con_helpers.add_reaction_constraints(stoich_trans, internal_rxns,
                                         Constraint)
    # The objective is to minimize the metabolite mass vector.
    stoich_trans.objective = Objective(1)
    stoich_trans.objective.set_linear_coefficients(
        {var: 1.
         for var in stoich_trans.variables})
    stoich_trans.objective.direction = "min"
    status = stoich_trans.optimize()
    if status == "optimal":
        return True
    elif status == "infeasible":
        return False
    else:
        raise RuntimeError(
            "Could not determine stoichiometric consistencty."
            " Solver status is '{}'"
            " (only optimal or infeasible expected).".format(status))
示例#3
0
def find_inconsistent_min_stoichiometry(model, atol=1e-13):
    """
    Detect inconsistent minimal net stoichiometries.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.
    atol : float, optional
        Values below the absolute tolerance are treated as zero. Expected to be
        very small but larger than zero.

    Notes
    -----
    See [1]_ section 3.3 for a complete description of the algorithm.

    References
    ----------
    .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell.
           "Detection of Stoichiometric Inconsistencies in Biomolecular
           Models."
           Bioinformatics 24, no. 19 (2008): 2245.

    """
    if check_stoichiometric_consistency(model):
        return set()
    Model, Constraint, Variable, Objective = con_helpers.get_interface(model)
    unconserved_mets = find_unconserved_metabolites(model)
    LOGGER.info("model has %d unconserved metabolites", len(unconserved_mets))
    internal_rxns = con_helpers.get_internals(model)
    internal_mets = set(met for rxn in internal_rxns
                        for met in rxn.metabolites)
    get_id = attrgetter("id")
    reactions = sorted(internal_rxns, key=get_id)
    metabolites = sorted(internal_mets, key=get_id)
    stoich, met_index, rxn_index = con_helpers.stoichiometry_matrix(
        metabolites, reactions)
    left_ns = con_helpers.nullspace(stoich.T)
    # deal with numerical instabilities
    left_ns[np.abs(left_ns) < atol] = 0.0
    LOGGER.info("nullspace has dimension %d", left_ns.shape[1])
    inc_minimal = set()
    (problem,
     indicators) = con_helpers.create_milp_problem(left_ns, metabolites, Model,
                                                   Variable, Constraint,
                                                   Objective)
    LOGGER.debug(str(problem))
    cuts = list()
    for met in unconserved_mets:
        row = met_index[met]
        if (left_ns[row] == 0.0).all():
            LOGGER.debug("%s: singleton minimal unconservable set", met.id)
            # singleton set!
            inc_minimal.add((met, ))
            continue
        # expect a positive mass for the unconserved metabolite
        problem.variables[met.id].lb = 1e-3
        status = problem.optimize()
        while status == "optimal":
            LOGGER.debug("%s: status %s", met.id, status)
            LOGGER.debug("sum of all primal values: %f",
                         sum(problem.primal_values.values()))
            LOGGER.debug("sum of binary indicators: %f",
                         sum(var.primal for var in indicators))
            solution = [
                model.metabolites.get_by_id(var.name[2:]) for var in indicators
                if var.primal > 0.2
            ]
            LOGGER.debug("%s: set size %d", met.id, len(solution))
            inc_minimal.add(tuple(solution))
            if len(solution) == 1:
                break
            cuts.append(
                con_helpers.add_cut(problem, indicators,
                                    len(solution) - 1, Constraint))
            status = problem.optimize()
        LOGGER.debug("%s: last status %s", met.id, status)
        # reset
        problem.variables[met.id].lb = 0.0
        problem.remove(cuts)
        cuts.clear()
    return inc_minimal