from menpo.base import partial_doc from .landmark import asf_importer, pts_importer asf_image_importer = partial_doc(asf_importer, image_origin=True) pts_image_importer = partial_doc(pts_importer, image_origin=True)
return ( np.require( np.rollaxis(output.reshape((shape[0], shape[1], -1)), -1), dtype=np.double, requirements=["C"], ), np.require(centers.reshape((shape[0], shape[1], -1)), dtype=np.int), ) # A predefined method for a 'faster' dsift method fast_dsift = partial_doc( dsift, fast=True, cell_size_vertical=5, cell_size_horizontal=5, num_bins_horizontal=1, num_bins_vertical=1, num_or_bins=8, ) # Predefined dsift that returns a 128d vector def vector_128_dsift(x, dtype=np.float32): r""" Computes a SIFT feature vector from a square patch (or image). Patch **must** be square and the output vector will *always* be a ``(128,)`` vector. Please see :func:`dsift` for more information. Parameters ----------
extension : `str` File extension to support. May be multi-part e.g. '.tar.gz' callable : `callable` The callable to invoke if a file with the provided extension is discovered during importing. Should take a single argument (the filepath) and any number of kwargs. """ if not isinstance(extension, basestring): raise ValueError("Only string type keys are supported.") if extension in ext_map: warnings.warn("Replacing an existing importer for the '{}' " "extension.".format(extension)) ext_map[_normalize_extension(extension)] = callable register_image_importer = partial_doc(_register_importer, image_types) register_video_importer = partial_doc(_register_importer, ffmpeg_video_types) register_landmark_importer = partial_doc(_register_importer, image_landmark_types) register_pickle_importer = partial_doc(_register_importer, pickle_types) menpo_data_dir_path = partial_doc(_data_dir_path, menpo_src_dir_path) menpo_ls_builtin_assets = partial_doc(_ls_builtin_assets, menpo_data_dir_path) menpo_data_path_to = partial_doc(_data_path_to, menpo_data_dir_path, menpo_ls_builtin_assets)
Default image texture resolver. Returns **the lexicographically sorted first** texture found to have the same stem as the asset. A warning is raised if more than one texture is found. """ # pattern finding all landmarks with the same stem pattern = path.with_suffix('.*') texture_paths = sorted(paths_callable(pattern)) if len(texture_paths) > 1: warnings.warn('More than one texture found for file, returning ' 'only the first.') if not texture_paths: return None return texture_paths[0] same_name_landmark = partial_doc(same_name, paths_callable=landmark_file_paths) menpo3d_data_dir_path = partial_doc(_data_dir_path, menpo3d_src_dir_path) menpo3d_ls_builtin_assets = partial_doc(_ls_builtin_assets, menpo3d_data_dir_path) menpo3d_data_path_to = partial_doc(_data_path_to, menpo3d_data_dir_path, menpo3d_ls_builtin_assets) _menpo3d_import_builtin_asset = partial_doc(_import_builtin_asset, menpo3d_data_path_to, mesh_types, mesh_landmark_types, texture_resolver=same_name_texture)
info_str += " - Fast mode is enabled.\n" info_str += "Output image size {}W x {}H x {}.".format( int(shape[1]), int(shape[0]), output.shape[0]) print(info_str) # return SIFT and centers in the correct form return (np.require(np.rollaxis(output.reshape((shape[0], shape[1], -1)), -1), dtype=np.double, requirements=['C']), np.require(centers.reshape((shape[0], shape[1], -1)), dtype=np.int)) # A predefined method for a 'faster' dsift method fast_dsift = partial_doc(dsift, fast=True, cell_size_vertical=5, cell_size_horizontal=5, num_bins_horizontal=1, num_bins_vertical=1, num_or_bins=8) # Predefined dsift that returns a 128d vector def vector_128_dsift(x, dtype=np.float32): r""" Computes a SIFT feature vector from a square patch (or image). Patch **must** be square and the output vector will *always* be a ``(128,)`` vector. Please see :func:`dsift` for more information. Parameters ---------- x : :map:`Image` or subclass or ``(C, Y, Y)`` `ndarray` Either the image object itself or an array with the pixels. The first dimension is interpreted as channels. Must be square i.e.
extension : `str` File extension to support. May be multi-part e.g. '.tar.gz' callable : `callable` The callable to invoke if a file with the provided extension is discovered during importing. Should take a single argument (the filepath) and any number of kwargs. """ if not isinstance(extension, basestring): raise ValueError('Only string type keys are supported.') if extension in ext_map: warnings.warn("Replacing an existing importer for the '{}' " "extension.".format(extension)) ext_map[_normalize_extension(extension)] = callable register_image_importer = partial_doc(_register_importer, image_types) register_video_importer = partial_doc(_register_importer, ffmpeg_video_types) register_landmark_importer = partial_doc(_register_importer, image_landmark_types) register_pickle_importer = partial_doc(_register_importer, pickle_types) menpo_data_dir_path = partial_doc(_data_dir_path, menpo_src_dir_path) menpo_ls_builtin_assets = partial_doc(_ls_builtin_assets, menpo_data_dir_path) menpo_data_path_to = partial_doc(_data_path_to, menpo_data_dir_path, menpo_ls_builtin_assets)
from menpo.base import partial_doc from .features import igo double_igo = partial_doc(igo, double_angles=True)
from menpo.base import partial_doc from .features import igo, hog double_igo = partial_doc(igo, double_angles=True) sparse_hog = partial_doc(hog, mode='sparse')