示例#1
0
文件: base.py 项目: yymath/menpo
def aam_build_benchmark(training_images, training_options=None, verbose=False):
    r"""
    Builds an AAM model.

    Parameters
    ----------
    training_images: list of :class:MaskedImage objects
        A list of the training images.
    training_options: dictionary, optional
        A dictionary with the parameters that will be passed in the AAMBuilder
        (:class:menpo.fitmultilevel.aam.AAMBuilder).
        If None, the default options will be used.
        This is an example of the dictionary with the default options:
            training_options = {'group': 'PTS',
                                'feature_type': 'igo',
                                'transform': PiecewiseAffine,
                                'trilist': None,
                                'normalization_diagonal': None,
                                'n_levels': 3,
                                'downscale': 2,
                                'scaled_shape_models': True,
                                'pyramid_on_features': True,
                                'max_shape_components': None,
                                'max_appearance_components': None,
                                'boundary': 3,
                                'interpolator': 'scipy'
                                }
        For an explanation of the options, please refer to the AAMBuilder
        documentation.

        Default: None
    verbose: boolean, optional
        If True, it prints information regarding the AAM training.

        Default: False

    Returns
    -------
    aam: :class:menpo.fitmultilevel.aam.AAM object
        The trained AAM model.
    """
    if verbose:
        print('AAM Training:')

    # parse options
    if training_options is None:
        training_options = {}

    # group option
    group = training_options.pop('group', None)

    # trilist option
    trilist = training_options.pop('trilist', None)
    if trilist is not None:
        labeller(training_images[0], 'PTS', trilist)
        training_options['trilist'] = \
            training_images[0].landmarks[trilist.__name__].lms.trilist

    # build aam
    aam = AAMBuilder(**training_options).build(training_images,
                                               group=group,
                                               verbose=verbose)

    return aam
示例#2
0
                  normalization_diagonal=150,
                  n_levels=2,
                  downscale=1.3,
                  pyramid_on_features=True,
                  noise_std=0.04,
                  rotation=False,
                  n_perturbations=2,
                  interpolator='scipy').train(training_images, group='PTS')

aam = AAMBuilder(
    feature_type=sparse_hog,
    transform=PiecewiseAffine,
    trilist=training_images[0].landmarks['ibug_68_trimesh'].lms.trilist,
    normalization_diagonal=150,
    n_levels=3,
    downscale=1.2,
    scaled_shape_models=False,
    pyramid_on_features=True,
    max_shape_components=None,
    max_appearance_components=3,
    boundary=3,
    interpolator='scipy').build(training_images, group='PTS')

sdm2 = SDAAMTrainer(aam,
                    regression_type=mlr,
                    regression_features=weights,
                    noise_std=0.04,
                    rotation=False,
                    n_perturbations=1,
                    update='compositional',
                    md_transform=OrthoMDTransform,
示例#3
0
def test_n_levels_exception():
    aam = AAMBuilder(n_levels=0).build(training_images, group='PTS')
示例#4
0
def test_downscale_exception():
    aam = AAMBuilder(downscale=1).build(training_images, group='PTS')
    assert (aam.downscale == 1)
    aam = AAMBuilder(downscale=0).build(training_images, group='PTS')
示例#5
0
def test_verbose_mock(mock_stdout):
    aam = AAMBuilder().build(training_images, group='PTS', verbose=True)
示例#6
0
def test_feature_type_with_pyramid_on_features_exception():
    aam = AAMBuilder(feature_type=['igo', sparse_hog]).build(training_images,
                                                             group='PTS')
示例#7
0
def test_boundary_exception():
    aam = AAMBuilder(boundary=-1).build(training_images, group='PTS')
示例#8
0
def test_max_appearance_components_exception():
    aam = AAMBuilder(max_appearance_components=[1, 2]).build(training_images,
                                                             group='PTS')
示例#9
0
def test_max_shape_components_exception():
    aam = AAMBuilder(max_shape_components=[1, 0.2, 'a']).build(training_images,
                                                               group='PTS')
示例#10
0
def test_normalization_diagonal_exception():
    aam = AAMBuilder(normalization_diagonal=100).build(training_images,
                                                       group='PTS')
    assert (aam.appearance_models[0].n_features == 410)
    aam = AAMBuilder(normalization_diagonal=10).build(training_images,
                                                      group='PTS')
示例#11
0
for i in range(4):
    im = mio.import_builtin_asset(filenames[i])
    im.crop_to_landmarks_proportion_inplace(0.1)
    labeller(im, 'PTS', ibug_68_trimesh)
    if im.n_channels == 3:
        im = im.as_greyscale(mode='luminosity')
    training_images.append(im)

# build aams
aam1 = AAMBuilder(
    feature_type=['igo', sparse_hog, None],
    transform=PiecewiseAffine,
    trilist=training_images[0].landmarks['ibug_68_trimesh'].lms.trilist,
    normalization_diagonal=150,
    n_levels=3,
    downscale=2,
    scaled_shape_models=False,
    pyramid_on_features=False,
    max_shape_components=[1, 2, 3],
    max_appearance_components=[3, 3, 3],
    boundary=3,
    interpolator='scipy').build(training_images, group='PTS')

aam2 = AAMBuilder(feature_type=None,
                  transform=ThinPlateSplines,
                  trilist=None,
                  normalization_diagonal=None,
                  n_levels=2,
                  downscale=1.2,
                  scaled_shape_models=True,
                  pyramid_on_features=False,