示例#1
0
def test_init_from_edges():
    g = PointDirectedGraph.init_from_edges(
        points,
        np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4], [3, 4],
                  [3, 5]]))
    assert (pg_directed.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points,
        np.array([[0, 1], [0, 2], [1, 2], [1, 3], [2, 4], [3, 4], [3, 5]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points,
        np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1], [1, 3],
                  [3, 1], [2, 4], [4, 2], [3, 4], [4, 3], [3, 5], [5, 3]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointTree.init_from_edges(points2,
                                  np.array([[0, 1], [0, 2], [1, 3], [1, 4],
                                            [2, 5], [3, 6], [4, 7], [5, 8]]),
                                  root_vertex=0)
    assert (pg_tree.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 2], [2, 4], [3, 4]]))
    assert (pg_isolated.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointDirectedGraph.init_from_edges(point, np.array([]))
    assert (pg_single.adjacency_matrix - g.adjacency_matrix).nnz == 0
示例#2
0
    def __init__(self,
                 points,
                 adjacency_matrix,
                 labels_to_masks,
                 copy=True,
                 skip_checks=False):
        PointUndirectedGraph.__init__(self,
                                      points,
                                      adjacency_matrix,
                                      copy=copy,
                                      skip_checks=skip_checks)

        if not labels_to_masks:
            raise ValueError("Labelled point graphs are designed to be "
                             "immutable. Empty label sets are not permitted.")
        if np.vstack(list(
                labels_to_masks.values())).shape[1] != points.shape[0]:
            raise ValueError("Each mask must have the same number of points "
                             "as the given points.")
        if not isinstance(labels_to_masks, OrderedDict):
            raise ValueError("Must provide an OrderedDict to maintain the "
                             "semantic meaning of the labels.")

        # Another sanity check
        self._labels_to_masks = labels_to_masks
        self._verify_all_labels_masked()

        if copy:
            self._labels_to_masks = OrderedDict([
                (l, m.copy()) for l, m in labels_to_masks.items()
            ])
示例#3
0
文件: car.py 项目: HaoyangWang/menpo
def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
    r"""
    Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)

    all_connectivity = right_side_connectivity

    ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices

    return new_pcloud, mapping
def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
    r"""
    Apply the IBUG 17-point close eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 17
    validate_input(pcloud, n_expected_points)

    upper_indices, upper_connectivity = _build_upper_eyelid()

    middle_indices = np.arange(12, 17)
    bottom_indices = np.arange(6, 12)
    lower_indices = np.hstack((bottom_indices, 0, middle_indices))
    lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
    lower_connectivity += [(0, 12)]
    lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
    lower_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_connectivity + lower_connectivity)
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_indices
    mapping['lower_eyelid'] = lower_indices

    return new_pcloud, mapping
示例#5
0
    def view_appearance_graph_widget(self,
                                     scale_index=-1,
                                     figure_size=(10, 8)):
        r"""
        Visualize the appearance graph using an interactive widget.

        Parameters
        ----------
        scale_index : `int`, optional
            The scale to be used.
        figure_size : (`int`, `int`), optional
            The size of the rendered figure.

        Raises
        ------
        ValueError
            Scale level {scale_index} uses a PCA appearance model, so there
            is no graph
        """
        if self.appearance_graph[scale_index] is not None:
            PointUndirectedGraph(
                self.shape_models[scale_index].model.mean().points,
                self.appearance_graph[scale_index].adjacency_matrix).\
                view_widget(figure_size=figure_size)
        else:
            raise ValueError("Scale level {} uses a PCA appearance model, "
                             "so there is no graph".format(scale_index))
示例#6
0
def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
    r"""
    Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)

    all_connectivity = right_side_connectivity

    ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices

    return new_pcloud, mapping
示例#7
0
文件: face.py 项目: kritsong/menpo
def face_ibug_49_to_face_ibug_49(pcloud):
    r"""
    Apply the IBUG 49-point semantic labels.
    The semantic labels applied are as follows:
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth
    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 49
    validate_input(pcloud, n_expected_points)

    lbrow_indices = np.arange(0, 5)
    rbrow_indices = np.arange(5, 10)
    upper_nose_indices = np.arange(10, 14)
    lower_nose_indices = np.arange(14, 19)
    leye_indices = np.arange(19, 25)
    reye_indices = np.arange(25, 31)
    outer_mouth_indices = np.arange(31, 43)
    inner_mouth_indices = np.hstack((31, np.arange(43, 46),
                                     37, np.arange(46, 49)))

    lbrow_connectivity = connectivity_from_array(lbrow_indices)
    rbrow_connectivity = connectivity_from_array(rbrow_indices)
    nose_connectivity = np.vstack([
        connectivity_from_array(upper_nose_indices),
        connectivity_from_array(lower_nose_indices)])
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])

    all_connectivity = np.vstack([
        lbrow_connectivity, rbrow_connectivity, nose_connectivity,
        leye_connectivity, reye_connectivity, mouth_connectivity])

    # Ignore the two inner mouth points
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['nose'] = np.hstack([upper_nose_indices, lower_nose_indices])
    mapping['left_eye'] = leye_indices
    mapping['right_eye'] = reye_indices
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
    r"""
    Apply the IBUG 38-point open eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
      - iris
      - pupil
      - sclera
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 38
    validate_input(pcloud, n_expected_points)

    upper_el_indices, upper_el_connectivity = _build_upper_eyelid()

    iris_range = (22, 30)
    pupil_range = (30, 38)
    sclera_top = np.arange(12, 17)
    sclera_bottom = np.arange(17, 22)
    sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
    lower_el_top = np.arange(17, 22)
    lower_el_bottom = np.arange(7, 12)
    lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))

    iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
    pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)

    sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
    sclera_connectivity += [(0, 21)]
    sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
    sclera_connectivity += [(6, 17)]

    lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
    lower_el_connectivity += [(6, 7)]
    lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
    lower_el_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_el_connectivity +
                                  lower_el_connectivity +
                                  iris_connectivity.tolist() +
                                  pupil_connectivity.tolist() +
                                  sclera_connectivity)
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_el_indices
    mapping['lower_eyelid'] = lower_el_indices
    mapping['pupil'] = np.arange(*pupil_range)
    mapping['iris'] = np.arange(*iris_range)
    mapping['sclera'] = sclera_indices

    return new_pcloud, mapping
示例#9
0
def test_init_2d_grid():
    g = PointTree.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 24
    assert g.n_points == 25
    g = PointUndirectedGraph.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 80
    assert g.n_points == 25
    g = PointDirectedGraph.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 80
    assert g.n_points == 25
示例#10
0
def plot_shape_graph(aps, level):
    mean_shape = aps.shape_models[level].mean().points

    # plot mean shape points
    plt.scatter(aps.shape_models[level].mean().points[:, 0],
                aps.shape_models[level].mean().points[:, 1])

    # create and plot edge connections
    PointUndirectedGraph(mean_shape, aps.graph_shape.adjacency_array).view_on(
        plt.gcf().number)
示例#11
0
def test_init_2d_grid():
    g = PointTree.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 24
    assert g.n_points == 25
    g = PointUndirectedGraph.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 80
    assert g.n_points == 25
    g = PointDirectedGraph.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 80
    assert g.n_points == 25
示例#12
0
文件: hand.py 项目: HaoyangWang/menpo
def hand_ibug_39_to_hand_ibug_39(pcloud):
    r"""
    Apply the IBUG 39-point semantic labels.

    The semantic labels applied are as follows:

      - thumb
      - index
      - middle
      - ring
      - pinky
      - palm
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 39
    validate_input(pcloud, n_expected_points)

    thumb_indices = np.arange(0, 5)
    index_indices = np.arange(5, 12)
    middle_indices = np.arange(12, 19)
    ring_indices = np.arange(19, 26)
    pinky_indices = np.arange(26, 33)
    palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
                              np.arange(35, 39)))

    thumb_connectivity = connectivity_from_array(thumb_indices,
                                                 close_loop=False)
    index_connectivity = connectivity_from_array(index_indices,
                                                 close_loop=False)
    middle_connectivity = connectivity_from_array(middle_indices,
                                                  close_loop=False)
    ring_connectivity = connectivity_from_array(ring_indices,
                                                close_loop=False)
    pinky_connectivity = connectivity_from_array(pinky_indices,
                                                 close_loop=False)
    palm_connectivity = connectivity_from_array(palm_indices,
                                                close_loop=True)

    all_connectivity = np.vstack([thumb_connectivity, index_connectivity,
                                  middle_connectivity, ring_connectivity,
                                  pinky_connectivity, palm_connectivity])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['thumb'] = thumb_indices
    mapping['index'] = index_indices
    mapping['middle'] = middle_indices
    mapping['ring'] = ring_indices
    mapping['pinky'] = pinky_indices
    mapping['palm'] = palm_indices

    return new_pcloud, mapping
示例#13
0
def hand_ibug_39_to_hand_ibug_39(pcloud):
    r"""
    Apply the IBUG 39-point semantic labels.

    The semantic labels applied are as follows:

      - thumb
      - index
      - middle
      - ring
      - pinky
      - palm
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 39
    validate_input(pcloud, n_expected_points)

    thumb_indices = np.arange(0, 5)
    index_indices = np.arange(5, 12)
    middle_indices = np.arange(12, 19)
    ring_indices = np.arange(19, 26)
    pinky_indices = np.arange(26, 33)
    palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34,
                                        4]), np.arange(35, 39)))

    thumb_connectivity = connectivity_from_array(thumb_indices,
                                                 close_loop=False)
    index_connectivity = connectivity_from_array(index_indices,
                                                 close_loop=False)
    middle_connectivity = connectivity_from_array(middle_indices,
                                                  close_loop=False)
    ring_connectivity = connectivity_from_array(ring_indices, close_loop=False)
    pinky_connectivity = connectivity_from_array(pinky_indices,
                                                 close_loop=False)
    palm_connectivity = connectivity_from_array(palm_indices, close_loop=True)

    all_connectivity = np.vstack([
        thumb_connectivity, index_connectivity, middle_connectivity,
        ring_connectivity, pinky_connectivity, palm_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['thumb'] = thumb_indices
    mapping['index'] = index_indices
    mapping['middle'] = middle_indices
    mapping['ring'] = ring_indices
    mapping['pinky'] = pinky_indices
    mapping['palm'] = palm_indices

    return new_pcloud, mapping
示例#14
0
    def __init__(self, points, adjacency_matrix, labels_to_masks, copy=True,
                 skip_checks=False):
        PointUndirectedGraph.__init__(self, points, adjacency_matrix, copy=copy,
                                      skip_checks=skip_checks)

        if not labels_to_masks:
            raise ValueError('Labelled point graphs are designed to be '
                             'immutable. Empty label sets are not permitted.')
        if np.vstack(labels_to_masks.values()).shape[1] != points.shape[0]:
            raise ValueError('Each mask must have the same number of points '
                             'as the given points.')
        if not isinstance(labels_to_masks, OrderedDict):
            raise ValueError('Must provide an OrderedDict to maintain the '
                             'semantic meaning of the labels.')

        # Another sanity check
        self._labels_to_masks = labels_to_masks
        self._verify_all_labels_masked()

        if copy:
            self._labels_to_masks = OrderedDict([(l, m.copy()) for l, m in
                                                 labels_to_masks.items()])
示例#15
0
def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
    """
    Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - front
      - bonnet
      - windshield
      - left_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    front_indices = np.array([0, 1, 3, 2])
    bonnet_indices = np.array([2, 3, 5, 4])
    windshield_indices = np.array([4, 5, 7, 6])
    left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

    front_connectivity = connectivity_from_array(front_indices,
                                                 close_loop=True)
    bonnet_connectivity = connectivity_from_array(bonnet_indices,
                                                  close_loop=True)
    windshield_connectivity = connectivity_from_array(windshield_indices,
                                                      close_loop=True)
    left_side_connectivity = connectivity_from_array(left_side_indices,
                                                     close_loop=True)

    all_connectivity = np.vstack([
        front_connectivity, bonnet_connectivity, windshield_connectivity,
        left_side_connectivity
    ])

    ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['front'] = front_indices
    mapping['bonnet'] = bonnet_indices
    mapping['windshield'] = windshield_indices
    mapping['left_side'] = left_side_indices

    return new_pcloud, mapping
示例#16
0
文件: car.py 项目: HaoyangWang/menpo
def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
    """
    Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - front
      - bonnet
      - windshield
      - left_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    front_indices = np.array([0, 1, 3, 2])
    bonnet_indices = np.array([2, 3, 5, 4])
    windshield_indices = np.array([4, 5, 7, 6])
    left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

    front_connectivity = connectivity_from_array(front_indices,
                                                 close_loop=True)
    bonnet_connectivity = connectivity_from_array(bonnet_indices,
                                                  close_loop=True)
    windshield_connectivity = connectivity_from_array(windshield_indices,
                                                      close_loop=True)
    left_side_connectivity = connectivity_from_array(left_side_indices,
                                                     close_loop=True)

    all_connectivity = np.vstack([
        front_connectivity, bonnet_connectivity, windshield_connectivity,
        left_side_connectivity
    ])

    ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['front'] = front_indices
    mapping['bonnet'] = bonnet_indices
    mapping['windshield'] = windshield_indices
    mapping['left_side'] = left_side_indices

    return new_pcloud, mapping
示例#17
0
def test_init_2d_grid_custom_adjacency():
    tree_adj = np.array([[0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 1, 0]])
    g = PointTree.init_2d_grid((2, 2), root_vertex=0, adjacency_matrix=tree_adj)
    assert g.adjacency_matrix.nnz == 3
    assert g.n_points == 4
    single_edge = lil_matrix((25, 25))
    single_edge[[0, 1], [1, 0]] = 1
    single_edge = single_edge.tocsr()
    g = PointUndirectedGraph.init_2d_grid((5, 5), adjacency_matrix=single_edge)
    assert g.adjacency_matrix.nnz == 2
    assert g.n_points == 25
    g = PointDirectedGraph.init_2d_grid((5, 5), adjacency_matrix=single_edge)
    assert g.adjacency_matrix.nnz == 2
    assert g.n_points == 25
示例#18
0
def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
    r"""
    Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side
      - rear_windshield
      - trunk
      - rear

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
    rear_windshield_indices = np.array([4, 5, 7, 6])
    trunk_indices = np.array([6, 7, 9, 8])
    rear_indices = np.array([8, 9, 11, 10])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)
    rear_windshield_connectivity = connectivity_from_array(
        rear_windshield_indices, close_loop=True)
    trunk_connectivity = connectivity_from_array(trunk_indices,
                                                 close_loop=True)
    rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

    all_connectivity = np.vstack([
        right_side_connectivity, rear_windshield_connectivity,
        trunk_connectivity, rear_connectivity
    ])

    ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices
    mapping['rear_windshield'] = rear_windshield_indices
    mapping['trunk'] = trunk_indices
    mapping['rear'] = rear_indices

    return new_pcloud, mapping
示例#19
0
文件: pose.py 项目: HaoyangWang/menpo
def pose_lsp_14_to_pose_lsp_14(pcloud):
    r"""
    Apply the lsp 14-point semantic labels.

    The semantic labels applied are as follows:

      - left_leg
      - right_leg
      - left_arm
      - right_arm
      - head

    References
    ----------
    .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 14
    validate_input(pcloud, n_expected_points)

    left_leg_indices = np.arange(0, 3)
    right_leg_indices = np.arange(3, 6)
    left_arm_indices = np.arange(6, 9)
    right_arm_indices = np.arange(9, 12)
    head_indices = np.arange(12, 14)

    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    head_connectivity = connectivity_from_array(head_indices)

    all_connectivity = np.vstack([
        left_leg_connectivity, right_leg_connectivity,
        left_arm_connectivity, right_arm_connectivity,
        head_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_leg'] = left_leg_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['head'] = head_indices

    return new_pcloud, mapping
示例#20
0
def test_init_from_edges():
    g = PointDirectedGraph.init_from_edges(
        points, np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
                          [3, 4], [3, 5]]))
    assert (pg_directed.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 1], [0, 2], [1, 2], [1, 3], [2, 4], [3, 4],
                          [3, 5]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
                          [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
                          [3, 5], [5, 3]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointTree.init_from_edges(
        points2, np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
                           [4, 7], [5, 8]]), root_vertex=0)
    assert (pg_tree.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 2], [2, 4], [3, 4]]))
    assert (pg_isolated.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointDirectedGraph.init_from_edges(point, np.array([]))
    assert (pg_single.adjacency_matrix - g.adjacency_matrix).nnz == 0
def pose_lsp_14_to_pose_lsp_14(pcloud):
    r"""
    Apply the lsp 14-point semantic labels.

    The semantic labels applied are as follows:

      - left_leg
      - right_leg
      - left_arm
      - right_arm
      - head

    References
    ----------
    .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 14
    validate_input(pcloud, n_expected_points)

    left_leg_indices = np.arange(0, 3)
    right_leg_indices = np.arange(3, 6)
    left_arm_indices = np.arange(6, 9)
    right_arm_indices = np.arange(9, 12)
    head_indices = np.arange(12, 14)

    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    head_connectivity = connectivity_from_array(head_indices)

    all_connectivity = np.vstack([
        left_leg_connectivity, right_leg_connectivity, left_arm_connectivity,
        right_arm_connectivity, head_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_leg'] = left_leg_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['head'] = head_indices

    return new_pcloud, mapping
示例#22
0
文件: car.py 项目: HaoyangWang/menpo
def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
    r"""
    Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side
      - rear_windshield
      - trunk
      - rear

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
    rear_windshield_indices = np.array([4, 5, 7, 6])
    trunk_indices = np.array([6, 7, 9, 8])
    rear_indices = np.array([8, 9, 11, 10])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)
    rear_windshield_connectivity = connectivity_from_array(
        rear_windshield_indices, close_loop=True)
    trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
    rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

    all_connectivity = np.vstack([
        right_side_connectivity, rear_windshield_connectivity,
        trunk_connectivity, rear_connectivity
    ])

    ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices
    mapping['rear_windshield'] = rear_windshield_indices
    mapping['trunk'] = trunk_indices
    mapping['rear'] = rear_indices

    return new_pcloud, mapping
示例#23
0
def test_init_from_depth_image():
    fake_z = np.random.uniform(size=(10, 10))
    g = PointTree.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.root_vertex == 55
    assert g.adjacency_matrix.nnz == 99
    assert g.n_points == 100
    g = PointUndirectedGraph.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 360
    assert g.n_points == 100
    g = PointDirectedGraph.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 360
    assert g.n_points == 100
示例#24
0
def test_init_from_depth_image():
    fake_z = np.random.uniform(size=(10, 10))
    g = PointTree.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.root_vertex == 55
    assert g.adjacency_matrix.nnz == 99
    assert g.n_points == 100
    g = PointUndirectedGraph.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 360
    assert g.n_points == 100
    g = PointDirectedGraph.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 360
    assert g.n_points == 100
示例#25
0
    def tojson(self):
        r"""
        Convert this `LabelledPointUndirectedGraph` to a dictionary JSON
        representation.

        Returns
        -------
        json : ``dict``
            Dictionary conforming to the LJSON v2 specification.
        """
        labels = [{'mask': mask.nonzero()[0].tolist(),
                   'label': label}
                  for label, mask in self._labels_to_masks.items()]
        lms_dict = PointUndirectedGraph.tojson(self)
        lms_dict['labels'] = labels
        return lms_dict
示例#26
0
    def tojson(self):
        r"""
        Convert this `LabelledPointUndirectedGraph` to a dictionary JSON
        representation.

        Returns
        -------
        json : ``dict``
            Dictionary conforming to the LJSON v2 specification.
        """
        labels = [{'mask': mask.nonzero()[0].tolist(),
                   'label': label}
                  for label, mask in self._labels_to_masks.items()]
        lms_dict = PointUndirectedGraph.tojson(self)
        lms_dict['labels'] = labels
        return lms_dict
def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
    """
    Label the given pointcloud according to the given ordered dictionary
    of labels to ranges. This assumes that you can semantically label the group
    by using ranges in to the existing points e.g ::

        labels_to_ranges = {'jaw': (0, 17, False)}

    The third element of the range tuple is whether the range is a closed loop
    or not. For example, for an eye landmark this would be ``True``, as you
    do want to create a closed loop for an eye.

    Parameters
    ----------
    pointcloud : :map:`PointCloud`
        The pointcloud to apply semantic labels to.
    labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
        Ordered dictionary of string labels to range tuples.

    Returns
    -------
    new_pcloud : :map:`PointCloud`
        New pointcloud with specific connectivity information applied.
    mapping : `ordereddict` {`str` -> `int ndarray`}
        For each label, the indices in to the pointcloud that belong to the
        label.
    """
    from menpo.shape import PointUndirectedGraph

    mapping = OrderedDict()
    all_connectivity = []
    for label, tup in labels_to_ranges.items():
        range_tuple = tup[:-1]
        close_loop = tup[-1]

        connectivity = connectivity_from_range(range_tuple,
                                               close_loop=close_loop)
        all_connectivity.append(connectivity)
        mapping[label] = np.arange(*range_tuple)
    all_connectivity = np.vstack(all_connectivity)

    new_pcloud = PointUndirectedGraph.init_from_edges(pointcloud.points,
                                                      all_connectivity)

    return new_pcloud, mapping
示例#28
0
文件: base.py 项目: kritsong/menpo
def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
    """
    Label the given pointcloud according to the given ordered dictionary
    of labels to ranges. This assumes that you can semantically label the group
    by using ranges in to the existing points e.g ::

        labels_to_ranges = {'jaw': (0, 17, False)}

    The third element of the range tuple is whether the range is a closed loop
    or not. For example, for an eye landmark this would be ``True``, as you
    do want to create a closed loop for an eye.

    Parameters
    ----------
    pointcloud : :map:`PointCloud`
        The pointcloud to apply semantic labels to.
    labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
        Ordered dictionary of string labels to range tuples.

    Returns
    -------
    new_pcloud : :map:`PointCloud`
        New pointcloud with specific connectivity information applied.
    mapping : `ordereddict` {`str` -> `int ndarray`}
        For each label, the indices in to the pointcloud that belong to the
        label.
    """
    from menpo.shape import PointUndirectedGraph

    mapping = OrderedDict()
    all_connectivity = []
    for label, tup in labels_to_ranges.items():
        range_tuple = tup[:-1]
        close_loop = tup[-1]

        connectivity = connectivity_from_range(range_tuple,
                                               close_loop=close_loop)
        all_connectivity.append(connectivity)
        mapping[label] = np.arange(*range_tuple)
    all_connectivity = np.vstack(all_connectivity)

    new_pcloud = PointUndirectedGraph.init_from_edges(pointcloud.points,
                                                      all_connectivity)

    return new_pcloud, mapping
示例#29
0
def _parse_ljson_v2(lms_dict):
    labels_to_mask = OrderedDict()  # masks into the full pointcloud per label

    points = _ljson_parse_null_values(lms_dict['landmarks']['points'])
    connectivity = lms_dict['landmarks'].get('connectivity')

    # Don't create a PointUndirectedGraph with no connectivity
    if connectivity is None or len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)

    for label in lms_dict['labels']:
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[label['mask']] = True
        labels_to_mask[label['label']] = mask

    return pcloud, labels_to_mask
示例#30
0
    def get_label(self, label):
        """
        Returns a new :map:`PointUndirectedGraph` that contains the subset of
        points that this label represents.

        Parameters
        ----------
        label : `string`
            Label to filter on.

        Returns
        -------
        graph : :map:`PointUndirectedGraph`
            The PointUndirectedGraph containing the subset of points that this
            label masks. Will be a subset of the entire group's points.
        """
        mask = self._labels_to_masks[label]
        return PointUndirectedGraph.from_mask(self, mask)
示例#31
0
def test_init_from_depth_image_masked():
    fake_z = np.random.uniform(size=(10, 10))
    mask = np.zeros(fake_z.shape, dtype=np.bool)
    mask[2:6, 2:6] = True
    im = MaskedImage(fake_z, mask=mask)
    g = PointTree.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.root_vertex == 0
    assert g.adjacency_matrix.nnz == 15
    assert g.n_points == 16
    g = PointUndirectedGraph.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 48
    assert g.n_points == 16
    g = PointDirectedGraph.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 48
    assert g.n_points == 16
示例#32
0
def test_init_from_depth_image_masked():
    fake_z = np.random.uniform(size=(10, 10))
    mask = np.zeros(fake_z.shape, dtype=np.bool)
    mask[2:6, 2:6] = True
    im = MaskedImage(fake_z, mask=mask)
    g = PointTree.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.root_vertex == 0
    assert g.adjacency_matrix.nnz == 15
    assert g.n_points == 16
    g = PointUndirectedGraph.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 48
    assert g.n_points == 16
    g = PointDirectedGraph.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 48
    assert g.n_points == 16
示例#33
0
def _parse_ljson_v2(lms_dict):
    labels_to_mask = OrderedDict()  # masks into the full pointcloud per label

    points = _ljson_parse_null_values(lms_dict['landmarks']['points'])
    connectivity = lms_dict['landmarks'].get('connectivity')

    # Don't create a PointUndirectedGraph with no connectivity
    if connectivity is None or len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)

    for label in lms_dict['labels']:
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[label['mask']] = True
        labels_to_mask[label['label']] = mask

    return pcloud, labels_to_mask
示例#34
0
    def get_label(self, label):
        """
        Returns a new :map:`PointUndirectedGraph` that contains the subset of
        points that this label represents.

        Parameters
        ----------
        label : `string`
            Label to filter on.

        Returns
        -------
        graph : :map:`PointUndirectedGraph`
            The PointUndirectedGraph containing the subset of points that this
            label masks. Will be a subset of the entire group's points.
        """
        mask = self._labels_to_masks[label]
        return PointUndirectedGraph.from_mask(self, mask)
示例#35
0
def test_init_2d_grid_custom_adjacency():
    tree_adj = np.array([[0, 1, 0, 0],
                         [0, 0, 0, 1],
                         [0, 0, 0, 0],
                         [0, 0, 1, 0]])
    g = PointTree.init_2d_grid((2, 2), root_vertex=0, adjacency_matrix=tree_adj)
    assert g.adjacency_matrix.nnz == 3
    assert g.n_points == 4
    single_edge = lil_matrix((25, 25))
    single_edge[[0, 1], [1, 0]] = 1
    single_edge = single_edge.tocsr()
    g = PointUndirectedGraph.init_2d_grid(
        (5, 5), adjacency_matrix=single_edge)
    assert g.adjacency_matrix.nnz == 2
    assert g.n_points == 25
    g = PointDirectedGraph.init_2d_grid(
        (5, 5), adjacency_matrix=single_edge)
    assert g.adjacency_matrix.nnz == 2
    assert g.n_points == 25
def face_ibug_68_to_face_ibug_65(pcloud):
    r"""
    Apply the IBUG 68 point semantic labels, but ignore the 3 points that are
    coincident for a closed mouth (bottom of the inner mouth).

    The semantic labels applied are as follows:

      - jaw
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth

    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    # Apply face_ibug_68_to_face_ibug_68
    new_pcloud, mapping = face_ibug_68_to_face_ibug_68(pcloud,
                                                       return_mapping=True)

    # The coincident points are considered the final 3 landmarks (bottom of
    # the inner mouth points). We remove all the edges for the inner mouth
    # which are the last 8.
    edges = new_pcloud.edges[:-8]
    # Re-add the inner mouth without the bottom 3 points
    edges = np.vstack([edges,
                       connectivity_from_range((60, 65), close_loop=True)])

    new_pcloud = PointUndirectedGraph.init_from_edges(
        new_pcloud.points[:-3], edges)

    # Luckily, OrderedDict maintains the original ordering despite updates
    outer_mouth_indices = np.arange(48, 60)
    inner_mouth_indices = np.arange(60, 65)
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
示例#37
0
def _parse_ljson_v1(lms_dict):
    from menpo.base import MenpoDeprecationWarning

    warnings.warn(
        "LJSON v1 is deprecated. export_landmark_file{s}() will "
        "only save out LJSON v2 files. Please convert all LJSON "
        "files to v2 by importing into Menpo and re-exporting to "
        "overwrite the files.",
        MenpoDeprecationWarning,
    )
    all_points = []
    labels = []  # label per group
    labels_slices = []  # slices into the full pointcloud per label
    offset = 0
    connectivity = []
    for group in lms_dict["groups"]:
        lms = group["landmarks"]
        labels.append(group["label"])
        labels_slices.append(slice(offset, len(lms) + offset))
        # Create the connectivity if it exists
        conn = group.get("connectivity", [])
        if conn:
            # Offset relative connectivity according to the current index
            conn = offset + np.asarray(conn)
            connectivity += conn.tolist()
        for p in lms:
            all_points.append(p["point"])
        offset += len(lms)

    # Don't create a PointUndirectedGraph with no connectivity
    points = _ljson_parse_null_values(all_points)
    if len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)
    labels_to_masks = OrderedDict()
    # go through each label and build the appropriate boolean array
    for label, l_slice in zip(labels, labels_slices):
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[l_slice] = True
        labels_to_masks[label] = mask
    return pcloud, labels_to_masks
示例#38
0
def _parse_ljson_v1(lms_dict):
    from menpo.base import MenpoDeprecationWarning
    warnings.warn(
        'LJSON v1 is deprecated. export_landmark_file{s}() will '
        'only save out LJSON v2 files. Please convert all LJSON '
        'files to v2 by importing into Menpo and re-exporting to '
        'overwrite the files.', MenpoDeprecationWarning)
    all_points = []
    labels = []  # label per group
    labels_slices = []  # slices into the full pointcloud per label
    offset = 0
    connectivity = []
    for group in lms_dict['groups']:
        lms = group['landmarks']
        labels.append(group['label'])
        labels_slices.append(slice(offset, len(lms) + offset))
        # Create the connectivity if it exists
        conn = group.get('connectivity', [])
        if conn:
            # Offset relative connectivity according to the current index
            conn = offset + np.asarray(conn)
            connectivity += conn.tolist()
        for p in lms:
            all_points.append(p['point'])
        offset += len(lms)

    # Don't create a PointUndirectedGraph with no connectivity
    points = _ljson_parse_null_values(all_points)
    if len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)
    labels_to_masks = OrderedDict()
    # go through each label and build the appropriate boolean array
    for label, l_slice in zip(labels, labels_slices):
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[l_slice] = True
        labels_to_masks[label] = mask
    return pcloud, labels_to_masks
示例#39
0
    def _parse_format(self, asset=None):
        with open(self.filepath, 'rb') as f:
            # lms_dict is now a dict rep of the JSON
            lms_dict = json.load(f, object_pairs_hook=OrderedDict)

        all_points = []
        labels = []  # label per group
        labels_slices = []  # slices into the full pointcloud per label
        offset = 0
        connectivity = []
        for group in lms_dict['groups']:
            lms = group['landmarks']
            labels.append(group['label'])
            labels_slices.append(slice(offset, len(lms) + offset))
            # Create the connectivity if it exists
            conn = group.get('connectivity', [])
            if conn:
                # Offset relative connectivity according to the current index
                conn = offset + np.asarray(conn)
                connectivity.append(conn)
            for p in lms:
                all_points.append(p['point'])
            offset += len(lms)

        # Don't create a PointUndirectedGraph with no connectivity
        points = np.array(all_points)
        if len(connectivity) == 0:
            self.pointcloud = PointCloud(points)
        else:
            self.pointcloud = PointUndirectedGraph(points,
                                                   np.vstack(connectivity))
        self.labels_to_masks = OrderedDict()
        # go through each label and build the appropriate boolean array
        for label, l_slice in zip(labels, labels_slices):
            mask = np.zeros(self.pointcloud.n_points, dtype=np.bool)
            mask[l_slice] = True
            self.labels_to_masks[label] = mask
def pose_human36M_32_to_pose_human36M_32(pcloud):
    r"""
    Apply the human3.6M 32-point semantic labels.

    The semantic labels applied are as follows:

      - pelvis
      - right_leg
      - left_leg
      - spine
      - head
      - left_arm
      - left_hand
      - right_arm
      - right_hand
      - torso

    References
    ----------
    .. [1] http://vision.imar.ro/human3.6m/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 32
    validate_input(pcloud, n_expected_points)

    pelvis_indices = np.array([1, 0, 6])
    right_leg_indices = np.array(range(1, 6))
    left_leg_indices = np.array(range(6, 11))
    spine_indices = np.array([11, 12, 13])
    head_indices = np.array([13, 14, 15])
    left_arm_indices = np.array([16, 17, 18, 19, 23])
    left_hand_indices = np.array([20, 21, 22])
    right_arm_indices = np.array([24, 25, 26, 27, 29, 31])
    right_hand_indices = np.array([28, 29, 30])
    torso_indices = np.array([0, 1, 25, 13, 17, 6])

    pelvis_connectivity = connectivity_from_array(pelvis_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    spine_connectivity = connectivity_from_array(spine_indices)
    head_connectivity = connectivity_from_array(head_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    left_hand_connectivity = connectivity_from_array(left_hand_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    right_hand_connectivity = connectivity_from_array(right_hand_indices)
    torso_connectivity = connectivity_from_array(torso_indices,
                                                 close_loop=True)

    all_connectivity = np.vstack([
        pelvis_connectivity, right_leg_connectivity, left_leg_connectivity,
        spine_connectivity, head_connectivity, left_arm_connectivity,
        left_hand_connectivity, right_arm_connectivity,
        right_hand_connectivity, torso_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['pelvis'] = pelvis_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_leg'] = left_leg_indices
    mapping['spine'] = spine_indices
    mapping['head'] = head_indices
    mapping['left_arm'] = left_arm_indices
    mapping['left_hand'] = left_hand_indices
    mapping['right_arm'] = right_arm_indices
    mapping['right_hand'] = right_hand_indices
    mapping['torso'] = torso_indices

    return new_pcloud, mapping
def pose_human36M_32_to_pose_human36M_17(pcloud):
    r"""
    Apply the human3.6M 17-point semantic labels (based on the
    original semantic labels of Human3.6 but removing the annotations
    corresponding to duplicate points, soles and palms), originally 32-points.

    The semantic labels applied are as follows:

      - pelvis
      - right_leg
      - left_leg
      - spine
      - head
      - left_arm
      - right_arm
      - torso

    References
    ----------
    .. [1] http://vision.imar.ro/human3.6m/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 32
    validate_input(pcloud, n_expected_points)

    pelvis_indices = np.array([1, 0, 4])
    right_leg_indices = np.arange(1, 4)
    left_leg_indices = np.arange(4, 7)
    spine_indices = np.array([0, 7, 8])
    head_indices = np.array([8, 9, 10])
    left_arm_indices = np.array([8, 11, 12, 13])
    right_arm_indices = np.array([8, 14, 15, 16])
    torso_indices = np.array([0, 1, 14, 8, 11, 4])

    pelvis_connectivity = connectivity_from_array(pelvis_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    spine_connectivity = connectivity_from_array(spine_indices)
    head_connectivity = connectivity_from_array(head_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    torso_connectivity = connectivity_from_array(torso_indices,
                                                 close_loop=True)

    all_connectivity = np.vstack([
        pelvis_connectivity, right_leg_connectivity, left_leg_connectivity,
        spine_connectivity, head_connectivity, left_arm_connectivity,
        right_arm_connectivity, torso_connectivity
    ])

    # Ignore duplicate points, sole and palms
    ind = np.hstack([
        np.arange(0, 4),
        np.arange(6, 9),
        np.arange(12, 16),
        np.arange(17, 20),
        np.arange(25, 28)
    ])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['pelvis'] = pelvis_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_leg'] = left_leg_indices
    mapping['spine'] = spine_indices
    mapping['head'] = head_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['torso'] = torso_indices

    return new_pcloud, mapping
示例#42
0
文件: pose.py 项目: HaoyangWang/menpo
def pose_human36M_32_to_pose_human36M_32(pcloud):
    r"""
    Apply the human3.6M 32-point semantic labels.

    The semantic labels applied are as follows:

      - pelvis
      - right_leg
      - left_leg
      - spine
      - head
      - left_arm
      - left_hand
      - right_arm
      - right_hand
      - torso

    References
    ----------
    .. [1] http://vision.imar.ro/human3.6m/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 32
    validate_input(pcloud, n_expected_points)

    pelvis_indices = np.array([1, 0, 6])
    right_leg_indices = np.array(range(1, 6))
    left_leg_indices = np.array(range(6, 11))
    spine_indices = np.array([11, 12, 13])
    head_indices = np.array([13, 14, 15])
    left_arm_indices = np.array([16, 17, 18, 19, 23])
    left_hand_indices = np.array([20, 21, 22])
    right_arm_indices = np.array([24, 25, 26, 27, 29, 31])
    right_hand_indices = np.array([28, 29, 30])
    torso_indices = np.array([0, 1, 25, 13, 17, 6])

    pelvis_connectivity = connectivity_from_array(pelvis_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    spine_connectivity = connectivity_from_array(spine_indices)
    head_connectivity = connectivity_from_array(head_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    left_hand_connectivity = connectivity_from_array(left_hand_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    right_hand_connectivity = connectivity_from_array(right_hand_indices)
    torso_connectivity = connectivity_from_array(torso_indices,
                                                 close_loop=True)

    all_connectivity = np.vstack([
        pelvis_connectivity, right_leg_connectivity, left_leg_connectivity,
        spine_connectivity, head_connectivity, left_arm_connectivity,
        left_hand_connectivity, right_arm_connectivity,
        right_hand_connectivity, torso_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['pelvis'] = pelvis_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_leg'] = left_leg_indices
    mapping['spine'] = spine_indices
    mapping['head'] = head_indices
    mapping['left_arm'] = left_arm_indices
    mapping['left_hand'] = left_hand_indices
    mapping['right_arm'] = right_arm_indices
    mapping['right_hand'] = right_hand_indices
    mapping['torso'] = torso_indices

    return new_pcloud, mapping
示例#43
0
文件: pose.py 项目: HaoyangWang/menpo
def pose_human36M_32_to_pose_human36M_17(pcloud):
    r"""
    Apply the human3.6M 17-point semantic labels (based on the
    original semantic labels of Human3.6 but removing the annotations
    corresponding to duplicate points, soles and palms), originally 32-points.

    The semantic labels applied are as follows:

      - pelvis
      - right_leg
      - left_leg
      - spine
      - head
      - left_arm
      - right_arm
      - torso

    References
    ----------
    .. [1] http://vision.imar.ro/human3.6m/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 32
    validate_input(pcloud, n_expected_points)

    pelvis_indices = np.array([1, 0, 4])
    right_leg_indices = np.arange(1, 4)
    left_leg_indices = np.arange(4, 7)
    spine_indices = np.array([0, 7, 8])
    head_indices = np.array([8, 9, 10])
    left_arm_indices = np.array([8, 11, 12, 13])
    right_arm_indices = np.array([8, 14, 15, 16])
    torso_indices = np.array([0, 1, 14, 8, 11, 4])

    pelvis_connectivity = connectivity_from_array(pelvis_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    spine_connectivity = connectivity_from_array(spine_indices)
    head_connectivity = connectivity_from_array(head_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    torso_connectivity = connectivity_from_array(torso_indices,
                                                 close_loop=True)

    all_connectivity = np.vstack([
        pelvis_connectivity, right_leg_connectivity, left_leg_connectivity,
        spine_connectivity, head_connectivity, left_arm_connectivity,
        right_arm_connectivity, torso_connectivity
    ])

    # Ignore duplicate points, sole and palms
    ind = np.hstack([np.arange(0, 4), np.arange(6, 9), np.arange(12, 16),
                     np.arange(17, 20), np.arange(25, 28)])
    new_pcloud = PointUndirectedGraph.init_from_edges(
        pcloud.points[ind], all_connectivity)

    mapping = OrderedDict()
    mapping['pelvis'] = pelvis_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_leg'] = left_leg_indices
    mapping['spine'] = spine_indices
    mapping['head'] = head_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['torso'] = torso_indices

    return new_pcloud, mapping
示例#44
0
)
point = np.array([[10, 10]])

# Define undirected graph and pointgraph
adj_undirected = np.array(
    [
        [0, 1, 1, 0, 0, 0],
        [1, 0, 1, 1, 0, 0],
        [1, 1, 0, 0, 1, 0],
        [0, 1, 0, 0, 1, 1],
        [0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 0, 0],
    ]
)
g_undirected = UndirectedGraph(adj_undirected)
pg_undirected = PointUndirectedGraph(points, adj_undirected)

# Define directed graph and pointgraph
adj_directed = csr_matrix(
    ([1] * 8, ([1, 2, 1, 2, 1, 2, 3, 3], [0, 0, 2, 1, 3, 4, 4, 5])), shape=(6, 6)
)
g_directed = DirectedGraph(adj_directed)
pg_directed = PointDirectedGraph(points, adj_directed)

# Define tree and pointtree
adj_tree = np.array(
    [
        [0, 1, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 1, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 1, 0, 0],
def face_ibug_68_to_face_ibug_68(pcloud):
    r"""
    Apply the IBUG 68-point semantic labels.

    The semantic labels are as follows:

      - jaw
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth

    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 68
    validate_input(pcloud, n_expected_points)

    jaw_indices = np.arange(0, 17)
    lbrow_indices = np.arange(17, 22)
    rbrow_indices = np.arange(22, 27)
    upper_nose_indices = np.arange(27, 31)
    lower_nose_indices = np.arange(31, 36)
    leye_indices = np.arange(36, 42)
    reye_indices = np.arange(42, 48)
    outer_mouth_indices = np.arange(48, 60)
    inner_mouth_indices = np.arange(60, 68)

    jaw_connectivity = connectivity_from_array(jaw_indices)
    lbrow_connectivity = connectivity_from_array(lbrow_indices)
    rbrow_connectivity = connectivity_from_array(rbrow_indices)
    nose_connectivity = np.vstack([
        connectivity_from_array(upper_nose_indices),
        connectivity_from_array(lower_nose_indices)])
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])

    all_connectivity = np.vstack([
        jaw_connectivity, lbrow_connectivity, rbrow_connectivity,
        nose_connectivity, leye_connectivity, reye_connectivity,
        mouth_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(
        pcloud.points, all_connectivity)

    mapping = OrderedDict()
    mapping['jaw'] = jaw_indices
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['nose'] = np.hstack((upper_nose_indices, lower_nose_indices))
    mapping['left_eye'] = leye_indices
    mapping['right_eye'] = reye_indices
    mapping['mouth'] = np.hstack((outer_mouth_indices, inner_mouth_indices))

    return new_pcloud, mapping
示例#46
0
def face_bu3dfe_83_to_face_bu3dfe_83(pcloud):
    r"""
    Apply the BU-3DFE (Binghamton University 3D Facial Expression)
    Database 83-point facial semantic labels.

    The semantic labels applied are as follows:

      - right_eye
      - left_eye
      - right_eyebrow
      - left_eyebrow
      - right_nose
      - left_nose
      - nostrils
      - outer_mouth
      - inner_mouth
      - jaw

    References
    ----------
    .. [1] http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 83
    validate_input(pcloud, n_expected_points)

    reye_indices = np.arange(0, 8)
    leye_indices = np.arange(8, 16)
    rbrow_indices = np.arange(16, 26)
    lbrow_indices = np.arange(26, 36)
    rnose_indices = np.arange(36, 39)
    lnose_indices = np.arange(39, 42)
    nostril_indices = np.arange(42, 48)
    outermouth_indices = np.arange(48, 60)
    innermouth_indices = np.arange(60, 68)
    jaw_indices = np.arange(68, 83)

    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    rbrow_connectivity = connectivity_from_array(rbrow_indices,
                                                 close_loop=True)
    lbrow_connectivity = connectivity_from_array(lbrow_indices,
                                                 close_loop=True)
    rnose_connectivity = connectivity_from_array(rnose_indices)
    nostril_connectivity = connectivity_from_array(nostril_indices)
    lnose_connectivity = connectivity_from_array(lnose_indices)
    outermouth_connectivity = connectivity_from_array(outermouth_indices,
                                                      close_loop=True)
    innermouth_connectivity = connectivity_from_array(innermouth_indices,
                                                      close_loop=True)
    jaw_connectivity = connectivity_from_array(jaw_indices)

    all_connectivity = np.vstack([
        reye_connectivity, leye_connectivity,
        rbrow_connectivity, lbrow_connectivity,
        rnose_connectivity, nostril_connectivity, lnose_connectivity,
        outermouth_connectivity, innermouth_connectivity,
        jaw_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_eye'] = reye_indices
    mapping['left_eye'] = leye_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_nose'] = rnose_indices
    mapping['left_nose'] = lnose_indices
    mapping['nostrils'] = nostril_indices
    mapping['outer_mouth'] = outermouth_indices
    mapping['inner_mouth'] = innermouth_indices
    mapping['jaw'] = jaw_indices

    return new_pcloud, mapping
示例#47
0
def face_bu3dfe_83_to_face_bu3dfe_83(pcloud):
    r"""
    Apply the BU-3DFE (Binghamton University 3D Facial Expression)
    Database 83-point facial semantic labels.

    The semantic labels applied are as follows:

      - right_eye
      - left_eye
      - right_eyebrow
      - left_eyebrow
      - right_nose
      - left_nose
      - nostrils
      - outer_mouth
      - inner_mouth
      - jaw

    References
    ----------
    .. [1] http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 83
    validate_input(pcloud, n_expected_points)

    reye_indices = np.arange(0, 8)
    leye_indices = np.arange(8, 16)
    rbrow_indices = np.arange(16, 26)
    lbrow_indices = np.arange(26, 36)
    rnose_indices = np.arange(36, 39)
    lnose_indices = np.arange(39, 42)
    nostril_indices = np.arange(42, 48)
    outermouth_indices = np.arange(48, 60)
    innermouth_indices = np.arange(60, 68)
    jaw_indices = np.arange(68, 83)

    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    rbrow_connectivity = connectivity_from_array(rbrow_indices,
                                                 close_loop=True)
    lbrow_connectivity = connectivity_from_array(lbrow_indices,
                                                 close_loop=True)
    rnose_connectivity = connectivity_from_array(rnose_indices)
    nostril_connectivity = connectivity_from_array(nostril_indices)
    lnose_connectivity = connectivity_from_array(lnose_indices)
    outermouth_connectivity = connectivity_from_array(outermouth_indices,
                                                      close_loop=True)
    innermouth_connectivity = connectivity_from_array(innermouth_indices,
                                                      close_loop=True)
    jaw_connectivity = connectivity_from_array(jaw_indices)

    all_connectivity = np.vstack([
        reye_connectivity, leye_connectivity, rbrow_connectivity,
        lbrow_connectivity, rnose_connectivity, nostril_connectivity,
        lnose_connectivity, outermouth_connectivity, innermouth_connectivity,
        jaw_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_eye'] = reye_indices
    mapping['left_eye'] = leye_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_nose'] = rnose_indices
    mapping['left_nose'] = lnose_indices
    mapping['nostrils'] = nostril_indices
    mapping['outer_mouth'] = outermouth_indices
    mapping['inner_mouth'] = innermouth_indices
    mapping['jaw'] = jaw_indices

    return new_pcloud, mapping
def face_lfpw_29_to_face_lfpw_29(pcloud):
    r"""
    Apply the 29-point semantic labels from the original LFPW dataset.

    The semantic labels applied are as follows:

      - chin
      - left_eye
      - right_eye
      - left_eyebrow
      - right_eyebrow
      - mouth
      - nose

    References
    ----------
    .. [1] http://homes.cs.washington.edu/~neeraj/databases/lfpw/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 29
    validate_input(pcloud, n_expected_points)

    chin_indices = np.array([28])
    outer_leye_indices = np.array([8, 12, 10, 13])
    pupil_leye_indices = np.array([16])
    outer_reye_indices = np.array([11, 14, 9, 15])
    pupil_reye_indices = np.array([17])
    lbrow_indices = np.array([0, 4, 2, 5])
    rbrow_indices = np.array([3, 6, 1, 7])
    outer_mouth_indices = np.array([22, 24, 23, 27])
    inner_mouth_indices = np.array([22, 25, 23, 26])
    nose_indices = np.array([18, 20, 19, 21])

    chin_connectivity = connectivity_from_array(chin_indices, close_loop=True)
    leye_connectivity = connectivity_from_array(outer_leye_indices,
                                                close_loop=True)
    reye_connectivity = connectivity_from_array(outer_reye_indices,
                                                close_loop=True)
    lbrow_connectivity = connectivity_from_array(lbrow_indices,
                                                 close_loop=True)
    rbrow_connectivity = connectivity_from_array(rbrow_indices,
                                                 close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])
    nose_connectivity = connectivity_from_array(nose_indices, close_loop=True)

    all_connectivity = np.vstack([
        chin_connectivity, leye_connectivity, reye_connectivity,
        lbrow_connectivity, rbrow_connectivity, mouth_connectivity,
        nose_connectivity])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['chin'] = chin_indices
    mapping['left_eye'] = np.hstack((outer_leye_indices, pupil_leye_indices))
    mapping['right_eye'] = np.hstack((outer_reye_indices, pupil_reye_indices))
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['mouth'] = np.hstack((outer_mouth_indices, inner_mouth_indices))
    mapping['nose'] = nose_indices

    return new_pcloud, mapping
def face_ibug_68_to_face_ibug_49(pcloud):
    r"""
    Apply the IBUG 49-point semantic labels, but removing the annotations
    corresponding to the jaw region and the 2 describing the inner mouth
    corners.

    The semantic labels applied are as follows:

      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth

    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 68
    validate_input(pcloud, n_expected_points)

    lbrow_indices = np.arange(0, 5)
    rbrow_indices = np.arange(5, 10)
    upper_nose_indices = np.arange(10, 14)
    lower_nose_indices = np.arange(14, 19)
    leye_indices = np.arange(19, 25)
    reye_indices = np.arange(25, 31)
    outer_mouth_indices = np.arange(31, 43)
    inner_mouth_indices = np.hstack((31, np.arange(43, 46),
                                     37, np.arange(46, 49)))

    lbrow_connectivity = connectivity_from_array(lbrow_indices)
    rbrow_connectivity = connectivity_from_array(rbrow_indices)
    nose_connectivity = np.vstack([
        connectivity_from_array(upper_nose_indices),
        connectivity_from_array(lower_nose_indices)])
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])

    all_connectivity = np.vstack([
        lbrow_connectivity, rbrow_connectivity, nose_connectivity,
        leye_connectivity, reye_connectivity, mouth_connectivity])

    # Ignore the two inner mouth points
    ind = np.hstack((np.arange(17, 60), np.arange(61, 64), np.arange(65, 68)))
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['nose'] = np.hstack([upper_nose_indices, lower_nose_indices])
    mapping['left_eye'] = leye_indices
    mapping['right_eye'] = reye_indices
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
示例#50
0
import numpy as np
from numpy.testing import assert_allclose

from menpo.image import Image
from menpo.image.rasterize import rasterize_landmarks_2d
from menpo.shape import PointCloud, PointUndirectedGraph

centre = PointCloud([[4.5, 4.5]])
line = PointUndirectedGraph(np.array([[2, 4.5], [8, 4.5]]),
                            adjacency_matrix=np.array([[0, 1], [1, 0]]))


def test_rasterize_matplotlib_basic():
    im = Image.init_blank([11, 11], fill=0, n_channels=1)
    im.landmarks["test"] = centre
    new_im = rasterize_landmarks_2d(
        im,
        group="test",
        render_lines=False,
        marker_style=".",
        marker_face_colour="r",
        marker_size=2,
        marker_edge_width=0,
        backend="matplotlib",
    )
    assert new_im.n_channels == 3
    assert new_im.shape == (11, 11)
    assert_allclose(new_im.pixels[:, 5, 5], [255, 0, 0])


def test_rasterize_pillow_basic():