示例#1
0
def test_basic_2d_similarity():
    linear_component = np.array([[2, -6],
                                 [6, 2]])
    translation_component = np.array([7, -8])
    h_matrix = np.eye(3, 3)
    h_matrix[:-1, :-1] = linear_component
    h_matrix[:-1, -1] = translation_component
    similarity = SimilarityTransform(h_matrix)
    x = np.array([[0, 1],
                  [1, 1],
                  [-1, -5],
                  [3, -5]])
    # transform x explicitly
    solution = np.dot(x, linear_component.T) + translation_component
    # transform x using the affine transform
    result = similarity.apply(x)
    # check that both answers are equivalent
    assert_allclose(solution, result)
    # create several copies of x
    x_copies = np.array([x, x, x, x, x, x, x, x])
    # transform all of copies at once using the affine transform
    results = similarity.apply(x_copies)
    # check that all copies have been transformed correctly
    for r in results:
        assert_allclose(solution, r)
示例#2
0
def test_similarity_2d_from_vector():
    params = np.array([0.2, 0.1, 1, 2])
    h**o = np.array([[params[0] + 1, -params[1], params[2]],
                     [params[1], params[0] + 1, params[3]],
                     [0, 0, 1]])

    sim = SimilarityTransform.identity(2).from_vector(params)

    assert_equal(sim.h_matrix, h**o)
示例#3
0
def test_align_2d_similarity():
    linear_component = np.array([[2, -6],
                                 [6, 2]])
    translation_component = np.array([7, -8])
    h_matrix = np.eye(3, 3)
    h_matrix[:-1, :-1] = linear_component
    h_matrix[:-1, -1] = translation_component
    similarity = SimilarityTransform(h_matrix)
    source = PointCloud(np.array([[0, 1],
                                  [1, 1],
                                  [-1, -5],
                                  [3, -5]]))
    target = similarity.apply(source)
    # estimate the transform from source and target
    estimate = SimilarityTransform.align(source, target)
    # check the estimates is correct
    assert_allclose(similarity.h_matrix,
                    estimate.h_matrix)
示例#4
0
def test_similarity_jacobian_2d():
    params = np.ones(4)
    t = SimilarityTransform.identity(2).from_vector(params)
    explicit_pixel_locations = np.array(
        [[0, 0],
        [0, 1],
        [0, 2],
        [1, 0],
        [1, 1],
        [1, 2]])
    dW_dp = t.jacobian(explicit_pixel_locations)
    assert_equal(dW_dp, sim_jac_solution2d)
示例#5
0
文件: functions.py 项目: ikassi/menpo
def noisy_align(source, target, noise_std=0.05, rotation=False):
    r"""
    Constructs and perturbs the optimal similarity transform between source
    to the target by adding white noise to its parameters.

    Parameters
    ----------
    source: :class:`menpo.shape.PointCloud`
        The source pointcloud instance used in the alignment

    target: :class:`menpo.shape.PointCloud`
        The target pointcloud instance used in the alignment

    noise_std: float
        The standard deviation of the white noise

        Default: 0.05
    rotation: boolean
        If False the second parameter of the SimilarityTransform,
        which captures captures inplane rotations, is set to 0.

        Default:False

    Returns
    -------
    noisy_transform : :class: `menpo.transform.SimilarityTransform`
        The noisy Similarity Transform
    """
    transform = SimilarityTransform.align(source, target)
    parameters = transform.as_vector()
    if not rotation:
        parameters[1] = 0
    parameter_range = np.hstack((parameters[:2], target.range()))
    noise = (parameter_range * noise_std *
             np.random.randn(transform.n_parameters))
    parameters += noise
    return SimilarityTransform.identity(source.n_dims).from_vector_inplace(
        parameters)
示例#6
0
def test_similarity_identity_3d():
    assert_allclose(SimilarityTransform.identity(3).h_matrix,
                    np.eye(4))
示例#7
0
def test_similarity_2d_points_raises_dimensionalityerror():
    params = np.ones(4)
    t = SimilarityTransform.identity(2).from_vector(params)
    t.jacobian(np.ones([2, 3]))
示例#8
0
def test_similarity_jacobian_3d_raises_dimensionalityerror():
    t = SimilarityTransform(np.eye(4))
    t.jacobian(np.ones([2, 3]))