示例#1
0
    def _regression_data(self, images, gt_shapes, perturbed_shapes,
                         verbose=False):
        r"""
        Method that generates the regression data : features and delta_ps.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images.

        gt_shapes : :map:`PointCloud` list
            List of the ground truth shapes that correspond to the images.

        perturbed_shapes : :map:`PointCloud` list
            List of the perturbed shapes in order to regress.

        verbose : `boolean`, optional
            If ``True``, the progress is printed.
        """
        if verbose:
            print_dynamic('- Generating regression data')

        n_images = len(images)
        features = []
        delta_ps = []
        for j, (i, s, p_shape) in enumerate(zip(images, gt_shapes,
                                                perturbed_shapes)):
            if verbose:
                print_dynamic('- Generating regression data - {}'.format(
                    progress_bar_str((j + 1.) / n_images, show_bar=False)))
            for ps in p_shape:
                features.append(self.features(i, ps))
                delta_ps.append(self.delta_ps(s, ps))
        return np.asarray(features), np.asarray(delta_ps)
示例#2
0
def apply_pyramid_on_images(generators, n_levels, verbose=False):
    r"""
    Exhausts the pyramid generators verbosely
    """
    all_images = []
    for j in range(n_levels):

        if verbose:
            level_str = '- Apply pyramid: '
            if n_levels > 1:
                level_str = '- Apply pyramid: [Level {} - '.format(j + 1)

        level_images = []
        for c, g in enumerate(generators):
            if verbose:
                print_dynamic(
                    '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
            level_images.append(next(g))
        all_images.append(level_images)
    if verbose:
        print_dynamic('- Apply pyramid: Done\n')
    return all_images
示例#3
0
def apply_pyramid_on_images(generators, n_levels, verbose=False):
    r"""
    Exhausts the pyramid generators verbosely
    """
    all_images = []
    for j in range(n_levels):

        if verbose:
            level_str = '- Apply pyramid: '
            if n_levels > 1:
                level_str = '- Apply pyramid: [Level {} - '.format(j + 1)

        level_images = []
        for c, g in enumerate(generators):
            if verbose:
                print_dynamic(
                    '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
            level_images.append(next(g))
        all_images.append(level_images)
    if verbose:
        print_dynamic('- Apply pyramid: Done\n')
    return all_images
示例#4
0
def _get_relative_locations(shapes, graph, level_str, verbose):
    r"""
    returns numpy.array of size 2 x n_images x n_edges
    """
    # convert given shapes to point graphs
    if isinstance(graph, Tree):
        point_graphs = [PointTree(shape.points, graph.adjacency_array,
                                  graph.root_vertex) for shape in shapes]
    else:
        point_graphs = [PointDirectedGraph(shape.points, graph.adjacency_array)
                        for shape in shapes]

    # initialize an output numpy array
    rel_loc_array = np.empty((2, graph.n_edges, len(point_graphs)))

    # get relative locations
    for c, pt in enumerate(point_graphs):
        # print progress
        if verbose:
            print_dynamic('{}Computing relative locations from '
                          'shapes - {}'.format(
                          level_str,
                          progress_bar_str(float(c + 1) / len(point_graphs),
                                           show_bar=False)))

        # get relative locations from this shape
        rl = pt.relative_locations()

        # store
        rel_loc_array[..., c] = rl.T

    # rollaxis and return
    return np.rollaxis(rel_loc_array, 2, 1)
示例#5
0
文件: base.py 项目: kod3r/menpo
def _import_glob_generator(
    pattern,
    extension_map,
    max_assets=None,
    has_landmarks=False,
    landmark_resolver=None,
    importer_kwargs=None,
    verbose=False,
):
    filepaths = list(glob_with_suffix(pattern, extension_map))
    if max_assets:
        filepaths = filepaths[:max_assets]
    n_files = len(filepaths)
    if n_files == 0:
        raise ValueError("The glob {} yields no assets".format(pattern))
    for i, asset in enumerate(
        _multi_import_generator(
            filepaths,
            extension_map,
            has_landmarks=has_landmarks,
            landmark_resolver=landmark_resolver,
            importer_kwargs=importer_kwargs,
        )
    ):
        if verbose:
            print_dynamic(
                "- Loading {} assets: {}".format(n_files, progress_bar_str(float(i + 1) / n_files, show_bar=True))
            )
        yield asset
示例#6
0
def _build_appearance_model_sparse(all_patches_array, graph, patch_shape,
                                   n_channels, n_appearance_parameters,
                                   level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'edge'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=1)

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # initialize block sparse covariance matrix
    all_cov = lil_matrix((graph.n_vertices * patch_len,
                          graph.n_vertices * patch_len))

    # compute covariance matrix for each edge
    for e in range(graph.n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per edge - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / graph.n_edges,
                                           show_bar=False)))

        # edge vertices
        v1 = np.min(graph.adjacency_array[e, :])
        v2 = np.max(graph.adjacency_array[e, :])

        # find indices in target covariance matrix
        v1_from = v1 * patch_len
        v1_to = (v1 + 1) * patch_len
        v2_from = v2 * patch_len
        v2_to = (v2 + 1) * patch_len

        # extract data
        edge_data = np.concatenate((all_patches_array[v1_from:v1_to, :],
                                    all_patches_array[v2_from:v2_to, :]))

        # compute covariance inverse
        icov = _covariance_matrix_inverse(np.cov(edge_data),
                                          n_appearance_parameters)

        # v1, v2
        all_cov[v1_from:v1_to, v2_from:v2_to] += icov[:patch_len, patch_len::]

        # v2, v1
        all_cov[v2_from:v2_to, v1_from:v1_to] += icov[patch_len::, :patch_len]

        # v1, v1
        all_cov[v1_from:v1_to, v1_from:v1_to] += icov[:patch_len, :patch_len]

        # v2, v2
        all_cov[v2_from:v2_to, v2_from:v2_to] += icov[patch_len::, patch_len::]

    return app_mean, all_cov.tocsr()
示例#7
0
def _build_appearance_model_sparse(all_patches_array, graph, patch_shape,
                                   n_channels, n_appearance_parameters,
                                   level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'edge'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=1)

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # initialize block sparse covariance matrix
    all_cov = lil_matrix(
        (graph.n_vertices * patch_len, graph.n_vertices * patch_len))

    # compute covariance matrix for each edge
    for e in range(graph.n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per edge - {}'.format(
                              level_str,
                              progress_bar_str(float(e + 1) / graph.n_edges,
                                               show_bar=False)))

        # edge vertices
        v1 = np.min(graph.adjacency_array[e, :])
        v2 = np.max(graph.adjacency_array[e, :])

        # find indices in target covariance matrix
        v1_from = v1 * patch_len
        v1_to = (v1 + 1) * patch_len
        v2_from = v2 * patch_len
        v2_to = (v2 + 1) * patch_len

        # extract data
        edge_data = np.concatenate((all_patches_array[v1_from:v1_to, :],
                                    all_patches_array[v2_from:v2_to, :]))

        # compute covariance inverse
        icov = _covariance_matrix_inverse(np.cov(edge_data),
                                          n_appearance_parameters)

        # v1, v2
        all_cov[v1_from:v1_to, v2_from:v2_to] += icov[:patch_len, patch_len::]

        # v2, v1
        all_cov[v2_from:v2_to, v1_from:v1_to] += icov[patch_len::, :patch_len]

        # v1, v1
        all_cov[v1_from:v1_to, v1_from:v1_to] += icov[:patch_len, :patch_len]

        # v2, v2
        all_cov[v2_from:v2_to, v2_from:v2_to] += icov[patch_len::, patch_len::]

    return app_mean, all_cov.tocsr()
示例#8
0
def _build_deformation_model(graph, relative_locations, level_str, verbose):
    # build deformation model
    if verbose:
        print_dynamic('{}Training deformation distribution per '
                      'graph edge'.format(level_str))
    def_len = 2 * graph.n_vertices
    def_cov = np.zeros((def_len, def_len))
    for e in range(graph.n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Training deformation distribution '
                          'per edge - {}'.format(
                              level_str,
                              progress_bar_str(float(e + 1) / graph.n_edges,
                                               show_bar=False)))

        # get vertices adjacent to edge
        parent = graph.adjacency_array[e, 0]
        child = graph.adjacency_array[e, 1]

        # compute covariance matrix
        edge_cov = np.linalg.inv(np.cov(relative_locations[..., e]))

        # store its values
        s1 = edge_cov[0, 0]
        s2 = edge_cov[1, 1]
        s3 = 2 * edge_cov[0, 1]

        # Fill the covariance matrix matrix
        # get indices
        p1 = 2 * parent
        p2 = 2 * parent + 1
        c1 = 2 * child
        c2 = 2 * child + 1

        # up-left block
        def_cov[p1, p1] += s1
        def_cov[p2, p2] += s2
        def_cov[p2, p1] += s3

        # up-right block
        def_cov[p1, c1] = -s1
        def_cov[p2, c2] = -s2
        def_cov[p1, c2] = -s3 / 2
        def_cov[p2, c1] = -s3 / 2

        # down-left block
        def_cov[c1, p1] = -s1
        def_cov[c2, p2] = -s2
        def_cov[c1, p2] = -s3 / 2
        def_cov[c2, p1] = -s3 / 2

        # down-right block
        def_cov[c1, c1] += s1
        def_cov[c2, c2] += s2
        def_cov[c1, c2] += s3

    return def_cov
示例#9
0
def _build_deformation_model(graph, relative_locations, level_str, verbose):
    # build deformation model
    if verbose:
        print_dynamic('{}Training deformation distribution per '
                      'graph edge'.format(level_str))
    def_len = 2 * graph.n_vertices
    def_cov = np.zeros((def_len, def_len))
    for e in range(graph.n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Training deformation distribution '
                          'per edge - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / graph.n_edges,
                                           show_bar=False)))

        # get vertices adjacent to edge
        parent = graph.adjacency_array[e, 0]
        child = graph.adjacency_array[e, 1]

        # compute covariance matrix
        edge_cov = np.linalg.inv(np.cov(relative_locations[..., e]))

        # store its values
        s1 = edge_cov[0, 0]
        s2 = edge_cov[1, 1]
        s3 = 2 * edge_cov[0, 1]

        # Fill the covariance matrix matrix
        # get indices
        p1 = 2 * parent
        p2 = 2 * parent + 1
        c1 = 2 * child
        c2 = 2 * child + 1

        # up-left block
        def_cov[p1, p1] += s1
        def_cov[p2, p2] += s2
        def_cov[p2, p1] += s3

        # up-right block
        def_cov[p1, c1] = - s1
        def_cov[p2, c2] = - s2
        def_cov[p1, c2] = - s3 / 2
        def_cov[p2, c1] = - s3 / 2

        # down-left block
        def_cov[c1, p1] = - s1
        def_cov[c2, p2] = - s2
        def_cov[c1, p2] = - s3 / 2
        def_cov[c2, p1] = - s3 / 2

        # down-right block
        def_cov[c1, c1] += s1
        def_cov[c2, c2] += s2
        def_cov[c1, c2] += s3

    return def_cov
示例#10
0
文件: builder.py 项目: yymath/menpo
    def _create_pyramid(cls, images, n_levels, downscale, pyramid_on_features,
                        feature_type, verbose=False):
        r"""
        Function that creates a generator function for Gaussian pyramid. The
        pyramid can be created either on the feature space or the original
        (intensities) space.

        Parameters
        ----------
        images: list of :class:`menpo.image.Image`
            The set of landmarked images from which to build the AAM.
        n_levels: int
            The number of multi-resolution pyramidal levels to be used.
        downscale: float
            The downscale factor that will be used to create the different
            pyramidal levels.
        pyramid_on_features: boolean
            If True, the features are extracted at the highest level and the
            pyramid is created on the feature images.
            If False, the pyramid is created on the original (intensities)
            space.
        feature_type: list of size 1 with str or function/closure or None
            The feature type to be used in case pyramid_on_features is enabled.
        verbose: bool, Optional
            Flag that controls information and progress printing.

            Default: False

        Returns
        -------
        generator: function
            The generator function of the Gaussian pyramid.
        """
        if pyramid_on_features:
            # compute features at highest level
            feature_images = []
            for c, i in enumerate(images):
                if verbose:
                    print_dynamic('- Computing feature space: {}'.format(
                        progress_bar_str((c + 1.) / len(images),
                                         show_bar=False)))
                feature_images.append(compute_features(i, feature_type[0]))
            if verbose:
                print_dynamic('- Computing feature space: Done\n')

            # create pyramid on feature_images
            generator = [i.gaussian_pyramid(n_levels=n_levels,
                                            downscale=downscale)
                         for i in feature_images]
        else:
            # create pyramid on intensities images
            # features will be computed per level
            generator = [i.gaussian_pyramid(n_levels=n_levels,
                                            downscale=downscale)
                         for i in images]
        return generator
示例#11
0
 def _scale_images(cls, images, s, level_str, verbose):
     scaled_images = []
     for c, i in enumerate(images):
         if verbose:
             print_dynamic(
                 '- Scaling features: {}'.format(
                     level_str, progress_bar_str((c + 1.) / len(images),
                                                 show_bar=False)))
         scaled_images.append(i.rescale(s))
     return scaled_images
示例#12
0
 def _scale_images(cls, images, s, level_str, verbose):
     scaled_images = []
     for c, i in enumerate(images):
         if verbose:
             print_dynamic(
                 '{}Scaling features: {}'.format(
                     level_str, progress_bar_str((c + 1.) / len(images),
                                                 show_bar=False)))
         scaled_images.append(i.rescale(s))
     return scaled_images
示例#13
0
    def _compute_features(self, images, level_str, verbose):
        feature_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic(
                    '{}Computing feature space: {}'.format(
                        level_str, progress_bar_str((c + 1.) / len(images),
                                                    show_bar=False)))
            if self.features:
                i = self.features(i)
            feature_images.append(i)

        return feature_images
示例#14
0
    def _compute_features(self, images, level_str, verbose):
        feature_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic(
                    '- Computing feature space: {}'.format(
                        level_str, progress_bar_str((c + 1.) / len(images),
                                                    show_bar=False)))
            if self.features:
                i = self.features(i)
            feature_images.append(i)

        return feature_images
示例#15
0
 def _normalize_images(self, images, group, label, ref_shape, verbose):
     # normalize the scaling of all images wrt the reference_shape size
     norm_images = []
     for c, i in enumerate(images):
         if verbose:
             print_dynamic('- Normalizing images size: {}'.format(
                 progress_bar_str((c + 1.) / len(images), show_bar=False)))
         i = i.rescale_to_reference_shape(ref_shape, group=group,
                                          label=label)
         if self.sigma:
             i.pixels = fsmooth(i.pixels, self.sigma)
         norm_images.append(i)
     return norm_images
示例#16
0
 def _normalize_images(self, images, group, label, ref_shape, verbose):
     # normalize the scaling of all images wrt the reference_shape size
     norm_images = []
     for c, i in enumerate(images):
         if verbose:
             print_dynamic('- Normalizing images size: {}'.format(
                 progress_bar_str((c + 1.) / len(images), show_bar=False)))
         i = rescale_to_reference_shape(i, ref_shape, group=group,
                                          label=label)
         if self.sigma:
             i.pixels = fsmooth(i.pixels, self.sigma)
         norm_images.append(i)
     return norm_images
示例#17
0
def _compute_minimum_spanning_tree(shapes, root_vertex, level_str, verbose):
    # initialize edges and weights matrix
    n_vertices = shapes[0].n_points
    n_edges = nchoosek(n_vertices, 2)
    weights = np.zeros((n_vertices, n_vertices))
    edges = np.empty((n_edges, 2), dtype=np.int32)

    # fill edges and weights
    e = -1
    for i in range(n_vertices - 1):
        for j in range(i + 1, n_vertices, 1):
            # edge counter
            e += 1

            # print progress
            if verbose:
                print_dynamic(
                    '{}Computing complete graph`s weights - {}'.format(
                        level_str,
                        progress_bar_str(float(e + 1) / n_edges,
                                         show_bar=False)))

            # fill in edges
            edges[e, 0] = i
            edges[e, 1] = j

            # create data matrix of edge
            diffs_x = [s.points[i, 0] - s.points[j, 0] for s in shapes]
            diffs_y = [s.points[i, 1] - s.points[j, 1] for s in shapes]
            coords = np.array([diffs_x, diffs_y])

            # compute mean
            m = np.mean(coords, axis=1)

            # compute covariance
            c = np.cov(coords)

            # get weight
            for im in range(len(shapes)):
                weights[i, j] += -np.log(
                    multivariate_normal.pdf(coords[:, im], mean=m, cov=c))
            weights[j, i] = weights[i, j]

    # create undirected graph
    complete_graph = UndirectedGraph(edges)

    if verbose:
        print_dynamic('{}Minimum spanning graph computed.\n'.format(level_str))

    # compute minimum spanning graph
    return complete_graph.minimum_spanning_tree(weights, root_vertex)
示例#18
0
def _compute_minimum_spanning_tree(shapes, root_vertex, level_str, verbose):
    # initialize edges and weights matrix
    n_vertices = shapes[0].n_points
    n_edges = nchoosek(n_vertices, 2)
    weights = np.zeros((n_vertices, n_vertices))
    edges = np.empty((n_edges, 2), dtype=np.int32)

    # fill edges and weights
    e = -1
    for i in range(n_vertices-1):
        for j in range(i+1, n_vertices, 1):
            # edge counter
            e += 1

            # print progress
            if verbose:
                print_dynamic('{}Computing complete graph`s weights - {}'.format(
                    level_str,
                    progress_bar_str(float(e + 1) / n_edges,
                                     show_bar=False)))

            # fill in edges
            edges[e, 0] = i
            edges[e, 1] = j

            # create data matrix of edge
            diffs_x = [s.points[i, 0] - s.points[j, 0] for s in shapes]
            diffs_y = [s.points[i, 1] - s.points[j, 1] for s in shapes]
            coords = np.array([diffs_x, diffs_y])

            # compute mean
            m = np.mean(coords, axis=1)

            # compute covariance
            c = np.cov(coords)

            # get weight
            for im in range(len(shapes)):
                weights[i, j] += -np.log(multivariate_normal.pdf(coords[:, im],
                                                                 mean=m, cov=c))
            weights[j, i] = weights[i, j]

    # create undirected graph
    complete_graph = UndirectedGraph(edges)

    if verbose:
        print_dynamic('{}Minimum spanning graph computed.\n'.format(level_str))

    # compute minimum spanning graph
    return complete_graph.minimum_spanning_tree(weights, root_vertex)
示例#19
0
    def _normalization_wrt_reference_shape(cls,
                                           images,
                                           group,
                                           label,
                                           reference_shape,
                                           verbose=False):
        r"""
        Normalizes the images sizes with respect to the reference
        shape (mean shape) scaling. This step is essential before building a
        deformable model.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images from which to build the model.

        group : `string`
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.

        label : `string`
            The label of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.

        reference_shape : :map:`PointCloud`
            The reference shape that is used to resize all training images to
            a consistent object size.

        verbose: bool, optional
            Flag that controls information and progress printing.

        Returns
        -------
        normalized_images : :map:`MaskedImage` list
            A list with the normalized images.
        """
        normalized_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic('- Normalizing images size: {}'.format(
                    progress_bar_str((c + 1.) / len(images), show_bar=False)))
            normalized_images.append(
                i.rescale_to_reference_shape(reference_shape,
                                             group=group,
                                             label=label))

        if verbose:
            print_dynamic('- Normalizing images size: Done\n')
        return normalized_images
示例#20
0
    def _warp_images(self, images, shapes, _, level_str, verbose):

        # extract parts
        parts_images = []
        for c, (i, s) in enumerate(zip(images, shapes)):
            if verbose:
                print_dynamic('{}Warping images - {}'.format(
                    level_str,
                    progress_bar_str(float(c + 1) / len(images),
                                     show_bar=False)))
            parts_image = Image(i.extract_patches(
                s, patch_size=self.parts_shape, as_single_array=True))
            parts_images.append(parts_image)

        return parts_images
示例#21
0
    def _warp_images(self, images, shapes, _, level_str, verbose):

        # extract parts
        parts_images = []
        for c, (i, s) in enumerate(zip(images, shapes)):
            if verbose:
                print_dynamic('{}Warping images - {}'.format(
                    level_str,
                    progress_bar_str(float(c + 1) / len(images),
                                     show_bar=False)))
            parts_image = build_parts_image(
                i, s, self.parts_shape, normalize_parts=self.normalize_parts)
            parts_images.append(parts_image)

        return parts_images
示例#22
0
文件: pca.py 项目: haolinwei/menpo
    def __init__(self,
                 samples,
                 centre=True,
                 bias=False,
                 verbose=False,
                 n_samples=None):
        # get the first element as the template and use it to configure the
        # data matrix
        if n_samples is None:
            # samples is a list
            n_samples = len(samples)
            template = samples[0]
            samples = samples[1:]
        else:
            # samples is an iterator
            template = next(samples)
        n_features = template.n_parameters
        template_vector = template.as_vector()
        data = np.zeros((n_samples, n_features), dtype=template_vector.dtype)
        # now we can fill in the first element from the template
        data[0] = template_vector
        del template_vector
        if verbose:
            print('Allocated data matrix {:.2f}'
                  'GB'.format(data.nbytes / 2**30))
        # 1-based as we have the template vector set already
        for i, sample in enumerate(samples, 1):
            if i >= n_samples:
                break
            if verbose:
                print_dynamic(
                    'Building data matrix from {} samples - {}'.format(
                        n_samples,
                        progress_bar_str(float(i + 1) / n_samples,
                                         show_bar=True)))
            data[i] = sample.as_vector()

        # compute pca
        e_vectors, e_values, mean = principal_component_decomposition(
            data, whiten=False, centre=centre, bias=bias, inplace=True)

        super(PCAModel, self).__init__(e_vectors, mean, template)
        self.centred = centre
        self.biased = bias
        self._eigenvalues = e_values
        # start the active components as all the components
        self._n_active_components = int(self.n_components)
        self._trimmed_eigenvalues = None
示例#23
0
    def _warp_images(self, images, shapes, _, level_str, verbose):

        # extract parts
        parts_images = []
        for c, (i, s) in enumerate(zip(images, shapes)):
            if verbose:
                print_dynamic('{}Warping images - {}'.format(
                    level_str,
                    progress_bar_str(float(c + 1) / len(images),
                                     show_bar=False)))
            parts_image = build_parts_image(
                i, s, parts_shape=self.parts_shape,
                normalize_parts=self.normalize_parts)
            parts_images.append(parts_image)

        return parts_images
示例#24
0
def compute_sparse_covariance(X, adjacency_array, patch_len, level_str,
                              verbose):
    n_features, n_samples = X.shape
    n_edges = adjacency_array.shape[0]

    # initialize block sparse covariance matrix
    all_cov = np.zeros((n_features, n_features))

    # compute covariance matrix for each edge
    for e in range(n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Distribution per edge - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / n_edges,
                                           show_bar=False)))

        # edge vertices
        v1 = np.min(adjacency_array[e, :])
        v2 = np.max(adjacency_array[e, :])

        # find indices in target covariance matrix
        v1_from = v1 * patch_len
        v1_to = (v1 + 1) * patch_len
        v2_from = v2 * patch_len
        v2_to = (v2 + 1) * patch_len

        # extract data
        edge_data = np.concatenate((X[v1_from:v1_to, :], X[v2_from:v2_to, :]))

        # compute covariance inverse
        icov = np.linalg.inv(np.cov(edge_data))

        # v1, v2
        all_cov[v1_from:v1_to, v2_from:v2_to] += icov[:patch_len, patch_len::]

        # v2, v1
        all_cov[v2_from:v2_to, v1_from:v1_to] += icov[patch_len::, :patch_len]

        # v1, v1
        all_cov[v1_from:v1_to, v1_from:v1_to] += icov[:patch_len, :patch_len]

        # v2, v2
        all_cov[v2_from:v2_to, v2_from:v2_to] += icov[patch_len::, patch_len::]

    return np.linalg.inv(all_cov)
示例#25
0
    def _normalization_wrt_reference_shape(cls, images, group, label,
                                           reference_shape, verbose=False):
        r"""
        Normalizes the images sizes with respect to the reference
        shape (mean shape) scaling. This step is essential before building a
        deformable model.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images from which to build the model.

        group : `string`
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.

        label : `string`
            The label of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.

        reference_shape : :map:`PointCloud`
            The reference shape that is used to resize all training images to
            a consistent object size.

        verbose: bool, optional
            Flag that controls information and progress printing.

        Returns
        -------
        normalized_images : :map:`MaskedImage` list
            A list with the normalized images.
        """
        normalized_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic('- Normalizing images size: {}'.format(
                    progress_bar_str((c + 1.) / len(images),
                                     show_bar=False)))
            normalized_images.append(i.rescale_to_reference_shape(
                reference_shape, group=group, label=label))

        if verbose:
            print_dynamic('- Normalizing images size: Done\n')
        return normalized_images
示例#26
0
def _build_appearance_model_block_diagonal(all_patches_array, n_points,
                                           patch_shape, n_channels,
                                           n_appearance_parameters, level_str,
                                           verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'patch'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=-1)

    # number of images
    n_images = all_patches_array.shape[-1]

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # compute covariance matrix for each patch
    all_cov = []
    for e in range(n_points):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per patch - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / n_points,
                                           show_bar=False)))
        # select patches and vectorize
        patches_vector = all_patches_array[e, ...].reshape(-1, n_images)

        # compute covariance
        cov_mat = np.cov(patches_vector)

        # compute covariance inverse
        inv_cov_mat = _covariance_matrix_inverse(cov_mat,
                                                 n_appearance_parameters)

        # store covariance
        all_cov.append(inv_cov_mat)

    # create final sparse covariance matrix
    return app_mean, block_diag(all_cov).tocsr()
示例#27
0
 def _warp_images(self, images, shapes, ref_shape, level_str, verbose):
     # compute transforms
     ref_frame = self._build_reference_frame(ref_shape)
     # warp images to reference frame
     warped_images = []
     for c, (i, s) in enumerate(zip(images, shapes)):
         if verbose:
             print_dynamic('{}Warping images - {}'.format(
                 level_str,
                 progress_bar_str(float(c + 1) / len(images),
                                  show_bar=False)))
         # compute transforms
         t = self.transform(ref_frame.landmarks['source'].lms, s)
         # warp images
         warped_i = i.warp_to_mask(ref_frame.mask, t)
         # attach reference frame landmarks to images
         warped_i.landmarks['source'] = ref_frame.landmarks['source']
         warped_images.append(warped_i)
     return warped_images
示例#28
0
文件: pca.py 项目: jacksoncsy/menpo
    def __init__(self, samples, centre=True, bias=False, verbose=False,
                 n_samples=None):
        # get the first element as the template and use it to configure the
        # data matrix
        if n_samples is None:
            # samples is a list
            n_samples = len(samples)
            template = samples[0]
            samples = samples[1:]
        else:
            # samples is an iterator
            template = next(samples)
        n_features = template.n_parameters
        template_vector = template.as_vector()
        data = np.zeros((n_samples, n_features), dtype=template_vector.dtype)
        # now we can fill in the first element from the template
        data[0] = template_vector
        del template_vector
        if verbose:
            print('Allocated data matrix {:.2f}'
                  'GB'.format(data.nbytes / 2 ** 30))
        # 1-based as we have the template vector set already
        for i, sample in enumerate(samples, 1):
            if i >= n_samples:
                break
            if verbose:
                print_dynamic(
                    'Building data matrix from {} samples - {}'.format(
                        n_samples,
                    progress_bar_str(float(i + 1) / n_samples, show_bar=True)))
            data[i] = sample.as_vector()

        # compute pca
        e_vectors, e_values, mean = principal_component_decomposition(
            data, whiten=False,  centre=centre, bias=bias, inplace=True)

        super(PCAModel, self).__init__(e_vectors, mean, template)
        self.centred = centre
        self.biased = bias
        self._eigenvalues = e_values
        # start the active components as all the components
        self._n_active_components = int(self.n_components)
        self._trimmed_eigenvalues = None
示例#29
0
 def _warp_images(self, images, shapes, ref_shape, level_str, verbose):
     # compute transforms
     ref_frame = self._build_reference_frame(ref_shape)
     # warp images to reference frame
     warped_images = []
     for c, (i, s) in enumerate(zip(images, shapes)):
         if verbose:
             print_dynamic('{}Warping images - {}'.format(
                 level_str,
                 progress_bar_str(float(c + 1) / len(images),
                                  show_bar=False)))
         # compute transforms
         t = self.transform(ref_frame.landmarks['source'].lms, s)
         # warp images
         warped_i = i.warp_to_mask(ref_frame.mask, t)
         # attach reference frame landmarks to images
         warped_i.landmarks['source'] = ref_frame.landmarks['source']
         warped_images.append(warped_i)
     return warped_images
示例#30
0
文件: base.py 项目: Amos-zq/menpo
def _import_glob_generator(pattern, extension_map, max_assets=None,
                           landmark_resolver=same_name,
                           landmark_ext_map=None, importer_kwargs=None,
                           verbose=False):
    filepaths = list(glob_with_suffix(pattern, extension_map))
    if max_assets:
        filepaths = filepaths[:max_assets]
    n_files = len(filepaths)
    if n_files == 0:
        raise ValueError('The glob {} yields no assets'.format(pattern))
    for i, asset in enumerate(_multi_import_generator(filepaths, extension_map,
                                         landmark_resolver=landmark_resolver,
                                         landmark_ext_map=landmark_ext_map,
                                         importer_kwargs=importer_kwargs)):
        if verbose:
            print_dynamic('- Loading {} assets: {}'.format(
                n_files, progress_bar_str(float(i + 1) / n_files,
                                          show_bar=True)))
        yield asset
示例#31
0
def _build_appearance_model_block_diagonal(all_patches_array, n_points,
                                           patch_shape, n_channels,
                                           n_appearance_parameters, level_str,
                                           verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'patch'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=1)

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # compute covariance matrix for each patch
    all_cov = []
    for e in range(n_points):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per patch - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / n_points,
                                           show_bar=False)))
        # find indices in target covariance matrix
        i_from = e * patch_len
        i_to = (e + 1) * patch_len

        # compute covariance
        cov_mat = np.cov(all_patches_array[i_from:i_to, :])

        # compute covariance inverse
        inv_cov_mat = _covariance_matrix_inverse(cov_mat,
                                                 n_appearance_parameters)

        # store covariance
        all_cov.append(inv_cov_mat)

    # create final sparse covariance matrix
    return app_mean, block_diag(all_cov).tocsr()
示例#32
0
文件: base.py 项目: csagonas/menpofit
def create_pyramid(images, n_levels, downscale, features, verbose=False):
    r"""
    Function that creates a generator function for Gaussian pyramid. The
    pyramid can be created either on the feature space or the original
    (intensities) space.

    Parameters
    ----------
    images: list of :map:`Image`
        The set of landmarked images from which to build the AAM.

    n_levels: int
        The number of multi-resolution pyramidal levels to be used.

    downscale: float
        The downscale factor that will be used to create the different
        pyramidal levels.

    features: ``callable`` ``[callable]``
        If a single callable, then the feature calculation will happen once
        followed by a gaussian pyramid. If a list of callables then a
        gaussian pyramid is generated with features extracted at each level
        (after downsizing and blurring).

    Returns
    -------
    list of generators :
        The generator function of the Gaussian pyramid.

    """
    will_take_a_while = is_pyramid_on_features(features)
    pyramids = []
    for i, img in enumerate(images):
        if will_take_a_while and verbose:
            print_dynamic(
                'Computing top level feature space - {}'.format(
                    progress_bar_str((i + 1.) / len(images),
                                     show_bar=False)))
        pyramids.append(pyramid_of_feature_images(n_levels, downscale,
                                                  features, img))
    return pyramids
示例#33
0
def _build_appearance_model_block_diagonal(all_patches_array, n_points,
                                           patch_shape, n_channels,
                                           n_appearance_parameters, level_str,
                                           verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'patch'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=1)

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # compute covariance matrix for each patch
    all_cov = []
    for e in range(n_points):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per patch - {}'.format(
                              level_str,
                              progress_bar_str(float(e + 1) / n_points,
                                               show_bar=False)))
        # find indices in target covariance matrix
        i_from = e * patch_len
        i_to = (e + 1) * patch_len

        # compute covariance
        cov_mat = np.cov(all_patches_array[i_from:i_to, :])

        # compute covariance inverse
        inv_cov_mat = _covariance_matrix_inverse(cov_mat,
                                                 n_appearance_parameters)

        # store covariance
        all_cov.append(inv_cov_mat)

    # create final sparse covariance matrix
    return app_mean, block_diag(all_cov).tocsr()
示例#34
0
def _build_appearance_model_block_diagonal(all_patches_array, n_points,
                                           patch_shape, n_channels,
                                           n_appearance_parameters, level_str,
                                           verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'patch'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=-1)

    # number of images
    n_images = all_patches_array.shape[-1]

    # compute covariance matrix for each patch
    all_cov = []
    for e in range(n_points):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per patch - {}'.format(
                              level_str,
                              progress_bar_str(float(e + 1) / n_points,
                                               show_bar=False)))
        # select patches and vectorize
        patches_vector = all_patches_array[e, ...].reshape(-1, n_images)

        # compute covariance
        cov_mat = np.cov(patches_vector)

        # compute covariance inverse
        inv_cov_mat = _covariance_matrix_inverse(cov_mat,
                                                 n_appearance_parameters)

        # store covariance
        all_cov.append(inv_cov_mat)

    # create final sparse covariance matrix
    return app_mean, block_diag(all_cov).tocsr()
示例#35
0
def create_pyramid(images, n_levels, downscale, features, verbose=False):
    r"""
    Function that creates a generator function for Gaussian pyramid. The
    pyramid can be created either on the feature space or the original
    (intensities) space.

    Parameters
    ----------
    images: list of :map:`Image`
        The set of landmarked images from which to build the AAM.

    n_levels: int
        The number of multi-resolution pyramidal levels to be used.

    downscale: float
        The downscale factor that will be used to create the different
        pyramidal levels.

    features: ``callable`` ``[callable]``
        If a single callable, then the feature calculation will happen once
        followed by a gaussian pyramid. If a list of callables then a
        gaussian pyramid is generated with features extracted at each level
        (after downsizing and blurring).

    Returns
    -------
    list of generators :
        The generator function of the Gaussian pyramid.

    """
    will_take_a_while = is_pyramid_on_features(features)
    pyramids = []
    for i, img in enumerate(images):
        if will_take_a_while and verbose:
            print_dynamic('Computing top level feature space - {}'.format(
                progress_bar_str((i + 1.) / len(images), show_bar=False)))
        pyramids.append(
            pyramid_of_feature_images(n_levels, downscale, features, img))
    return pyramids
示例#36
0
    def _regression_data(self,
                         images,
                         gt_shapes,
                         perturbed_shapes,
                         verbose=False):
        r"""
        Method that generates the regression data : features and delta_ps.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images.

        gt_shapes : :map:`PointCloud` list
            List of the ground truth shapes that correspond to the images.

        perturbed_shapes : :map:`PointCloud` list
            List of the perturbed shapes in order to regress.

        verbose : `boolean`, optional
            If ``True``, the progress is printed.
        """
        if verbose:
            print_dynamic('- Generating regression data')

        n_images = len(images)
        features = []
        delta_ps = []
        for j, (i, s,
                p_shape) in enumerate(zip(images, gt_shapes,
                                          perturbed_shapes)):
            if verbose:
                print_dynamic('- Generating regression data - {}'.format(
                    progress_bar_str((j + 1.) / n_images, show_bar=False)))
            for ps in p_shape:
                features.append(self.features(i, ps))
                delta_ps.append(self.delta_ps(s, ps))
        return np.asarray(features), np.asarray(delta_ps)
示例#37
0
def _get_relative_locations(shapes, graph, level_str, verbose):
    r"""
    returns numpy.array of size 2 x n_images x n_edges
    """
    # convert given shapes to point graphs
    if isinstance(graph, Tree):
        point_graphs = [
            PointTree(shape.points, graph.adjacency_array, graph.root_vertex)
            for shape in shapes
        ]
    else:
        point_graphs = [
            PointDirectedGraph(shape.points, graph.adjacency_array)
            for shape in shapes
        ]

    # initialize an output numpy array
    rel_loc_array = np.empty((2, graph.n_edges, len(point_graphs)))

    # get relative locations
    for c, pt in enumerate(point_graphs):
        # print progress
        if verbose:
            print_dynamic('{}Computing relative locations from '
                          'shapes - {}'.format(
                              level_str,
                              progress_bar_str(float(c + 1) /
                                               len(point_graphs),
                                               show_bar=False)))

        # get relative locations from this shape
        rl = pt.relative_locations()

        # store
        rel_loc_array[..., c] = rl.T

    # rollaxis and return
    return np.rollaxis(rel_loc_array, 2, 1)
示例#38
0
def _warp_images(images, group, label, patch_shape, as_vectors, level_str,
                 verbose):
    r"""
    returns numpy.array of size (68*16*16*36) x n_images
    """
    # find length of each patch and number of points
    n_points = images[0].landmarks[group][label].n_points
    patches_len = np.prod(patch_shape) * images[0].n_channels * n_points
    n_images = len(images)

    # initialize the output
    if as_vectors:
        all_patches = np.empty((patches_len, n_images))
    else:
        all_patches = []

    # extract parts
    for c, i in enumerate(images):
        # print progress
        if verbose:
            print_dynamic('{}Extracting patches from images - {}'.format(
                level_str,
                progress_bar_str(float(c + 1) / len(images), show_bar=False)))

        # extract patches from this image
        patches_image = build_patches_image(i,
                                            None,
                                            patch_shape,
                                            group=group,
                                            label=label)

        # store
        if as_vectors:
            all_patches[..., c] = vectorize_patches_image(patches_image)
        else:
            all_patches.append(patches_image)

    return all_patches
示例#39
0
def _warp_images(images, group, label, patch_shape, as_vectors, level_str,
                 verbose):
    r"""
    returns numpy.array of size (68*16*16*36) x n_images
    """
    # find length of each patch and number of points
    n_points = images[0].landmarks[group][label].n_points
    # TODO: introduce support for offsets
    patches_image_shape = (n_points, 1, images[0].n_channels) + patch_shape
    n_images = len(images)

    # initialize the output
    if as_vectors:
        all_patches = np.empty(patches_image_shape + (n_images,))
    else:
        all_patches = []

    # extract parts
    for c, i in enumerate(images):
        # print progress
        if verbose:
            print_dynamic('{}Extracting patches from images - {}'.format(
                level_str,
                progress_bar_str(float(c + 1) / len(images),
                                 show_bar=False)))

        # extract patches from this image
        patches_image = build_parts_image(
            i, i.landmarks[group][label], patch_shape)

        # store
        if as_vectors:
            all_patches[..., c] = patches_image.pixels
        else:
            all_patches.append(patches_image)

    return all_patches
示例#40
0
def _warp_images(images, group, label, patch_shape, as_vectors, level_str,
                 verbose):
    r"""
    returns numpy.array of size (68*16*16*36) x n_images
    """
    # find length of each patch and number of points
    n_points = images[0].landmarks[group][label].n_points
    # TODO: introduce support for offsets
    patches_image_shape = (n_points, 1, images[0].n_channels) + patch_shape
    n_images = len(images)

    # initialize the output
    if as_vectors:
        all_patches = np.empty(patches_image_shape + (n_images, ))
    else:
        all_patches = []

    # extract parts
    for c, i in enumerate(images):
        # print progress
        if verbose:
            print_dynamic('{}Extracting patches from images - {}'.format(
                level_str,
                progress_bar_str(float(c + 1) / len(images), show_bar=False)))

        # extract patches from this image
        patches_image = build_parts_image(i, i.landmarks[group][label],
                                          patch_shape)

        # store
        if as_vectors:
            all_patches[..., c] = patches_image.pixels
        else:
            all_patches.append(patches_image)

    return all_patches
示例#41
0
def _warp_images(images, group, label, patch_shape, as_vectors, level_str,
                 verbose):
    r"""
    returns numpy.array of size (68*16*16*36) x n_images
    """
    # find length of each patch and number of points
    n_points = images[0].landmarks[group][label].n_points
    patches_len = np.prod(patch_shape) * images[0].n_channels * n_points
    n_images = len(images)

    # initialize the output
    if as_vectors:
        all_patches = np.empty((patches_len, n_images))
    else:
        all_patches = []

    # extract parts
    for c, i in enumerate(images):
        # print progress
        if verbose:
            print_dynamic('{}Extracting patches from images - {}'.format(
                level_str,
                progress_bar_str(float(c + 1) / len(images),
                                 show_bar=False)))

        # extract patches from this image
        patches_image = build_patches_image(i, None, patch_shape, group=group,
                                            label=label)

        # store
        if as_vectors:
            all_patches[..., c] = vectorize_patches_image(patches_image)
        else:
            all_patches.append(patches_image)

    return all_patches
示例#42
0
文件: builder.py 项目: yymath/menpo
    def _normalization_wrt_reference_shape(cls, images, group, label,
                                           normalization_diagonal,
                                           interpolator, verbose=False):
        r"""
        Function that normalizes the images sizes with respect to the reference
        shape (mean shape) scaling. This step is essential before building a
        deformable model.

        The normalization includes:
        1) Computation of the reference shape as the mean shape of the images'
           landmarks.
        2) Scaling of the reference shape using the normalization_diagonal.
        3) Rescaling of all the images so that their shape's scale is in
           correspondence with the reference shape's scale.

        Parameters
        ----------
        images: list of :class:`menpo.image.MaskedImage`
            The set of landmarked images from which to build the model.
        group : string
            The key of the landmark set that should be used. If None,
            and if there is only one set of landmarks, this set will be used.
        label: string
            The label of of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.
        normalization_diagonal: int
            During building an AAM, all images are rescaled to ensure that the
            scale of their landmarks matches the scale of the mean shape.

            If int, it ensures that the mean shape is scaled so that the
            diagonal of the bounding box containing it matches the
            normalization_diagonal value.
            If None, the mean shape is not rescaled.

            Note that, because the reference frame is computed from the mean
            landmarks, this kwarg also specifies the diagonal length of the
            reference frame (provided that features computation does not change
            the image size).
        interpolator: string
            The interpolator that should be used to perform the warps.
        verbose: bool, Optional
            Flag that controls information and progress printing.

            Default: False

        Returns
        -------
        reference_shape : :map:`PointCloud`
            The reference shape that was used to resize all training images to
            a consistent object size.
        normalized_images : :map:`MaskedImage` list
            A list with the normalized images.
        """
        # the reference_shape is the mean shape of the images' landmarks
        if verbose:
            print_dynamic('- Computing reference shape')
        shapes = [i.landmarks[group][label] for i in images]
        reference_shape = mean_pointcloud(shapes)

        # fix the reference_shape's diagonal length if asked
        if normalization_diagonal:
            x, y = reference_shape.range()
            scale = normalization_diagonal / np.sqrt(x**2 + y**2)
            Scale(scale, reference_shape.n_dims).apply_inplace(reference_shape)

        # normalize the scaling of all images wrt the reference_shape size
        normalized_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic('- Normalizing images size: {}'.format(
                    progress_bar_str((c + 1.) / len(images),
                                     show_bar=False)))
            normalized_images.append(i.rescale_to_reference_shape(
                reference_shape, group=group, label=label,
                interpolator=interpolator))

        if verbose:
            print_dynamic('- Normalizing images size: Done\n')
        return reference_shape, normalized_images
示例#43
0
def fit_aps(aps, modelfilename, experiments_path, fast, group,
            fitting_images_options, fitting_options, verbose):
    # make results filename
    filename2 = results_filename(fitting_images_options, fitting_options, group,
                                 fast)

    # final save path
    filename = modelfilename[:modelfilename.rfind("_")+1] + '_' + filename2
    save_path = os.path.join(experiments_path, 'Results', filename)

    # fit model
    if file_exists(save_path):
        if verbose:
            print_dynamic('Loading fitting results...')
        fitting_results = pickle_load(save_path)
        if verbose:
            print_dynamic('Fitting results loaded.')
    else:
        fitter_cls, algorithm_cls = parse_algorithm(
            fast, fitting_options['algorithm'])
        fitter = fitter_cls(aps, algorithm=algorithm_cls, n_shape=[3, 6],
                            use_deformation=fitting_options['use_deformation'])

        # get fitting images
        fitting_images_options['save_path'] = os.path.join(experiments_path,
                                                           'Databases')
        fitting_images_options['fast'] = fast
        fitting_images_options['group'] = group
        fitting_images_options['verbose'] = verbose
        fitting_images = load_database(**fitting_images_options)

        # fit
        np.random.seed(seed=1)
        fitting_results = []
        n_images = len(fitting_images)
        if verbose:
            perc1 = 0.
            perc2 = 0.
            perc3 = 0.
        for j, i in enumerate(fitting_images):
            # fit
            if group is not None:
                gt_s = i.landmarks[group.__name__].lms
            else:
                gt_s = i.landmarks['PTS'].lms
            s = fitter.perturb_shape(gt_s,
                                     noise_std=fitting_options['noise_std'])
            fr = fitter.fit(i, s, gt_shape=gt_s,
                            max_iters=fitting_options['max_iters'])
            fitting_results.append(fr)

            # verbose
            if verbose:
                final_error = fr.final_error(error_type='me_norm')
                initial_error = fr.initial_error(error_type='me_norm')
                if final_error <= 0.03:
                    perc1 += 1.
                if final_error <= 0.04:
                    perc2 += 1.
                if final_error <= 0.05:
                    perc3 += 1.
                print_dynamic('- {0} - [<=0.03: {1:.1f}%, <=0.04: {2:.1f}%, '
                              '<=0.05: {3:.1f}%] - Image {4}/{5} (error: '
                              '{6:.3f} --> {7:.3f})'.format(
                              progress_bar_str(float(j + 1.) / n_images,
                                               show_bar=False),
                              perc1 * 100. / n_images, perc2 * 100. / n_images,
                              perc3 * 100. / n_images, j + 1, n_images,
                              initial_error, final_error))
        if verbose:
            print_dynamic('- Fitting completed: [<=0.03: {0:.1f}%, <=0.04: '
                          '{1:.1f}%, <=0.05: {2:.1f}%]\n'.format(
                          perc1 * 100. / n_images, perc2 * 100. / n_images,
                          perc3 * 100. / n_images))

        errors = []
        errors.append([fr.final_error() for fr in fitting_results])
        errors.append([fr.initial_error() for fr in fitting_results])
        pickle_dump(errors, save_path)
    return fitting_results, filename
示例#44
0
    def build(self, images, group=None, label=None, verbose=False):
        r"""
        Builds a Multilevel Active Appearance Model from a list of
        landmarked images.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images from which to build the AAM.

        group : `string`, optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.

        label : `string`, optional
            The label of of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.

        verbose : `boolean`, optional
            Flag that controls information and progress printing.

        Returns
        -------
        aam : :map:`AAM`
            The AAM object. Shape and appearance models are stored from lowest
            to highest level
        """
        # compute reference_shape and normalize images size
        self.reference_shape, normalized_images = \
            normalization_wrt_reference_shape(images, group, label,
                                              self.normalization_diagonal,
                                              verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images,
                                    self.n_levels,
                                    self.downscale,
                                    self.features,
                                    verbose=verbose)

        # build the model at each pyramid level
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building model for each of the {} pyramid '
                              'levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building model\n')

        shape_models = []
        appearance_models = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters in form of list need to use a reversed index
            rj = self.n_levels - j - 1

            if verbose:
                level_str = '  - '
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get feature images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                            level_str,
                            progress_bar_str((c + 1.) / len(generators),
                                             show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # train shape model and find reference frame
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_model = build_shape_model(train_shapes,
                                            self.max_shape_components[rj])
            reference_frame = self._build_reference_frame(shape_model.mean())

            # add shape model to the list
            shape_models.append(shape_model)

            # compute transforms
            if verbose:
                print_dynamic('{}Computing transforms'.format(level_str))
            transforms = [
                self.transform(reference_frame.landmarks['source'].lms,
                               i.landmarks[group][label])
                for i in feature_images
            ]

            # warp images to reference frame
            warped_images = []
            for c, (i, t) in enumerate(zip(feature_images, transforms)):
                if verbose:
                    print_dynamic('{}Warping images - {}'.format(
                        level_str,
                        progress_bar_str(float(c + 1) / len(feature_images),
                                         show_bar=False)))
                warped_images.append(i.warp_to_mask(reference_frame.mask, t))

            # attach reference_frame to images' source shape
            for i in warped_images:
                i.landmarks['source'] = reference_frame.landmarks['source']

            # build appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components[rj] is not None:
                appearance_model.trim_components(
                    self.max_appearance_components[rj])

            # add appearance model to the list
            appearance_models.append(appearance_model)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        n_training_images = len(images)

        return self._build_aam(shape_models, appearance_models,
                               n_training_images)
示例#45
0
    def build(self, images, group=None, label=None, verbose=False):
        r"""
        Builds a Multilevel Constrained Local Model from a list of
        landmarked images.

        Parameters
        ----------
        images : list of :map:`Image`
            The set of landmarked images from which to build the AAM.
        group : string, Optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.
        label : `string`, optional
            The label of of the landmark manager that you wish to use. If
            ``None``, the convex hull of all landmarks is used.
        verbose : `boolean`, optional
            Flag that controls information and progress printing.

        Returns
        -------
        clm : :map:`CLM`
            The CLM object
        """
        # compute reference_shape and normalize images size
        self.reference_shape, normalized_images = \
            normalization_wrt_reference_shape(
                images, group, label, self.normalization_diagonal,
                verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images,
                                    self.n_levels,
                                    self.downscale,
                                    self.features,
                                    verbose=verbose)

        # build the model at each pyramid level
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building model for each of the {} pyramid '
                              'levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building model\n')

        shape_models = []
        classifiers = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters of type list need to use a reversed index
            rj = self.n_levels - j - 1

            if verbose:
                level_str = '  - '
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                            level_str,
                            progress_bar_str((c + 1.) / len(generators),
                                             show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # train shape model and find reference frame
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_model = build_shape_model(train_shapes,
                                            self.max_shape_components[rj])

            # add shape model to the list
            shape_models.append(shape_model)

            # build classifiers
            sampling_grid = build_sampling_grid(self.patch_shape)
            n_points = shapes[0].n_points
            level_classifiers = []
            for k in range(n_points):
                if verbose:
                    print_dynamic('{}Building classifiers - {}'.format(
                        level_str,
                        progress_bar_str((k + 1.) / n_points, show_bar=False)))

                positive_labels = []
                negative_labels = []
                positive_samples = []
                negative_samples = []

                for i, s in zip(feature_images, shapes):

                    max_x = i.shape[0] - 1
                    max_y = i.shape[1] - 1

                    point = (np.round(s.points[k, :])).astype(int)
                    patch_grid = sampling_grid + point[None, None, ...]
                    positive, negative = get_pos_neg_grid_positions(
                        patch_grid, positive_grid_size=(1, 1))

                    x = positive[:, 0]
                    y = positive[:, 1]
                    x[x > max_x] = max_x
                    y[y > max_y] = max_y
                    x[x < 0] = 0
                    y[y < 0] = 0

                    positive_sample = i.pixels[positive[:, 0], positive[:,
                                                                        1], :]
                    positive_samples.append(positive_sample)
                    positive_labels.append(np.ones(positive_sample.shape[0]))

                    x = negative[:, 0]
                    y = negative[:, 1]
                    x[x > max_x] = max_x
                    y[y > max_y] = max_y
                    x[x < 0] = 0
                    y[y < 0] = 0

                    negative_sample = i.pixels[x, y, :]
                    negative_samples.append(negative_sample)
                    negative_labels.append(-np.ones(negative_sample.shape[0]))

                positive_samples = np.asanyarray(positive_samples)
                positive_samples = np.reshape(positive_samples,
                                              (-1, positive_samples.shape[-1]))
                positive_labels = np.asanyarray(positive_labels).flatten()

                negative_samples = np.asanyarray(negative_samples)
                negative_samples = np.reshape(negative_samples,
                                              (-1, negative_samples.shape[-1]))
                negative_labels = np.asanyarray(negative_labels).flatten()

                X = np.vstack((positive_samples, negative_samples))
                t = np.hstack((positive_labels, negative_labels))

                clf = self.classifier_trainers[rj](X, t)
                level_classifiers.append(clf)

            # add level classifiers to the list
            classifiers.append(level_classifiers)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        classifiers.reverse()
        n_training_images = len(images)

        from .base import CLM
        return CLM(shape_models, classifiers, n_training_images,
                   self.patch_shape, self.features, self.reference_shape,
                   self.downscale, self.scaled_shape_models)
示例#46
0
    def train(self, images, group=None, label=None, verbose=False, **kwargs):
        r"""
        Trains a Supervised Descent Regressor given a list of landmarked
        images.

        Parameters
        ----------
        images: list of :map:`MaskedImage`
            The set of landmarked images from which to build the SD.
        group : `string`, optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.
        label: `string`, optional
            The label of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.
        verbose: `boolean`, optional
            Flag that controls information and progress printing.
        """
        if verbose:
            print_dynamic('- Computing reference shape')
        self.reference_shape = self._compute_reference_shape(images, group,
                                                             label)
        # store number of training images
        self.n_training_images = len(images)

        # normalize the scaling of all images wrt the reference_shape size
        self._rescale_reference_shape()
        normalized_images = self._normalization_wrt_reference_shape(
            images, group, label, self.reference_shape, verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images, self.n_levels,
                                    self.downscale, self.features,
                                    verbose=verbose)

        # get feature images of all levels
        images = apply_pyramid_on_images(generators, self.n_levels,
                                         verbose=verbose)

        # this .reverse sets the lowest resolution as the first level
        images.reverse()

        # extract the ground truth shapes
        gt_shapes = [[i.landmarks[group][label] for i in img]
                     for img in images]

        # build the regressors
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building regressors for each of the {} '
                              'pyramid levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building regressors\n')

        regressors = []
        # for each pyramid level (low --> high)
        for j, (level_images, level_gt_shapes) in enumerate(zip(images,
                                                                gt_shapes)):
            if verbose:
                if self.n_levels == 1:
                    print_dynamic('\n')
                elif self.n_levels > 1:
                    print_dynamic('\nLevel {}:\n'.format(j + 1))

            # build regressor
            trainer = self._set_regressor_trainer(j)
            if j == 0:
                regressor = trainer.train(level_images, level_gt_shapes,
                                          verbose=verbose, **kwargs)
            else:
                regressor = trainer.train(level_images, level_gt_shapes,
                                          level_shapes, verbose=verbose,
                                          **kwargs)

            if verbose:
                print_dynamic('- Perturbing shapes...')
            level_shapes = trainer.perturb_shapes(gt_shapes[0])

            regressors.append(regressor)
            count = 0
            total = len(regressors) * len(images[0]) * len(level_shapes[0])
            for k, r in enumerate(regressors):

                test_images = images[k]
                test_gt_shapes = gt_shapes[k]

                fitting_results = []
                for (i, gt_s, level_s) in zip(test_images, test_gt_shapes,
                                              level_shapes):
                    fr_list = []
                    for ls in level_s:
                        parameters = r.get_parameters(ls)
                        fr = r.fit(i, parameters)
                        fr.gt_shape = gt_s
                        fr_list.append(fr)
                        count += 1

                    fitting_results.append(fr_list)
                    if verbose:
                        print_dynamic('- Fitting shapes: {}'.format(
                            progress_bar_str((count + 1.) / total,
                                             show_bar=False)))

                level_shapes = [[Scale(self.downscale,
                                       n_dims=self.reference_shape.n_dims
                                       ).apply(fr.final_shape)
                                 for fr in fr_list]
                                for fr_list in fitting_results]

            if verbose:
                print_dynamic('- Fitting shapes: computing mean error...')
            mean_error = np.mean(np.array([fr.final_error()
                                           for fr_list in fitting_results
                                           for fr in fr_list]))
            if verbose:
                print_dynamic("- Fitting shapes: mean error "
                              "is {0:.6f}.\n".format(mean_error))

        return self._build_supervised_descent_fitter(regressors)
示例#47
0
    def build(self, images, group=None, label=None, verbose=False):
        # compute reference_shape and normalize images size
        self.reference_shape, normalized_images = \
            normalization_wrt_reference_shape(images, group, label,
                                              self.normalization_diagonal,
                                              verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images, self.n_levels,
                                    self.downscale, self.features,
                                    verbose=verbose)

        # if graph_deformation not provided, compute the MST
        if self.graph_deformation is None:
            shapes = [i.landmarks[group][label] for i in normalized_images]
            self.graph_deformation = _compute_minimum_spanning_tree(
                shapes, self.root_vertex, '- ', verbose)

        # build the model at each pyramid level
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building model for each of the {} pyramid '
                              'levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building model\n')

        shape_models = []
        appearance_models = []
        deformation_models = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters in form of list need to use a reversed index
            rj = self.n_levels - j - 1

            level_str = '  - '
            if verbose:
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get feature images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # apply procrustes if asked
            if self.use_procrustes:
                if verbose:
                    print_dynamic('{}Procrustes analysis'.format(level_str))
                train_shapes = _procrustes_analysis(train_shapes)

            # train shape model
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_models.append(_build_shape_model(
                train_shapes, self.max_shape_components[rj]))

            # compute relative locations from all shapes
            relative_locations = _get_relative_locations(
                train_shapes, self.graph_deformation, level_str, verbose)

            # build and add deformation model to the list
            deformation_models.append(_build_deformation_model(
                self.graph_deformation, relative_locations, level_str, verbose))

            # extract patches from all images
            all_patches = _warp_images(feature_images, group, label,
                                       self.patch_shape,
                                       self.gaussian_per_patch, level_str,
                                       verbose)

            # build and add appearance model to the list
            if self.gaussian_per_patch:
                n_channels = feature_images[0].n_channels
                if self.graph_appearance is None:
                    # diagonal block covariance
                    n_points = images[0].landmarks[group][label].n_points
                    appearance_models.append(
                        _build_appearance_model_block_diagonal(
                            all_patches, n_points, self.patch_shape, n_channels,
                            self.n_appearance_parameters[rj], level_str,
                            verbose))
                else:
                    # sparse block covariance
                    appearance_models.append(_build_appearance_model_sparse(
                        all_patches, self.graph_appearance, self.patch_shape,
                        n_channels, self.n_appearance_parameters[rj], level_str,
                        verbose))
            else:
                # full covariance
                appearance_models.append(_build_appearance_model_full(
                    all_patches, self.n_appearance_parameters[rj],
                    level_str, verbose))

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of models so that they are ordered from lower to
        # higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        deformation_models.reverse()
        n_training_images = len(images)

        return self._build_aps(shape_models, deformation_models,
                               appearance_models, n_training_images)
示例#48
0
文件: linalg.py 项目: OlivierML/menpo
def as_matrix(vectorizables, length=None, return_template=False, verbose=False):
    r"""
    Create a matrix from a list/generator of :map:`Vectorizable` objects.
    All the objects in the list **must** be the same size when vectorized.

    Consider using a generator if the matrix you are creating is large and
    passing the length of the generator explicitly.

    Parameters
    ----------
    vectorizables : `list` or generator if :map:`Vectorizable` objects
        A list or generator of objects that supports the vectorizable interface
    length : `int`, optional
        Length of the vectorizable list. Useful if you are passing a generator
        with a known length.
    verbose : `bool`, optional
        If ``True``, will print the progress of building the matrix.
    return_template : `bool`, optional
        If ``True``, will return the first element of the list/generator, which
        was used as the template. Useful if you need to map back from the
        matrix to a list of vectorizable objects.

    Returns
    -------
    M : (length, n_features) `ndarray`
        Every row is an element of the list.
    template : :map:`Vectorizable`, optional
        If ``return_template == True``, will return the template used to
        build the matrix `M`.
    """
    # get the first element as the template and use it to configure the
    # data matrix
    if length is None:
        # samples is a list
        length = len(vectorizables)
        template = vectorizables[0]
        vectorizables = vectorizables[1:]
    else:
        # samples is an iterator
        template = next(vectorizables)
    n_features = template.n_parameters
    template_vector = template.as_vector()

    data = np.zeros((length, n_features), dtype=template_vector.dtype)
    if verbose:
        print('Allocated data matrix {:.2f}'
              'GB'.format(data.nbytes / 2 ** 30))

    # now we can fill in the first element from the template
    data[0] = template_vector
    del template_vector

    # 1-based as we have the template vector set already
    for i, sample in enumerate(vectorizables, 1):
        if i >= length:
            break
        if verbose:
            print_dynamic(
                'Building data matrix from {} samples - {}'.format(
                    length,
                    progress_bar_str(float(i + 1) / length, show_bar=True)))
        data[i] = sample.as_vector()

    if return_template:
        return data, template
    else:
        return data
示例#49
0
    def build(self, images, group=None, label=None, verbose=False, **kwargs):
        # compute reference shape
        reference_shape = self._compute_reference_shape(images, group, label,
                                                        verbose)
        # normalize images
        images = self._normalize_images(images, group, label, reference_shape,
                                        verbose)

        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')
        shape_models = []
        appearance_models = []
        classifiers = []
        # for each pyramid level (high --> low)
        for j, s in enumerate(self.scales):
            if verbose:
                if len(self.scales) > 1:
                    level_str = '  - Level {}: '.format(j)
                else:
                    level_str = '  - '

            # obtain image representation
            if j == 0:
                # compute features at highest level
                feature_images = self._compute_features(images, level_str,
                                                        verbose)
                level_images = feature_images
            elif self.scale_features:
                # scale features at other levels
                level_images = self._scale_images(feature_images, s,
                                                  level_str, verbose)
            else:
                # scale images and compute features at other levels
                scaled_images = self._scale_images(images, s, level_str,
                                                   verbose)
                level_images = self._compute_features(scaled_images,
                                                      level_str, verbose)

            # extract potentially rescaled shapes ath highest level
            level_shapes = [i.landmarks[group][label]
                            for i in level_images]

            # obtain shape representation
            if j == 0 or self.scale_shapes:
                # obtain shape model
                if verbose:
                    print_dynamic('{}Building shape model'.format(level_str))
                shape_model = self._build_shape_model(
                    level_shapes, self.max_shape_components)
                # add shape model to the list
                shape_models.append(shape_model)
            else:
                # copy precious shape model and add it to the list
                shape_models.append(deepcopy(shape_model))

            # obtain warped images
            warped_images = self._warp_images(level_images, level_shapes,
                                              shape_model.mean(), level_str,
                                              verbose)

            # obtain appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components is not None:
                appearance_model.trim_components(
                    self.max_appearance_components)
            # add appearance model to the list
            appearance_models.append(appearance_model)

            if isinstance(self, GlobalUnifiedBuilder):
                # obtain parts images
                parts_images = self._parts_images(level_images, level_shapes,
                                                  level_str, verbose)
            else:
                # parts images are warped images
                parts_images = warped_images

            # build desired responses
            mvn = multivariate_normal(mean=np.zeros(2), cov=self.covariance)
            grid = build_sampling_grid(self.parts_shape)
            Y = [mvn.pdf(grid + offset) for offset in self.offsets]

            # build classifiers
            n_landmarks = level_shapes[0].n_points
            level_classifiers = []
            for l in range(n_landmarks):
                if verbose:
                    print_dynamic('{}Building classifiers - {}'.format(
                        level_str,
                        progress_bar_str((l + 1.) / n_landmarks,
                                         show_bar=False)))

                X = [i.pixels[l] for i in parts_images]

                clf = self.classifier(X, Y, **kwargs)
                level_classifiers.append(clf)

            # build Multiple classifier
            if self.classifier is MCF:
                multiple_clf = MultipleMCF(level_classifiers)
            elif self.classifier is LinearSVMLR:
                multiple_clf = MultipleLinearSVMLR(level_classifiers)

            # add appearance model to the list
            classifiers.append(multiple_clf)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        classifiers.reverse()
        self.scales.reverse()

        unified = self._build_unified(shape_models, appearance_models,
                                      classifiers, reference_shape)

        return unified
示例#50
0
    def build(self, images, group=None, label=None, verbose=False):
        r"""
        Builds a Multilevel Active Appearance Model from a list of
        landmarked images.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images from which to build the AAM.

        group : `string`, optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.

        label : `string`, optional
            The label of of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.

        verbose : `boolean`, optional
            Flag that controls information and progress printing.

        Returns
        -------
        aam : :map:`AAM`
            The AAM object. Shape and appearance models are stored from lowest
            to highest level
        """
        # compute reference_shape and normalize images size
        self.reference_shape, normalized_images = \
            normalization_wrt_reference_shape(images, group, label,
                                              self.normalization_diagonal,
                                              verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images, self.n_levels,
                                    self.downscale, self.features,
                                    verbose=verbose)

        # build the model at each pyramid level
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building model for each of the {} pyramid '
                              'levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building model\n')

        shape_models = []
        appearance_models = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters in form of list need to use a reversed index
            rj = self.n_levels - j - 1

            if verbose:
                level_str = '  - '
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get feature images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # train shape model and find reference frame
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_model = build_shape_model(
                train_shapes, self.max_shape_components[rj])
            reference_frame = self._build_reference_frame(shape_model.mean())

            # add shape model to the list
            shape_models.append(shape_model)

            # compute transforms
            if verbose:
                print_dynamic('{}Computing transforms'.format(level_str))


            # Create a dummy initial transform
            s_to_t_transform = self.transform(
                reference_frame.landmarks['source'].lms,
                reference_frame.landmarks['source'].lms)

            # warp images to reference frame
            warped_images = []
            for c, i in enumerate(feature_images):
                if verbose:
                    print_dynamic('{}Warping images - {}'.format(
                        level_str,
                        progress_bar_str(float(c + 1) / len(feature_images),
                                         show_bar=False)))
                # Setting the target can be significantly faster for transforms
                # such as CachedPiecewiseAffine
                s_to_t_transform.set_target(i.landmarks[group][label])
                warped_images.append(i.warp_to_mask(reference_frame.mask,
                                                    s_to_t_transform))

            # attach reference_frame to images' source shape
            for i in warped_images:
                i.landmarks['source'] = reference_frame.landmarks['source']

            # build appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components[rj] is not None:
                appearance_model.trim_components(
                    self.max_appearance_components[rj])

            # add appearance model to the list
            appearance_models.append(appearance_model)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        n_training_images = len(images)

        return self._build_aam(shape_models, appearance_models,
                               n_training_images)
示例#51
0
def fit_aps(aps, modelfilename, experiments_path, fast, group,
            fitting_images_options, fitting_options, verbose):
    # make results filename
    filename2 = results_filename(fitting_images_options, fitting_options,
                                 group, fast)

    # final save path
    filename = modelfilename[:modelfilename.rfind("_") + 1] + '_' + filename2
    save_path = os.path.join(experiments_path, 'Results', filename)

    # fit model
    if file_exists(save_path):
        if verbose:
            print_dynamic('Loading fitting results...')
        fitting_results = pickle_load(save_path)
        if verbose:
            print_dynamic('Fitting results loaded.')
    else:
        fitter_cls, algorithm_cls = parse_algorithm(
            fast, fitting_options['algorithm'])
        fitter = fitter_cls(aps,
                            algorithm=algorithm_cls,
                            n_shape=[3, 6],
                            use_deformation=fitting_options['use_deformation'])

        # get fitting images
        fitting_images_options['save_path'] = os.path.join(
            experiments_path, 'Databases')
        fitting_images_options['fast'] = fast
        fitting_images_options['group'] = group
        fitting_images_options['verbose'] = verbose
        fitting_images = load_database(**fitting_images_options)

        # fit
        np.random.seed(seed=1)
        fitting_results = []
        n_images = len(fitting_images)
        if verbose:
            perc1 = 0.
            perc2 = 0.
            perc3 = 0.
        for j, i in enumerate(fitting_images):
            # fit
            if group is not None:
                gt_s = i.landmarks[group.__name__].lms
            else:
                gt_s = i.landmarks['PTS'].lms
            s = fitter.perturb_shape(gt_s,
                                     noise_std=fitting_options['noise_std'])
            fr = fitter.fit(i,
                            s,
                            gt_shape=gt_s,
                            max_iters=fitting_options['max_iters'])
            fitting_results.append(fr)

            # verbose
            if verbose:
                final_error = fr.final_error(error_type='me_norm')
                initial_error = fr.initial_error(error_type='me_norm')
                if final_error <= 0.03:
                    perc1 += 1.
                if final_error <= 0.04:
                    perc2 += 1.
                if final_error <= 0.05:
                    perc3 += 1.
                print_dynamic('- {0} - [<=0.03: {1:.1f}%, <=0.04: {2:.1f}%, '
                              '<=0.05: {3:.1f}%] - Image {4}/{5} (error: '
                              '{6:.3f} --> {7:.3f})'.format(
                                  progress_bar_str(float(j + 1.) / n_images,
                                                   show_bar=False),
                                  perc1 * 100. / n_images,
                                  perc2 * 100. / n_images,
                                  perc3 * 100. / n_images, j + 1, n_images,
                                  initial_error, final_error))
        if verbose:
            print_dynamic('- Fitting completed: [<=0.03: {0:.1f}%, <=0.04: '
                          '{1:.1f}%, <=0.05: {2:.1f}%]\n'.format(
                              perc1 * 100. / n_images, perc2 * 100. / n_images,
                              perc3 * 100. / n_images))

        errors = []
        errors.append([fr.final_error() for fr in fitting_results])
        errors.append([fr.initial_error() for fr in fitting_results])
        pickle_dump(errors, save_path)
    return fitting_results, filename
示例#52
0
def normalization_wrt_reference_shape(images, group, label,
                                      normalization_diagonal, verbose=False):
    r"""
    Function that normalizes the images sizes with respect to the reference
    shape (mean shape) scaling. This step is essential before building a
    deformable model.

    The normalization includes:
    1) Computation of the reference shape as the mean shape of the images'
       landmarks.
    2) Scaling of the reference shape using the normalization_diagonal.
    3) Rescaling of all the images so that their shape's scale is in
       correspondence with the reference shape's scale.

    Parameters
    ----------
    images : list of :class:`menpo.image.MaskedImage`
        The set of landmarked images to normalize.

    group : `str`
        The key of the landmark set that should be used. If None,
        and if there is only one set of landmarks, this set will be used.

    label : `str`
        The label of of the landmark manager that you wish to use. If no
        label is passed, the convex hull of all landmarks is used.

    normalization_diagonal: `int`
        If int, it ensures that the mean shape is scaled so that the
        diagonal of the bounding box containing it matches the
        normalization_diagonal value.
        If None, the mean shape is not rescaled.

        Note that, because the reference frame is computed from the mean
        landmarks, this kwarg also specifies the diagonal length of the
        reference frame (provided that features computation does not change
        the image size).

    verbose : `bool`, Optional
        Flag that controls information and progress printing.

    Returns
    -------
    reference_shape : :map:`PointCloud`
        The reference shape that was used to resize all training images to
        a consistent object size.
    normalized_images : :map:`MaskedImage` list
        A list with the normalized images.
    """
    # get shapes
    shapes = [i.landmarks[group][label] for i in images]

    # compute the reference shape and fix its diagonal length
    reference_shape = compute_reference_shape(shapes, normalization_diagonal,
                                              verbose=verbose)

    # normalize the scaling of all images wrt the reference_shape size
    normalized_images = []
    for c, i in enumerate(images):
        if verbose:
            print_dynamic('- Normalizing images size: {}'.format(
                progress_bar_str((c + 1.) / len(images),
                                 show_bar=False)))
        normalized_images.append(i.rescale_to_reference_shape(
            reference_shape, group=group, label=label))

    if verbose:
        print_dynamic('- Normalizing images size: Done\n')
    return reference_shape, normalized_images
示例#53
0
    def build(self, images, group=None, label=None, verbose=False):
        r"""
        Builds a Multilevel Constrained Local Model from a list of
        landmarked images.

        Parameters
        ----------
        images : list of :map:`Image`
            The set of landmarked images from which to build the AAM.
        group : string, Optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.
        label : `string`, optional
            The label of of the landmark manager that you wish to use. If
            ``None``, the convex hull of all landmarks is used.
        verbose : `boolean`, optional
            Flag that controls information and progress printing.

        Returns
        -------
        clm : :map:`CLM`
            The CLM object
        """
        # compute reference_shape and normalize images size
        self.reference_shape, normalized_images = \
            normalization_wrt_reference_shape(
                images, group, label, self.normalization_diagonal,
                verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images, self.n_levels,
                                    self.downscale, self.features,
                                    verbose=verbose)

        # build the model at each pyramid level
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building model for each of the {} pyramid '
                              'levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building model\n')

        shape_models = []
        classifiers = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters of type list need to use a reversed index
            rj = self.n_levels - j - 1

            if verbose:
                level_str = '  - '
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                            level_str,
                            progress_bar_str((c + 1.) / len(generators),
                                             show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # train shape model and find reference frame
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_model = build_shape_model(
                train_shapes, self.max_shape_components[rj])

            # add shape model to the list
            shape_models.append(shape_model)

            # build classifiers
            sampling_grid = build_sampling_grid(self.patch_shape)
            n_points = shapes[0].n_points
            level_classifiers = []
            for k in range(n_points):
                if verbose:
                    print_dynamic('{}Building classifiers - {}'.format(
                        level_str,
                        progress_bar_str((k + 1.) / n_points,
                                         show_bar=False)))

                positive_labels = []
                negative_labels = []
                positive_samples = []
                negative_samples = []

                for i, s in zip(feature_images, shapes):

                    max_x = i.shape[0] - 1
                    max_y = i.shape[1] - 1

                    point = (np.round(s.points[k, :])).astype(int)
                    patch_grid = sampling_grid + point[None, None, ...]
                    positive, negative = get_pos_neg_grid_positions(
                        patch_grid, positive_grid_size=(1, 1))

                    x = positive[:, 0]
                    y = positive[:, 1]
                    x[x > max_x] = max_x
                    y[y > max_y] = max_y
                    x[x < 0] = 0
                    y[y < 0] = 0

                    positive_sample = i.pixels[positive[:, 0],
                                               positive[:, 1], :]
                    positive_samples.append(positive_sample)
                    positive_labels.append(np.ones(positive_sample.shape[0]))

                    x = negative[:, 0]
                    y = negative[:, 1]
                    x[x > max_x] = max_x
                    y[y > max_y] = max_y
                    x[x < 0] = 0
                    y[y < 0] = 0

                    negative_sample = i.pixels[x, y, :]
                    negative_samples.append(negative_sample)
                    negative_labels.append(-np.ones(negative_sample.shape[0]))

                positive_samples = np.asanyarray(positive_samples)
                positive_samples = np.reshape(positive_samples,
                                              (-1, positive_samples.shape[-1]))
                positive_labels = np.asanyarray(positive_labels).flatten()

                negative_samples = np.asanyarray(negative_samples)
                negative_samples = np.reshape(negative_samples,
                                              (-1, negative_samples.shape[-1]))
                negative_labels = np.asanyarray(negative_labels).flatten()

                X = np.vstack((positive_samples, negative_samples))
                t = np.hstack((positive_labels, negative_labels))

                clf = self.classifier_trainers[rj](X, t)
                level_classifiers.append(clf)

            # add level classifiers to the list
            classifiers.append(level_classifiers)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        classifiers.reverse()
        n_training_images = len(images)

        from .base import CLM
        return CLM(shape_models, classifiers, n_training_images,
                   self.patch_shape, self.features, self.reference_shape,
                   self.downscale, self.scaled_shape_models)
示例#54
0
    def build(self, images, group=None, label=None, verbose=False):
        # compute reference_shape and normalize images size
        self.reference_shape, normalized_images = \
            normalization_wrt_reference_shape(images, group, label,
                                              self.normalization_diagonal,
                                              verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images,
                                    self.n_levels,
                                    self.downscale,
                                    self.features,
                                    verbose=verbose)

        # if graph_deformation not provided, compute the MST
        if self.graph_deformation is None:
            shapes = [i.landmarks[group][label] for i in normalized_images]
            self.graph_deformation = _compute_minimum_spanning_tree(
                shapes, self.root_vertex, '- ', verbose)

        # build the model at each pyramid level
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building model for each of the {} pyramid '
                              'levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building model\n')

        shape_models = []
        appearance_models = []
        deformation_models = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters in form of list need to use a reversed index
            rj = self.n_levels - j - 1

            level_str = '  - '
            if verbose:
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get feature images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                            level_str,
                            progress_bar_str((c + 1.) / len(generators),
                                             show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # apply procrustes if asked
            if self.use_procrustes:
                if verbose:
                    print_dynamic('{}Procrustes analysis'.format(level_str))
                train_shapes = _procrustes_analysis(train_shapes)

            # train shape model
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_models.append(
                _build_shape_model(train_shapes, self.graph_shape,
                                   self.max_shape_components[rj]))

            # compute relative locations from all shapes
            relative_locations = _get_relative_locations(
                train_shapes, self.graph_deformation, level_str, verbose)

            # build and add deformation model to the list
            deformation_models.append(
                _build_deformation_model(self.graph_deformation,
                                         relative_locations, level_str,
                                         verbose))

            # extract patches from all images
            all_patches = _warp_images(feature_images, group, label,
                                       self.patch_shape,
                                       self.gaussian_per_patch, level_str,
                                       verbose)

            # build and add appearance model to the list
            if self.gaussian_per_patch:
                n_channels = feature_images[0].n_channels
                if self.graph_appearance is None:
                    # diagonal block covariance
                    n_points = images[0].landmarks[group][label].n_points
                    appearance_models.append(
                        _build_appearance_model_block_diagonal(
                            all_patches, n_points, self.patch_shape,
                            n_channels, self.n_appearance_parameters[rj],
                            level_str, verbose))
                else:
                    # sparse block covariance
                    appearance_models.append(
                        _build_appearance_model_sparse(
                            all_patches, self.graph_appearance,
                            self.patch_shape, n_channels,
                            self.n_appearance_parameters[rj], level_str,
                            verbose))
            else:
                if self.graph_appearance is None:
                    # full covariance
                    n_points = images[0].landmarks[group][label].n_points
                    patches_len = np.prod(self.patch_shape) * \
                                  images[0].n_channels * n_points
                    appearance_models.append(
                        _build_appearance_model_full(
                            all_patches, self.n_appearance_parameters[rj],
                            patches_len, level_str, verbose))
                elif self.graph_appearance == 'yorgos':
                    # full covariance
                    n_points = images[0].landmarks[group][label].n_points
                    patches_len = np.prod(self.patch_shape) * \
                                  images[0].n_channels * n_points
                    appearance_models.append(
                        _build_appearance_model_full_yorgos(
                            all_patches, self.n_appearance_parameters[rj],
                            patches_len, level_str, verbose))

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of models so that they are ordered from lower to
        # higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        deformation_models.reverse()
        n_training_images = len(images)

        return self._build_aps(shape_models, deformation_models,
                               appearance_models, n_training_images)
示例#55
0
    def train(self, images, group=None, label=None, verbose=False, **kwargs):
        r"""
        Trains a Supervised Descent Regressor given a list of landmarked
        images.

        Parameters
        ----------
        images: list of :map:`MaskedImage`
            The set of landmarked images from which to build the SD.
        group : `string`, optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.
        label: `string`, optional
            The label of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.
        verbose: `boolean`, optional
            Flag that controls information and progress printing.
        """
        if verbose:
            print_dynamic('- Computing reference shape')
        self.reference_shape = self._compute_reference_shape(
            images, group, label)
        # store number of training images
        self.n_training_images = len(images)

        # normalize the scaling of all images wrt the reference_shape size
        self._rescale_reference_shape()
        normalized_images = self._normalization_wrt_reference_shape(
            images, group, label, self.reference_shape, verbose=verbose)

        # create pyramid
        generators = create_pyramid(normalized_images,
                                    self.n_levels,
                                    self.downscale,
                                    self.features,
                                    verbose=verbose)

        # get feature images of all levels
        images = apply_pyramid_on_images(generators,
                                         self.n_levels,
                                         verbose=verbose)

        # this .reverse sets the lowest resolution as the first level
        images.reverse()

        # extract the ground truth shapes
        gt_shapes = [[i.landmarks[group][label] for i in img]
                     for img in images]

        # build the regressors
        if verbose:
            if self.n_levels > 1:
                print_dynamic('- Building regressors for each of the {} '
                              'pyramid levels\n'.format(self.n_levels))
            else:
                print_dynamic('- Building regressors\n')

        regressors = []
        # for each pyramid level (low --> high)
        for j, (level_images,
                level_gt_shapes) in enumerate(zip(images, gt_shapes)):
            if verbose:
                if self.n_levels == 1:
                    print_dynamic('\n')
                elif self.n_levels > 1:
                    print_dynamic('\nLevel {}:\n'.format(j + 1))

            # build regressor
            trainer = self._set_regressor_trainer(j)
            if j == 0:
                regressor = trainer.train(level_images,
                                          level_gt_shapes,
                                          verbose=verbose,
                                          **kwargs)
            else:
                regressor = trainer.train(level_images,
                                          level_gt_shapes,
                                          level_shapes,
                                          verbose=verbose,
                                          **kwargs)

            if verbose:
                print_dynamic('- Perturbing shapes...')
            level_shapes = trainer.perturb_shapes(gt_shapes[0])

            regressors.append(regressor)
            count = 0
            total = len(regressors) * len(images[0]) * len(level_shapes[0])
            for k, r in enumerate(regressors):

                test_images = images[k]
                test_gt_shapes = gt_shapes[k]

                fitting_results = []
                for (i, gt_s, level_s) in zip(test_images, test_gt_shapes,
                                              level_shapes):
                    fr_list = []
                    for ls in level_s:
                        parameters = r.get_parameters(ls)
                        fr = r.fit(i, parameters)
                        fr.gt_shape = gt_s
                        fr_list.append(fr)
                        count += 1

                    fitting_results.append(fr_list)
                    if verbose:
                        print_dynamic('- Fitting shapes: {}'.format(
                            progress_bar_str((count + 1.) / total,
                                             show_bar=False)))

                level_shapes = [[
                    Scale(self.downscale,
                          n_dims=self.reference_shape.n_dims).apply(
                              fr.final_shape) for fr in fr_list
                ] for fr_list in fitting_results]

            if verbose:
                print_dynamic('- Fitting shapes: computing mean error...')
            mean_error = np.mean(
                np.array([
                    fr.final_error() for fr_list in fitting_results
                    for fr in fr_list
                ]))
            if verbose:
                print_dynamic("- Fitting shapes: mean error "
                              "is {0:.6f}.\n".format(mean_error))

        return self._build_supervised_descent_fitter(regressors)