def __init__(self, classifier_trainers=linear_svm_lr, patch_shape=(5, 5), features=sparse_hog, normalization_diagonal=None, n_levels=3, downscale=1.1, scaled_shape_models=True, max_shape_components=None, boundary=3): # general deformable model checks checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) checks.check_boundary(boundary) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') features = checks.check_features(features, n_levels) # CLM specific checks classifier_trainers = check_classifier_trainers(classifier_trainers, n_levels) patch_shape = check_patch_shape(patch_shape) # store parameters self.classifier_trainers = classifier_trainers self.patch_shape = patch_shape self.features = features self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.boundary = boundary
def __init__(self, regression_type=mlr, regression_features=None, features=no_op, n_levels=3, downscale=1.2, noise_std=0.04, rotation=False, n_perturbations=10): features = checks.check_features(features, n_levels) DeformableModel.__init__(self, features) # general deformable model checks checks.check_n_levels(n_levels) checks.check_downscale(downscale) # SDM specific checks regression_type_list = check_regression_type(regression_type, n_levels) regression_features = check_regression_features(regression_features, n_levels) check_n_permutations(n_perturbations) # store parameters self.regression_type = regression_type_list self.regression_features = regression_features self.n_levels = n_levels self.downscale = downscale self.noise_std = noise_std self.rotation = rotation self.n_perturbations = n_perturbations
def __init__(self, features=igo, patch_shape=(16, 16), normalization_diagonal=None, n_levels=3, downscale=2, scaled_shape_models=True, max_shape_components=None, boundary=3): # check parameters checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) checks.check_boundary(boundary) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') features = checks.check_features(features, n_levels) # store parameters self.features = features self.patch_shape = patch_shape self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.boundary = boundary # patch-based AAMs can only work with TPS transform self.transform = ThinPlateSplines
def __init__(self, features=igo, patch_shape=(16, 16), normalization_diagonal=None, n_levels=3, downscale=2, scaled_shape_models=True, max_shape_components=None, max_appearance_components=None, boundary=3): # check parameters checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) checks.check_boundary(boundary) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') max_appearance_components = checks.check_max_components( max_appearance_components, n_levels, 'max_appearance_components') features = checks.check_features(features, n_levels) # store parameters self.features = features self.patch_shape = patch_shape self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.max_appearance_components = max_appearance_components self.boundary = boundary # patch-based AAMs can only work with TPS transform self.transform = DifferentiableThinPlateSplines
def __init__(self, features=igo, transform=DifferentiablePiecewiseAffine, trilist=None, normalization_diagonal=None, n_levels=3, downscale=2, scaled_shape_models=True, max_shape_components=None, max_appearance_components=None, boundary=3): # check parameters checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) checks.check_boundary(boundary) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') max_appearance_components = checks.check_max_components( max_appearance_components, n_levels, 'max_appearance_components') features = checks.check_features(features, n_levels) # store parameters self.features = features self.transform = transform self.trilist = trilist self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.max_appearance_components = max_appearance_components self.boundary = boundary
def __init__(self, regression_type=mlr, regression_features=None, features=no_op, n_levels=3, downscale=1.2, noise_std=0.04, rotation=False, n_perturbations=10): features = checks.check_features(features, n_levels) DeformableModel.__init__(self, features) # general deformable model checks checks.check_n_levels(n_levels) checks.check_downscale(downscale) # SDM specific checks regression_type_list = check_regression_type(regression_type, n_levels) regression_features = check_regression_features( regression_features, n_levels) check_n_permutations(n_perturbations) # store parameters self.regression_type = regression_type_list self.regression_features = regression_features self.n_levels = n_levels self.downscale = downscale self.noise_std = noise_std self.rotation = rotation self.n_perturbations = n_perturbations
def __init__(self, classifier_trainers=linear_svm_lr, patch_shape=(5, 5), features=sparse_hog, normalization_diagonal=None, n_levels=3, downscale=1.1, scaled_shape_models=True, max_shape_components=None, boundary=3): # general deformable model checks checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) checks.check_boundary(boundary) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') features = checks.check_features(features, n_levels) # CLM specific checks classifier_trainers = check_classifier_trainers( classifier_trainers, n_levels) patch_shape = check_patch_shape(patch_shape) # store parameters self.classifier_trainers = classifier_trainers self.patch_shape = patch_shape self.features = features self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.boundary = boundary
def __init__(self, adjacency_array_appearance=None, gaussian_per_patch=True, adjacency_array_deformation=None, root_vertex_deformation=None, adjacency_array_shape=None, features=no_op, patch_shape=(17, 17), normalization_diagonal=None, n_levels=2, downscale=2, scaled_shape_models=False, use_procrustes=True, max_shape_components=None, n_appearance_parameters=None): # check parameters checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') features = checks.check_features(features, n_levels) n_appearance_parameters = _check_n_parameters( n_appearance_parameters, n_levels, 'n_appearance_parameters') # appearance graph if adjacency_array_appearance is None: self.graph_appearance = None elif adjacency_array_appearance == 'yorgos': self.graph_appearance = 'yorgos' else: self.graph_appearance = UndirectedGraph(adjacency_array_appearance) # shape graph if adjacency_array_shape is None: self.graph_shape = None else: self.graph_shape = UndirectedGraph(adjacency_array_shape) # check adjacency_array_deformation, root_vertex_deformation if adjacency_array_deformation is None: self.graph_deformation = None if root_vertex_deformation is None: self.root_vertex = 0 else: if root_vertex_deformation is None: self.graph_deformation = DirectedGraph(adjacency_array_deformation) else: self.graph_deformation = Tree(adjacency_array_deformation, root_vertex_deformation) # store parameters self.features = features self.patch_shape = patch_shape self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.n_appearance_parameters = n_appearance_parameters self.use_procrustes = use_procrustes self.gaussian_per_patch = gaussian_per_patch
def __init__(self, adjacency_array_appearance=None, gaussian_per_patch=True, adjacency_array_deformation=None, root_vertex_deformation=None, adjacency_array_shape=None, features=no_op, patch_shape=(17, 17), normalization_diagonal=None, n_levels=2, downscale=2, scaled_shape_models=False, use_procrustes=True, max_shape_components=None, n_appearance_parameters=None): # check parameters checks.check_n_levels(n_levels) checks.check_downscale(downscale) checks.check_normalization_diagonal(normalization_diagonal) max_shape_components = checks.check_max_components( max_shape_components, n_levels, 'max_shape_components') features = checks.check_features(features, n_levels) n_appearance_parameters = _check_n_parameters( n_appearance_parameters, n_levels, 'n_appearance_parameters') # appearance graph if adjacency_array_appearance is None: self.graph_appearance = None elif adjacency_array_appearance == 'yorgos': self.graph_appearance = 'yorgos' else: self.graph_appearance = UndirectedGraph(adjacency_array_appearance) # shape graph if adjacency_array_shape is None: self.graph_shape = None else: self.graph_shape = UndirectedGraph(adjacency_array_shape) # check adjacency_array_deformation, root_vertex_deformation if adjacency_array_deformation is None: self.graph_deformation = None if root_vertex_deformation is None: self.root_vertex = 0 else: if root_vertex_deformation is None: self.graph_deformation = DirectedGraph( adjacency_array_deformation) else: self.graph_deformation = Tree(adjacency_array_deformation, root_vertex_deformation) # store parameters self.features = features self.patch_shape = patch_shape self.normalization_diagonal = normalization_diagonal self.n_levels = n_levels self.downscale = downscale self.scaled_shape_models = scaled_shape_models self.max_shape_components = max_shape_components self.n_appearance_parameters = n_appearance_parameters self.use_procrustes = use_procrustes self.gaussian_per_patch = gaussian_per_patch