class TestSingleGrid(unittest.TestCase): def setUp(self): self.space = SingleGrid(50, 50, False) self.agents = [] for i, pos in enumerate(TEST_AGENTS_GRID): a = MockAgent(i, None) self.agents.append(a) self.space.place_agent(a, pos) def test_agent_positions(self): """ Ensure that the agents are all placed properly. """ for i, pos in enumerate(TEST_AGENTS_GRID): a = self.agents[i] assert a.pos == pos def test_remove_agent(self): for i, pos in enumerate(TEST_AGENTS_GRID): a = self.agents[i] assert a.pos == pos assert self.space.grid[pos[0]][pos[1]] == a self.space.remove_agent(a) assert a.pos is None assert self.space.grid[pos[0]][pos[1]] is None def test_empty_cells(self): if self.space.exists_empty_cells(): pytest.deprecated_call(self.space.find_empty) for i, pos in enumerate(list(self.space.empties)): a = MockAgent(-i, pos) self.space.position_agent(a, x=pos[0], y=pos[1]) assert self.space.find_empty() is None with self.assertRaises(Exception): self.space.move_to_empty(a) def move_agent(self): agent_number = 0 initial_pos = TEST_AGENTS_GRID[agent_number] final_pos = (7, 7) _agent = self.agents[agent_number] assert _agent.pos == initial_pos assert self.space.grid[initial_pos[0]][initial_pos[1]] == _agent assert self.space.grid[final_pos[0]][final_pos[1]] is None self.space.move_agent(_agent, final_pos) assert _agent.pos == final_pos assert self.space.grid[initial_pos[0]][initial_pos[1]] is None assert self.space.grid[final_pos[0]][final_pos[1]] == _agent
class TestSingleGrid(unittest.TestCase): def setUp(self): self.space = SingleGrid(50, 50, False) self.agents = [] for i, pos in enumerate(TEST_AGENTS_GRID): a = MockAgent(i, None) self.agents.append(a) self.space.place_agent(a, pos) def test_agent_positions(self): ''' Ensure that the agents are all placed properly. ''' for i, pos in enumerate(TEST_AGENTS_GRID): a = self.agents[i] assert a.pos == pos def test_remove_agent(self): for i, pos in enumerate(TEST_AGENTS_GRID): a = self.agents[i] assert a.pos == pos assert self.space.grid[pos[0]][pos[1]] == a self.space.remove_agent(a) assert a.pos is None assert self.space.grid[pos[0]][pos[1]] is None def move_agent(self): agent_number = 0 initial_pos = TEST_AGENTS_GRID[agent_number] final_pos = (7, 7) _agent = self.agents[agent_number] assert _agent.pos == initial_pos assert self.space.grid[initial_pos[0]][initial_pos[1]] == _agent assert self.space.grid[final_pos[0]][final_pos[1]] is None self.space.move_agent(_agent, final_pos) assert _agent.pos == final_pos assert self.space.grid[initial_pos[0]][initial_pos[1]] is None assert self.space.grid[final_pos[0]][final_pos[1]] == _agent
class EvacuationModel(Model): """ This is a simulation of a crowd evacuation from a building. Several variables are taken into account: the knowledge of the emergency exits, the age and weight of the agents and the presence of stewards that can guide agents toward the emergency exits. Agents have different strategies to escape the building such as taking the shortest path to an exit or a random one. The goal is to study which combinations of agent types are more likely to escape the building and save themselves and how the amount of casualties varies with respect to the different variables. """ def __init__(self, N=10, K=0, width=50, height=50, fire_x=1, fire_y=1, civil_info_exchange=True): self.num_civilians = N self.num_stewards = K self.civil_info_exchange = civil_info_exchange self.fire_initial_pos = (fire_x, fire_y) self.warning_UI = "" self.agents_alive = N + K # Agents alive and inside the building self.agents_saved = [] # Agents that managed to get out self.agents_killed = [] # Agents that perished during the evacuation self.grid = SingleGrid(height, width, False) self.graph = None # General graph representing walkable terrain self.schedule = RandomActivation( self) # Every tick, agents move in a different random order # Create exits self.pos_exits = [(0, 5), (0, 25), (0, 45)] for i in range(3): self.pos_exits.append((self.grid.width - 1, 14 + i)) self.draw_environment(self.pos_exits) self.graph = path_finding.create_graph(self) # Define data collector model_collector = { "Agents killed": lambda killed: len(self.agents_killed), "Agents saved": lambda saved: len(self.agents_saved) } for exit_pos in self.pos_exits: title = "Exit {}".format(exit_pos) model_collector[title] = partial(count_agents_saved, exit_pos) self.datacollector = DataCollector(model_reporters=model_collector) # Create fire # for pos in self.fire_initial_pos: # Only 1 source of fire since we are setting it from UI x, y = self.fire_initial_pos if not self.is_inside_square((x, y), (0, 29), (25, 39)) and not self.is_inside_square( (x, y), (0, 10), (25, 20)): pos = self.fire_initial_pos else: pos = (1, 1) self.warning_UI = "<b>WARNING:</b> Sorry but the position of the fire is outside of the building, " \ "change the setting and click reset simulation." fire_agent = FireAgent(pos, self) self.schedule.add(fire_agent) self.grid.place_agent(fire_agent, pos) # Create civilian agents for i in range(self.num_civilians): # a civilian agent will know at least the main entrance to the building known_exits = self.pos_exits[-3:] a = CivilianAgent(i, self, known_exits) self.schedule.add(a) # Add the agent to a random grid cell while True: # pick the random coordinate x = self.random.randrange(1, self.grid.width - 1) y = self.random.randrange(1, self.grid.height - 1) # check if the point is empty and inside of the building if self.grid.is_cell_empty((x, y)) and not self.is_inside_square((x, y), (0, 29), (25, 39)) \ and not self.is_inside_square((x, y), (0, 10), (25, 20)): break self.grid.place_agent(a, (x, y)) # Create steward agents for i in range(self.num_civilians, self.num_civilians + self.num_stewards): # a steward agent will know all exits. known_exits = self.pos_exits a = StewardAgent(i, self, known_exits) self.schedule.add(a) # Add the agent to a random grid cell while True: # pick the random coordinate x = self.random.randrange(1, self.grid.width - 1) y = self.random.randrange(1, self.grid.height - 1) # check if the point is empty and inside of the building if self.grid.is_cell_empty((x, y)) and not self.is_inside_square((x, y), (0, 29), (25, 39)) \ and not self.is_inside_square((x, y), (0, 10), (25, 20)): break self.grid.place_agent(a, (x, y)) self.running = True # Set this to false when we want to finish simulation (e.g. all agents are out of building) self.datacollector.collect(self) @staticmethod def is_inside_square(point, bottom_left, top_right): return bottom_left[0] <= point[0] <= top_right[0] and bottom_left[ 1] <= point[1] <= top_right[1] def step(self): self.schedule.step() # collect data self.datacollector.collect(self) # Halt if no more agents in the building if self.count_agents(self) == 0: self.running = False def remove_agent(self, agent, reason, **kwargs): """ Removes an agent from the simulation. Depending on the reason it can be Args: agent (Agent): reason (Reasons): Returns: None """ if reason == Reasons.SAVED: self.agents_saved.append(agent) elif reason == Reasons.KILLED_BY_FIRE: self.agents_killed.append(agent) self.agents_alive -= 1 self.schedule.remove(agent) self.grid.remove_agent(agent) def draw_environment(self, exits=None): length_E = int(self.grid.height / 5) # length of the vertical segments of the E depth_E = int(self.grid.width / 2) # length of the horizontal segments of the E for i in range(3): start = max(0, 2 * i * length_E) self.draw_wall((0, start), (0, start + length_E - 1)) for i in range(2): start = 2 * i * length_E + length_E self.draw_wall((depth_E, start), (depth_E, start + length_E - 1)) # Horizontal lines of the E (BB) aux_y_coord = [ length_E, 2 * length_E, 3 * length_E - 1, 4 * length_E - 1 ] for y in aux_y_coord: self.draw_wall((0, y), (depth_E, y)) top_left_corner = (0, self.grid.height - 1) top_right_corner = (self.grid.width - 1, self.grid.height - 1) bottom_right_corner = (self.grid.width - 1, 0) # Draw long contour lines E self.draw_wall((0, 0), bottom_right_corner) self.draw_wall(top_left_corner, top_right_corner) self.draw_wall(bottom_right_corner, top_right_corner) # Draw exits self.draw_exits(exits) def draw_wall(self, start, end): """ Draws a line that goes from start point to end point. Args: start (List): Coordinates of line's starting point end (List): Coordinates of line's end point Returns: None """ diff_x, diff_y = np.subtract(end, start) wall_coordinates = np.asarray(start) if self.grid.is_cell_empty(wall_coordinates.tolist()): w = WallAgent(wall_coordinates.tolist(), self) self.grid.place_agent(w, wall_coordinates.tolist()) while diff_x != 0 or diff_y != 0: if abs(diff_x) == abs(diff_y): # diagonal wall wall_coordinates[0] += np.sign(diff_x) wall_coordinates[1] += np.sign(diff_y) diff_x -= 1 diff_y -= 1 elif abs(diff_x) < abs(diff_y): # wall built in y dimension wall_coordinates[1] += np.sign(diff_y) diff_y -= 1 else: # wall built in x dimension wall_coordinates[0] += np.sign(diff_x) diff_x -= 1 if self.grid.is_cell_empty(wall_coordinates.tolist()): w = WallAgent(wall_coordinates.tolist(), self) self.grid.place_agent(w, wall_coordinates.tolist()) def draw_exits(self, exits_list): for ext in exits_list: e = ExitAgent(ext, self) if not self.grid.is_cell_empty(ext): # Only walls should exist in the grid at this time, so no need to remove it from scheduler agent = self.grid.get_cell_list_contents(ext) self.grid.remove_agent(agent[0]) # Place exit self.schedule.add(e) self.grid.place_agent(e, ext) def spread_fire(self, fire_agent): fire_neighbors = self.grid.get_neighborhood(fire_agent.pos, moore=True, include_center=False) for grid_space in fire_neighbors: if self.grid.is_cell_empty(grid_space): # Create new fire agent and add it to grid and scheduler new_fire_agent = FireAgent(grid_space, self) self.schedule.add(new_fire_agent) self.grid.place_agent(new_fire_agent, grid_space) else: # If human agents, eliminate them and spread anyway agent = self.grid.get_cell_list_contents(grid_space)[0] if isinstance(agent, (CivilianAgent, StewardAgent)): new_fire_agent = FireAgent(grid_space, self) self.remove_agent(agent, Reasons.KILLED_BY_FIRE) self.schedule.add(new_fire_agent) self.grid.place_agent(new_fire_agent, grid_space) @staticmethod def count_agents(model): """ Helper method to count agents alive and still in the building. """ count = 0 for agent in model.schedule.agents: agent_type = type(agent) if (agent_type == CivilianAgent) or (agent_type == StewardAgent): count += 1 return count
class Anthill(Model): def __init__(self): self.grid = SingleGrid(WIDTH, HEIGHT, False) self.schedule = RandomActivation(self) self.running = True self.internalrate = 0.2 self.ant_id = 1 self.tau = np.zeros((WIDTH, HEIGHT)) self.datacollector = DataCollector({ "Total number of Ants": lambda m: self.get_total_ants_number(), "mean tau": lambda m: self.evaluation1(), "sigma": lambda m: self.evaluation2(), "sigma*": lambda m: self.evaluation3(), }) # List containing all coordinates of the boundary, initial ants location and brood location self.bound_vals = [] self.neigh_bound = [] self.datacollector.collect(self) for i in range(WIDTH): for j in range(HEIGHT): if i == 0 or j == 0 or i == WIDTH - 1 or j == HEIGHT - 1: self.bound_vals.append((i, j)) if i == 1 or i == WIDTH - 2 or j == 1 or j == HEIGHT - 2: self.neigh_bound.append((i, j)) # Make a Fence boundary b = 0 for h in self.bound_vals: br = Fence(b, self) self.grid.place_agent(br, (h[0], h[1])) b += 1 def step(self): '''Advance the model by one step.''' # Add new ants into the internal area ont he boundary for xy in self.neigh_bound: # Add with probability internal rate and if the cell is empty if self.random.uniform( 0, 1) < self.internalrate and self.grid.is_cell_empty( xy) == True: a = Ant(self.ant_id, self) self.schedule.add(a) self.grid.place_agent(a, xy) self.ant_id += 1 # Move the ants self.schedule.step() self.datacollector.collect(self) # Remove all ants on bounary for (agents, i, j) in self.grid.coord_iter(): if (i, j) in self.neigh_bound and type(agents) is Ant: self.grid.remove_agent(agents) self.schedule.remove(agents) data_tau.append(self.mean_tau_ant) data_sigma.append(np.sqrt(self.sigma)) data_sigmastar.append(self.sigmastar) if len(data_sigmastar) > 20: if abs(data_sigmastar[-2] - data_sigmastar[-1]) < 0.0000001 or len( data_sigmastar) == 2000: try: # TAU with open("results/m1_tau_5.pkl", 'rb') as f: tau_old = pickle.load(f) tau_old[int(len(tau_old) + 1)] = data_tau f.close() pickle.dump(tau_old, open("results/m1_tau_5.pkl", 'wb')) except: pickle.dump({1: data_tau}, open("results/m1_tau_5.pkl", 'wb')) try: # SIGMA with open("results/m1_sigma_5.pkl", 'rb') as f: sigma_old = pickle.load(f) sigma_old[int(len(sigma_old) + 1)] = data_sigma f.close() pickle.dump(sigma_old, open("results/m1_sigma_5.pkl", 'wb')) except: pickle.dump({1: data_sigma}, open("results/m1_sigma_5.pkl", 'wb')) try: # SIGMASTAR with open("results/m1_sigmastar_5.pkl", 'rb') as f: sigmastar_old = pickle.load(f) sigmastar_old[int(len(sigmastar_old) + 1)] = data_sigmastar f.close() pickle.dump(sigmastar_old, open("results/m1_sigmastar_5.pkl", 'wb')) except: pickle.dump({1: data_sigmastar}, open("results/m1_sigmastar_5.pkl", 'wb')) try: # MATRIX with open("results/m1_matrix_5.pkl", 'rb') as f: matrix_old = pickle.load(f) matrix_old[int(len(matrix_old) + 1)] = self.tau f.close() pickle.dump(matrix_old, open("results/m1_matrix_5.pkl", 'wb')) except: pickle.dump({1: self.tau}, open("results/m1_matrix_5.pkl", 'wb')) print( "_______________________________________________________________________" ) print("DONE") self.running = False # with open("tau2_new.txt", "a") as myfile: # myfile.write(str(self.mean_tau_ant) + '\n') # with open("sigma2_new.txt", "a") as myfile: # myfile.write(str(np.sqrt(self.sigma)) + '\n') # with open("datasigmastar2_new.txt","a") as myfile: # myfile.write(str(self.sigmastar) + "\n") def get_total_ants_number(self): total_ants = 0 for (agents, _, _) in self.grid.coord_iter(): if type(agents) is Ant: total_ants += 1 return total_ants def evaluation1(self): ##creat a empty grid to store currently information total_ants = np.zeros((WIDTH, HEIGHT)) ## count the number of currently information for (agents, i, j) in self.grid.coord_iter(): if type(agents) is Ant: total_ants[i][j] = 1 else: total_ants[i][j] = 0 ##update the tau self.tau = self.tau + total_ants ##calcualte the mean tau self.mean_tau_ant = self.tau.sum() / ((WIDTH - 2)**2) return self.mean_tau_ant def evaluation2(self): ## we need to minus the mean tau so we need to ensure the result of boundary is zero ## so we let the bounday equal mean_tau_ant in this way the (tau-mean_tau_ant) is zero of boundary for site in self.bound_vals: self.tau[site[0]][site[1]] = self.mean_tau_ant ## calculate the sigmaa self.sigma = ((self.tau - self.mean_tau_ant)**2).sum() / ( (WIDTH - 2)**2) ## rechange the boundaryy for site in self.bound_vals: self.tau[site[0]][site[1]] = 0 return np.sqrt(self.sigma) def evaluation3(self): ## calculate the sigmastar self.sigmastar = np.sqrt(self.sigma) / self.mean_tau_ant return self.sigmastar
class modelSim(Model): """ details of the world introduce time is when animal agents first get introduced into the wrold disp_rate is the dispersal rate for experiment 3 dist is perceptual strength for animals if fixed det is decision determinacy of animals if fixed cog_fixed determines if cognition of animals is fixed to particular values or is allowed to evolve if skip_300 is True, patchiness values are not calculated for the first 300 steps-- this makes the model run faster collect_cog_dist creates a seperate dataframe for all cognition values for agents at every timestep if evolve_disp is true, dispersion rate of plants is free to evolve """ def __init__(self, introduce_time, disp_rate, dist, det, cog_fixed = False, \ skip_300 = True, collect_cog_dist = False, evolve_disp = False): self.skip_300 = skip_300 self.cog_fixed = cog_fixed self.evolve_disp = evolve_disp self.collect_cog_dist = collect_cog_dist self.dist = dist self.det = det self.disp_rate = disp_rate self.intro_time = introduce_time (self.a1num, self.a2num) = (20, 20) self.schedule = RandomActivation( self) # agents take a step in random order self.grid = SingleGrid( 200, 200, True) # the world is a grid with specified height and width self.initialize_perception() disp = np.power(self.disp_rate, range(0, 100)) self.disp = disp / sum(disp) self.grid_ind = np.indices((200, 200)) positions = np.maximum(abs(100 - self.grid_ind[0]), abs(100 - self.grid_ind[1])) self.positions = np.minimum(positions, 200 - positions) self.agentgrid = np.zeros( (self.grid.width, self.grid.height )) # allows for calculation of patchiness of both agents self.coggrid = np.full( (self.nCogPar, self.grid.width, self.grid.height), 101.0) self.dispgrid = np.full((2, self.grid.width, self.grid.height), 101.0) self.age = [] (self.nstep, self.unique_id, self.reprod, self.food, self.death, self.combat) = (0, 0, 0, 0, 0, 0) self.cmap = colors.ListedColormap([ 'midnightblue', 'mediumseagreen', 'white', 'white', 'white', 'white', 'white' ]) #'yellow', 'orange', 'red', 'brown']) bounds = [0, 1, 2, 3, 4, 5, 6, 7] self.norm = colors.BoundaryNorm(bounds, self.cmap.N) self.expect_NN = [] self.NN = [5, 10] for i in self.NN: self.expect_NN.append( (math.factorial(2 * i) * i) / (2**i * math.factorial(i))**2) grid_ind_food = np.indices((21, 21)) positions_food = np.maximum(abs(10 - grid_ind_food[0]), abs(10 - grid_ind_food[1])) self.positions_food = np.minimum(positions_food, 21 - positions_food) if self.collect_cog_dist: self.cog_dist_dist = pd.DataFrame(columns=[]) self.cog_dist_det = pd.DataFrame(columns=[]) for i in range(self.a1num): # initiate a1 agents at random locations self.introduce_agents("A1") self.nA1 = self.a1num self.nA2 = 0 # self.agent_steps = {} def initialize_perception(self): self.history = pd.DataFrame(columns=[ "nA1", "nA2", "age", "LIP5", "LIP10", "LIPanim5", "LIPanim10", "Morsita5", "Morsita10", "Morsitaanim5", "Morsitaanim10", "NN5", "NN10", "NNanim5", "NNanim10", "reprod", "food", "death", "combat", "dist", "det", "dist_lower", "det_lower", "dist_upper", "det_upper", "dist_ci", "det_ci" ]) self.nCogPar = 2 (self.start_energy, self.eat_energy, self.tire_energy, self.reproduction_energy, self.cognition_energy) \ = (10, 5, 3, 20, 1) def introduce_agents(self, which_agent): x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) if which_agent == "A1": if self.grid.is_cell_empty((x, y)): a = A1(self.unique_id, self, self.start_energy, disp_rate=0) self.unique_id += 1 self.grid.position_agent(a, x, y) self.schedule.add(a) self.agentgrid[x][y] = 1 else: self.introduce_agents(which_agent) elif which_agent == "A2": if self.cog_fixed: c = (self.dist, self.det) else: c = tuple([0] * self.nCogPar) a = A2(self.unique_id, self, self.start_energy, cognition=c, disp_rate=0) self.unique_id += 1 if self.agentgrid[x][y] == 1: die = self.grid.get_cell_list_contents([(x, y)])[0] die.dead = True self.grid.remove_agent(die) self.schedule.remove(die) self.grid.place_agent(a, (x, y)) self.schedule.add(a) self.agentgrid[x][y] = 2 self.coggrid[:, x, y] = c elif self.agentgrid[x][y] == 0: self.grid.place_agent(a, (x, y)) self.schedule.add(a) self.agentgrid[x][y] = 2 self.coggrid[:, x, y] = c def flatten_(self, n, grid, full_grid=False, mean=True, range_=False): if full_grid: return (grid[n].flatten()) i = grid[n].flatten() if mean: i = np.delete(i, np.where(i == 101)) if len(i) == 0: # if range_: return ([0] * 4) #else: # return(0) if range_: if self.cog_fixed: return ([np.mean(i)] * 4) return (np.concatenate( ([np.mean(i)], np.percentile(i, [2.5, 97.5]), self.calculate_ci(i)))) return ([np.mean(i), 0, 0, 0]) else: return (i) def calculate_ci(self, data): if np.min(data) == np.max(data): return ([0.0]) return ([ np.mean(data) - st.t.interval( 0.95, len(data) - 1, loc=np.mean(data), scale=st.sem(data))[0] ]) def return_zero(self, num, denom): if self.nstep == 1: # print("whaaat") return (0) if denom == "old_nA2": denom = self.history["nA2"][self.nstep - 2] if denom == 0.0: return 0 return (num / denom) def nearest_neighbor(self, agent): # fix this later if agent == "a1": x = np.argwhere(self.agentgrid == 1) if len(x) <= 10: return ([-1] * len(self.NN)) elif len(x) > 39990: return ([0.97, 0.99]) # if self.nstep<300 and self.skip_300: # return([-1,-1] ) else: x = np.argwhere(self.agentgrid == 2) if len(x) <= 10: return ([-1] * len(self.NN)) density = len(x) / (self.grid.width)**2 expect_NN_ = self.expect_NN expect_dist = np.array(expect_NN_) / (density**0.5) distances = [0, 0] for i in x: distx = abs(x[:, 0] - i[0]) distx[distx > 100] = 200 - distx[distx > 100] disty = abs(x[:, 1] - i[1]) disty[disty > 100] = 200 - disty[disty > 100] dist = (distx**2 + disty**2)**0.5 distances[0] += (np.partition(dist, 5)[5]) distances[1] += (np.partition(dist, 10)[10]) mean_dist = np.array(distances) / len(x) out = mean_dist / expect_dist return (out) def quadrant_patch( self, agent ): # function to calculate the patchiness index of agents at every step if agent == "a1": x = self.agentgrid == 1 else: x = self.agentgrid == 2 gsize = np.array([5, 10]) gnum = 200 / gsize qcs = [] for i in range(2): x_ = x.reshape(int(gnum[i]), gsize[i], int(gnum[i]), gsize[i]).sum(1).sum(2) mean = np.mean(x_) var = np.var(x_) if mean == 0.0: return ([-1] * 4) lip = 1 + (var - mean) / (mean**2) morsita = np.sum(x) * ((np.sum(np.power(x_, 2)) - np.sum(x_)) / (np.sum(x_)**2 - np.sum(x_))) qcs += [lip, morsita] return (qcs) def l_function(self, agent): if agent == "a1": x = np.argwhere(self.agentgrid == 1) else: x = np.argwhere(self.agentgrid == 2) if len(x) == 0: return (-1) distances = np.array([]) for i in x: distx = abs(x[:, 0] - i[0]) distx[distx > 100] = 200 - distx[distx > 100] disty = abs(x[:, 1] - i[1]) disty[disty > 100] = 200 - disty[disty > 100] dist = (distx**2 + disty**2)**0.5 distances = np.concatenate((distances, dist[dist != 0])) l = np.array([]) for i in np.arange(5, 51, 5): l = np.append(l, sum(distances < i)) k = (l * 200**2) / (len(x)**2) l = (k / math.pi)**0.5 return (abs(l - np.arange(5, 51, 5))) def collect_hist(self): if self.nstep < 300 and self.skip_300: NNcalc = [-1, -1] #self.nearest_neighbor("a1") NNanimcalc = [-1, -1] #self.nearest_neighbor("a2") else: NNcalc = self.nearest_neighbor("a1") NNanimcalc = self.nearest_neighbor("a2") quadrantcalc = self.quadrant_patch("a1") quadrantanimcalc = self.quadrant_patch("a2") dist_values = self.flatten_(0, grid=self.coggrid, mean=True, range_=False) det_values = self.flatten_(1, grid=self.coggrid, mean=True, range_=False) # l_f = 0#self.l_function("a1") dat = { "nA1": self.nA1, "nA2": self.nA2, "age": self.return_zero(sum(self.age), self.nA2), "LIP5": quadrantcalc[0], "LIP10": quadrantcalc[2], "LIPanim5": quadrantanimcalc[0], "LIPanim10": quadrantanimcalc[2], "Morsita5": quadrantcalc[1], "Morsita10": quadrantcalc[3], "Morsitaanim5": quadrantanimcalc[1], "Morsitaanim10": quadrantanimcalc[3], "NN5": NNcalc[0], "NN10": NNcalc[1], "NNanim5": NNanimcalc[0], "NNanim10": NNanimcalc[1], #"l_ripley" : l_f,# self.nearest_neighbor("a2"), "reprod": self.return_zero(self.reprod, "old_nA2"), "food": self.return_zero(self.food, self.nA2), "death": self.return_zero(self.death, "old_nA2"), "combat": self.return_zero(self.combat, "old_nA2"), "dist": dist_values[0], "det": det_values[0], "dist_lower": dist_values[1], "det_lower": det_values[1], "dist_upper": dist_values[2], "det_upper": det_values[2], "dist_ci": dist_values[3], "det_ci": det_values[3], "disp_a1": self.flatten_(0, grid=self.dispgrid)[0], "disp_a2": self.flatten_(1, grid=self.dispgrid)[0] } self.history = self.history.append(dat, ignore_index=True) self.age = [] (self.reprod, self.food, self.death, self.combat) = (0, 0, 0, 0) if self.collect_cog_dist: if (self.nstep % 10) == 0: self.cog_dist_dist[str(self.nstep - 1)] = self.flatten_( 0, grid=self.coggrid, full_grid=True, mean=False) self.cog_dist_det[str(self.nstep - 1)] = self.flatten_( 1, grid=self.coggrid, full_grid=True, mean=False) def step(self): self.nstep += 1 # step counter if self.nstep == self.intro_time: for i in range(self.a2num): self.introduce_agents("A2") self.schedule.step() self.nA1 = np.sum(self.agentgrid == 1) self.nA2 = np.sum(self.agentgrid == 2) self.collect_hist() if self.nstep % 10 == 0: sys.stdout.write((str(self.nstep) + " " + str(self.nA1) + " " + str(self.nA2) + "\n")) def visualize(self): f, ax = plt.subplots(1) self.agentgrid = self.agentgrid.astype(int) ax.imshow(self.agentgrid, interpolation='nearest', cmap=self.cmap, norm=self.norm) # plt.axis("off") return (f)
class SDGrid(Model): ''' Model class for iterated, spatial social dilemma model. ''' schedule_types = {"Sequential": BaseScheduler, "Random": RandomActivation, "Simultaneous": SimultaneousActivation} # This dictionary holds the payoff for this agent, # keyed on: (my_move, other_move) #NOTE: Payoffs must be given by the user in the format below as a dict object. def __init__(self, height=0, width=0, schedule_type="Random", payoffs=None, seed=2514, p = .1, implement = "Epstein", num_RL =500, ep_length=1): ''' Create a new Spatial Prisoners' Dilemma Model. Args: height, width: Grid size. There will be one agent per grid cell. schedule_type: Can be "Sequential", "Random", or "Simultaneous". Determines the agent activation regime. payoffs: (required) Dictionary of (move, neighbor_move) payoffs. ''' #Set default grid size if none inputted by user if height == 0: h = 50 else: h = height if width == 0: w = 50 else: w = width assert height or width < 0, "Grid heigth and width must be positive numbers." if payoffs: self.payoff = payoffs else: self.payoff = {(C, C): 5, (C, D): -5, (D, C): 6, (D, D): -6} self.grid = SingleGrid(h, w, torus=True) self.schedule_type = schedule_type self.schedule = self.schedule_types[self.schedule_type](self) self.implement = implement self.ep_length = ep_length self.num_RL = num_RL #FIXME: THis is a bandaid fix for MESA's loop bug (see trello for SD ABM): self.kill_list = [] self.fertile_agents = [] if self.implement == "Epstein": leave_empty = np.random.choice(a = [False, True], size = (width, height), p = [p, 1-p]) else: pass # Create agents: automatically populates agents and grid; count = 0 for x in range(width): for y in range(height): if implement == "Epstein": if leave_empty[x, y]: continue else: agent = SDAgent(count, (x, y), self) count +=1 else: agent = SDAgent(count, (x, y), self) count +=1 self.grid.place_agent(agent, (x, y)) self.schedule.add(agent) ######################################################################################################################## #FIXME: may need to make an unique id for agents to do this correctly #FIXME: this will have to be generalized later for when multipe batches of episodes are being run ######################################################################################################################## # learners = np.random.choice([self.schedule._agents], self.num_RL) # #switch them to learn mode # for agent in learners: # agent.learn_mode = True # TODO: Make data collection easier for user; need to do same in BWT / Cartel self.datacollector = DataCollector(model_reporters={ "Learning Cooperating_Agents": lambda m: (len([a for a in m.schedule.agents if a.move == C and a.unique_id == 1] )), "Learning Defecting_Agents": lambda n: (len([b for b in n.schedule.agents if b.move == D and b.unique_id == 1] )) }) self.running = True self.datacollector.collect(self) def step(self): self.schedule.step() for agent in self.schedule.agents: if agent.unique_id == 1: agent.learn = True #print('agent 1 has learn set to {}'.format(agent.learn)) agent.update_policy() # collect data self.datacollector.collect(self) # self.purge() # self.replicate_agents() #if (self.schedule.time % self.ep_length == 0) and (self.schedule.time > 0): #print(self.schedule.time) # learners = random.sample(self.schedule.agents, self.num_RL) # for agent in learners: # agent.learn = True # for agent in learners: # agent.update_policy() # agent.learn = False # if agent == learners[-1]: # print("################################# Update finished #################################") def replicate_agents(self): if self.fertile_agents is not None: for agent in self.fertile_agents: if agent.pos is not None: try: agent.replicate() except ValueError: #print("Caught a bad egg, boss!") continue def purge(self): if len(self.kill_list)>0: for agent in self.kill_list: self.grid.remove_agent(agent) self.schedule.remove(agent) self.kill_list = [] else: pass def run(self, n): ''' Run the model for n steps. ''' for _ in range(n): self.step()
class RoadModel(Model): """ A model with a number of cars, Nagel-Schreckenberg """ def __init__(self, N, length=100, lanes=1, timer=3): self.num_agents = N self.grid = SingleGrid(length, lanes, torus=True) model_stages = [ "acceleration", "braking", "randomisation", "move", "delete" ] self.schedule = StagedActivation(self, stage_list=model_stages) # Create agent for i in range(self.num_agents): agent = CarAgent(i, self, False) # Add to schedule self.schedule.add(agent) # Add to grid (randomly) self.grid.position_agent(agent) # Add the traffic light self.traffic_light = TrafficLight(0, self, timer, 20, 20) self.average_velocity = CarAgent.init_velocity self.datacollector = DataCollector(agent_reporters={ "Position": "pos", "Velocity": "velocity" }, model_reporters={ "Average Velocity": "average_velocity", "Amount of cars": "agent_count", "On Ramp Queue": get_on_ramp_queue, "Waiting Queue": get_waiting_queue }) self.running = True def step(self): """ The model takes a new step and updates """ # Calculate amount of agents self.agent_count = len(self.schedule.agents) # Calculate average velocity self.average_velocity = np.mean( [a.velocity for a in self.schedule.agents]) # Collect data self.datacollector.collect(self) # Run a step of the traffic light self.traffic_light.step() # Run next step self.schedule.step() def add_agent(self, label, x_corr): """ Adds an agent to the scheduler and model on a particular coordinate :param label: The label of the agents that gets created :param x_corr: The x-coordinate of where the agent will be spawned """ # Create agent agent = CarAgent(label, self, True) # Add to schedule self.schedule.add(agent) # Add to grid on a certain position self.grid.position_agent(agent, x_corr, 0) def delete_agent(self, agent): """ Deletes an agent from the scheduler and model :param agent: The agents that gets deleted """ # remove from schedule self.schedule.remove(agent) # remove from grid self.grid.remove_agent(agent)
class GTModel(Model): def __init__(self, debug, size, i_n_agents, i_strategy, i_energy, child_location, movement, k, T, M, p, d, strategies_to_count, count_tolerance, mutation_type, death_threshold, n_groups): self.grid = SingleGrid(size, size, torus=True) self.schedule = RandomActivation(self) self.running = True self.debug = debug self.size = size self.agent_idx = 0 self.i_energy = i_energy # Payoff matrix in the form (my_move, op_move) : my_reward self.payoff = { ('C', 'C'): 2, ('C', 'D'): -3, ('D', 'C'): 3, ('D', 'D'): -1, } # Constant for max population control (cost of surviving) self.k = k # Constant for controlling dying of old age self.M = M # Minimum lifespan self.T = T # Minimum energy level to reproduce self.p = p # Mutation "amplitude" self.d = d # Whether to spawn children near parents or randomly self.child_location = child_location # Specify the type of movement allowed for the agents self.movement = movement # Specify how the agents mutate self.mutation_type = mutation_type # The minimum total_energy needed for an agent to survive self.death_threshold = death_threshold # Vars regarding which strategies to look for self.strategies_to_count = strategies_to_count self.count_tolerance = count_tolerance # Add agents (one agent per cell) all_coords = [(x, y) for x in range(size) for y in range(size)] agent_coords = self.random.sample(all_coords, i_n_agents) for _ in range(i_n_agents): group_idx = (None if n_groups is None else self.random.choice( range(n_groups))) agent = GTAgent(self.agent_idx, group_idx, self, i_strategy.copy(), i_energy) self.agent_idx += 1 self.schedule.add(agent) self.grid.place_agent(agent, agent_coords.pop()) # Collect data self.datacollector = DataCollector( model_reporters={ **{ 'strategies': get_strategies, 'n_agents': total_n_agents, 'avg_agent_age': avg_agent_age, 'n_friendlier': n_friendlier, 'n_aggressive': n_aggressive, 'perc_cooperative_actions': perc_cooperative_actions, 'n_neighbors': n_neighbor_measure, 'avg_delta_energy': avg_delta_energy, 'perc_CC': perc_CC_interactions, 'lin_fit_NC': coop_per_neig, 'lin_fit_NC_intc': coop_per_neig_intc, }, **{ label: strategy_counter_factory(strategy, count_tolerance) for label, strategy in strategies_to_count.items() } }) def alpha(self): # Return the cost of surviving, alpha DC = self.payoff[('D', 'C')] CC = self.payoff[('C', 'C')] N = len(self.schedule.agents) return self.k + 4 * (DC + CC) * N / (self.size * self.size) def time_to_die(self, agent): # There is a chance every iteration to die of old age: (A - T) / M # There is a 100% to die if the agents total energy reaches 0 return (agent.total_energy < self.death_threshold or self.random.random() < (agent.age - self.T) / self.M) def get_child_location(self, agent): if self.child_location == 'global': return self.random.choice(sorted(self.grid.empties)) elif self.child_location == 'local': # Iterate over the radius, starting at 1 to find empty cells for rad in range(1, int(self.size / 2)): possible_steps = [ cell for cell in self.grid.get_neighborhood( agent.pos, moore=False, include_center=False, radius=rad, ) if self.grid.is_cell_empty(cell) ] if possible_steps: return self.random.choice(possible_steps) # If no free cells in radius size/2 pick a random empty cell return self.random.choice(sorted(self.grid.empties)) def maybe_mutate(self, agent): # Mutate by adding a random d to individual Pi's if self.mutation_type == 'stochastic': # Copy the damn list new_strategy = agent.strategy.copy() # There is a 20% chance of mutation if self.random.random() < 0.2: # Each Pi is mutated uniformly by [-d, d] for i in range(4): mutation = self.random.uniform(-self.d, self.d) new_val = new_strategy[i] + mutation # Keep probabilities in [0, 1] new_val = (0 if new_val < 0 else 1 if new_val > 1 else new_val) new_strategy[i] = new_val # Mutate by choosing a random strategy from the list set elif self.mutation_type == 'fixed': new_strategy = random.choice( list(self.strategies_to_count.values())) elif self.mutation_type == 'gaussian_sentimental': # Copy the damn list new_strategy = agent.strategy.copy() # There is a 20% chance of mutation if self.random.random() < 0.2: # Each Pi is mutated by a value drawn from a gaussian # with mean=delta_energy for i in range(4): mutation = self.random.normalvariate( (agent.delta_energy + self.alpha()) / 14, self.d) new_val = new_strategy[i] + mutation # Keep probabilities in [0, 1] new_val = (0 if new_val < 0 else 1 if new_val > 1 else new_val) new_strategy[i] = new_val return new_strategy def maybe_reproduce(self, agent): # If we have the energy to reproduce, do so if agent.total_energy >= self.p: # Create the child new_strategy = self.maybe_mutate(agent) child = GTAgent(self.agent_idx, agent.group_id, self, new_strategy, self.i_energy) self.agent_idx += 1 # Set parent and child energy levels to p/2 child.total_energy = self.p / 2 agent.total_energy = self.p / 2 # Place child (Remove agent argument for global child placement) self.schedule.add(child) self.grid.place_agent(child, self.get_child_location(agent)) def step(self): if self.debug: print('\n\n==================================================') print('==================================================') print('==================================================') pprint(vars(self)) # First collect data self.datacollector.collect(self) # Then check for dead agents and for new agents for agent in self.schedule.agent_buffer(shuffled=True): # First check if dead if self.time_to_die(agent): self.grid.remove_agent(agent) self.schedule.remove(agent) # Otherwise check if can reproduce else: self.maybe_reproduce(agent) # Finally, step each agent self.schedule.step() def check_strategy(self, agent): # Helper function to check which strategy an agent would count as def is_same(strategy, a_strategy): tol = self.count_tolerance return all(strategy[i] - tol < a_strategy[i] < strategy[i] + tol for i in range(4)) return [ name for name, strat in self.strategies_to_count.items() if is_same(strat, agent.strategy) ]