def objective(self, x):
        if x.tobytes() not in self.cache_dict:
            R = mesh_helper.Rxyz(x[0], x[1], self.stability_poly_yaw)
            local_poly = np.dot(self.stability_poly, R.T)

            local_poly = local_poly + self.stability_poly_origin
            local_poly = local_poly + [0, 0, x[2]]

            #start_time = datetime.datetime.now()
            v = [(p[2] - self.interp_fn(p[0], p[1])) for p in local_poly]

            self.cache_dict[x.tobytes()] = {'sum': sum(v), 'min': min(v)}

        objective_v = self.cache_dict[x.tobytes()]['sum']

        #delta_intepolator_millis = int((datetime.datetime.now() - start_time).total_seconds() * 1000)
        #print "objective interpol time millis:{}".format(delta_intepolator_millis)

        #print "objective x:\t", "{:.7f}".format(x[0]), "{:.7f}".format(x[1]), "{:.7f}".format(
        #    x[2]), "\t", objective_v, "\t", v, "\t x:", x

        if not math.isnan(objective_v):  #and self.constraint_superior_zero(x):
            self.last_good_objective_x = x
        else:
            #if math.isnan(objective_v):
            raise ValueError("The optimizator used nan values for x")

        return objective_v
    def constraint_superior_zero(self, x):
        if x.tobytes() not in self.cache_dict:
            R = mesh_helper.Rxyz(x[0], x[1], self.stability_poly_yaw)
            local_poly = np.dot(self.stability_poly, R.T)

            local_poly = local_poly + self.stability_poly_origin
            local_poly = local_poly + [0, 0, x[2]]

            v = [(p[2] - self.interp_fn(p[0], p[1])) for p in local_poly]

            self.cache_dict[x.tobytes()] = {'sum': sum(v), 'min': min(v)}

        return self.cache_dict[x.tobytes()]['min']
示例#3
0
    def estimate_pose(self,
                      start_pos,
                      z_distance=2,
                      start_orientation=(0, 0, 0)):
        start_time = datetime.datetime.now()
        start_quat_orientation = p.getQuaternionFromEuler(start_orientation)

        start_pos = [start_pos[0], start_pos[1], start_pos[2] + z_distance]

        boxId = p.loadURDF(self.urdf_path, start_pos, start_quat_orientation)
        linkId = 1

        jointFrictionForce = 0
        for joint in range(p.getNumJoints(boxId)):
            p.setJointMotorControl2(boxId,
                                    joint,
                                    p.POSITION_CONTROL,
                                    force=jointFrictionForce)

        linkStateFull = p.getLinkState(boxId, linkId)
        prevCubePos, prevCubeOrn = linkStateFull[4], linkStateFull[5]

        for i in range(1000):
            p.stepSimulation()

            linkStateFull = p.getLinkState(boxId, linkId)
            cubePos, cubeOrn = linkStateFull[4], linkStateFull[5]

            dist = math.sqrt((cubePos[2] - prevCubePos[2])**2)  # only z

            q0 = pyquaternion.Quaternion(x=cubeOrn[0],
                                         y=cubeOrn[1],
                                         z=cubeOrn[2],
                                         w=cubeOrn[3])
            q1 = pyquaternion.Quaternion(x=prevCubeOrn[0],
                                         y=prevCubeOrn[1],
                                         z=prevCubeOrn[2],
                                         w=prevCubeOrn[3])
            quat_dist = pyquaternion.Quaternion.absolute_distance(q0, q1)

            # print "dist:{:.8f}".format(dist), "quat_dist:{:.6f}".format(quat_dist)

            prevCubePos, prevCubeOrn = cubePos, cubeOrn

            if i > 10 and (dist <= 0.00001 and quat_dist <= 0.0001):
                #print "breaking at step:", i, dist, quat_dist
                break

            # time.sleep(1./360.)

        end_time = datetime.datetime.now()
        delta = end_time - start_time
        delta_millis = int(delta.total_seconds() * 1000)  # milliseconds
        #print "total time millis:{}".format(delta_millis)

        p.removeBody(boxId)

        euler_q1 = p.getEulerFromQuaternion(prevCubeOrn)
        R = mesh_helper.Rxyz(euler_q1[0], euler_q1[1], euler_q1[2])
        zf = np.array([0, 0, 1])
        zf_l = np.dot(R, zf)

        return prevCubePos, zf_l
    def plot(self, x_final, zoom=10):
        fig = pyplot.figure()  # figsize=pyplot.figaspect(0.5)*1.1
        # ax = fig.axes(projection="3d")
        ax = Axes3D(fig)
        # ax.set_aspect('equal')

        x, y, z = zip(*self.filtered_centroids)
        xline = np.linspace(min(x), max(x), 30)
        yline = np.linspace(min(y), max(y), 30)
        xgrid, ygrid = np.meshgrid(xline, yline)
        z_interp = self.interp_fn(xgrid, ygrid)

        ax.set_xlim3d(min(x), max(x))
        ax.set_ylim3d(min(y), max(y))
        ax.set_zlim3d(min(z), max(max(z), self.stability_poly_origin[2]))

        ax.plot_wireframe(xgrid,
                          ygrid,
                          z_interp,
                          color="purple",
                          linewidths=0.5)
        ax.plot_surface(xgrid, ygrid, z_interp, alpha=0.2, color="orchid")
        ax.scatter3D(x, y, z, c='r')
        ax.set_xlabel('X')
        ax.set_ylabel('Y')
        ax.set_zlabel('Z')

        R = mesh_helper.Rxyz(x_final[0], x_final[1],
                             self.stability_poly_yaw)  # , order="YZX"
        local_poly = np.dot(self.stability_poly, R.T)

        local_poly = local_poly + self.stability_poly_origin
        local_poly = local_poly + [0, 0, x_final[2]]

        ax.scatter(local_poly[:, 0],
                   local_poly[:, 1],
                   local_poly[:, 2],
                   zdir='z',
                   c='b')

        stability_poly_tuples = list([map(list, local_poly)])
        collection = Poly3DCollection(list(stability_poly_tuples),
                                      linewidths=0.5,
                                      alpha=0.7,
                                      edgecolors='blue')
        face_color = [
            0.5, 0.5, 1
        ]  # alternative: matplotlib.colors.rgb2hex([0.5, 0.5, 1])
        collection.set_facecolor(face_color)
        ax.add_collection3d(collection)

        cz = np.mean(local_poly[:, 2])  # mean of z values

        scatter_z_interpolated = []
        for p in stability_poly_tuples[0]:
            x = p[0]
            y = p[1]
            z = p[2]

            ax.plot([x, x], [y, y], [z, self.interp_fn(x, y)],
                    linestyle="--",
                    c='b',
                    linewidth=0.4)  # points to center
            scatter_z_interpolated.append(self.interp_fn(x, y))

        ax.scatter(local_poly[:, 0],
                   local_poly[:, 1],
                   scatter_z_interpolated,
                   zdir='z',
                   c='b',
                   s=0.5)

        xf = np.array([1, 0, 0])
        yf = np.array([0, 1, 0])
        zf = np.array([0, 0, 1])
        xf_l = np.dot(R, xf)
        yf_l = np.dot(R, yf)
        zf_l = np.dot(R, zf)

        ax.quiver(self.stability_poly_origin[0],
                  self.stability_poly_origin[1],
                  cz,
                  zf_l[0],
                  zf_l[1],
                  zf_l[2],
                  length=0.2,
                  pivot='tail',
                  linestyle="-",
                  color='blue')  # z

        # Plot robot axes:
        ax.quiver(self.stability_poly_origin[0],
                  self.stability_poly_origin[1],
                  self.stability_poly_origin[2],
                  xf_l[0],
                  xf_l[1],
                  xf_l[2],
                  length=0.3,
                  pivot='tail',
                  linestyle="--",
                  color='red')  # x
        ax.quiver(self.stability_poly_origin[0],
                  self.stability_poly_origin[1],
                  self.stability_poly_origin[2],
                  yf_l[0],
                  yf_l[1],
                  yf_l[2],
                  length=0.3,
                  pivot='tail',
                  linestyle="--",
                  color='green')  # y
        ax.quiver(self.stability_poly_origin[0],
                  self.stability_poly_origin[1],
                  self.stability_poly_origin[2],
                  zf_l[0],
                  zf_l[1],
                  zf_l[2],
                  length=0.3,
                  pivot='tail',
                  linestyle="--",
                  color='blue')  # z

        ax.dist = zoom

        def axisEqual3D(ax):
            extents = np.array(
                [getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz'])
            sz = extents[:, 1] - extents[:, 0]
            centers = np.mean(extents, axis=1)
            maxsize = max(abs(sz))
            r = maxsize / 2
            for ctr, dim in zip(centers, 'xyz'):
                getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r)

        axisEqual3D(ax)

        pyplot.show()
        # fig.savefig('/tmp/fig_3d/plot_{}.png'.format(img_seq), dpi=fig.dpi)

        pyplot.close()
    def estimate_pose(self, start_pos, z_distance=2, stability_poly_yaw=0):
        start_time = datetime.datetime.now()

        #print("start_pos:", start_pos)

        self.stability_poly_origin = [
            start_pos[0], start_pos[1], start_pos[2] + z_distance
        ]
        self.stability_poly_yaw = stability_poly_yaw

        self.generate_interpolator(start_pos)
        end_time = datetime.datetime.now()
        delta_intepolator_millis = int(
            (end_time - start_time).total_seconds() * 1000)

        # optimize starting from x0
        x0 = np.zeros(3)

        # constraints
        # ineq: it has to be non-negative
        # eq: results should be zero
        con1 = {
            'type': 'ineq',
            'fun': self.constraint_superior_zero
        }  # it has to be non-negative
        cons = ([con1])

        try:
            solution = minimize(self.objective,
                                x0,
                                method='SLSQP',
                                bounds=(self.b, self.b, self.z_bound),
                                constraints=cons,
                                options={
                                    'maxiter': 100,
                                    "ftol": 1e-02
                                })
            x_final = solution.x
            if math.isnan(x_final[0]) or math.isnan(x_final[1]) or math.isnan(
                    x_final[2]):
                x_final = self.last_good_objective_x

        except ValueError as ve:
            #print("Value error catched:", ve)
            x_final = self.last_good_objective_x

        self.cache_dict = {}

        end_time = datetime.datetime.now()
        delta = end_time - start_time
        delta_millis = int(delta.total_seconds() * 1000)  # milliseconds
        #print "total time millis:{} (interpolator: {})".format(delta_millis, delta_intepolator_millis)

        # show final objective
        #print('Final Objective: ' + str(self.objective(x_final)))

        # print solution
        # print('Solution')
        # print('x1 = ' + str(x_final[0]))
        # print('x2 = ' + str(x_final[1]))
        # print('x3 = ' + str(x_final[2]))

        #self.plot(x_final)

        R = mesh_helper.Rxyz(x_final[0], x_final[1], self.stability_poly_yaw)

        zf = np.array([0, 0, 1])
        zf_l = np.dot(R, zf)

        return [zf_l[0], zf_l[1], zf_l[2]]