def shift_targets_no_offset(targets, bos_id=0, eos_id=1):
    """Transforms decoder labels to decoder inputs.
  Args:
    targets: decoder labels
    bos_id: begin of sequence id, defaults to 0
    eos_id: end of sequence id, defaults to 1
  Returns:
    Decoder inputs.
  """
    length_dim = targets.shape.dims[-1]
    shifted_targets = targets
    # We should have a 0 at the beginning of each sequence rather than the
    # shifted EOS (e.g. 1) from the previous sequence.
    shifted_targets *= mtf.to_int32(mtf.not_equal(shifted_targets, eos_id))

    if bos_id:
        shifted_targets += mtf.to_int32(
            mtf.logical_and(mtf.equal(shifted_targets, 0),
                            mtf.not_equal(targets, 0))) * bos_id

    return shifted_targets
示例#2
0
 def get_cluster_mask(self, targets):
     """Computes mask over the targets masking out tokens not in the cluster."""
     return mtf.logical_and(
         mtf.greater_equal(targets, self._start_token_id),
         mtf.less(targets, self._end_token_id))
def local_attention_1d(q,
                       k,
                       v,
                       length_dim,
                       key_dim,
                       value_dim,
                       fully_autoregressive=True,
                       length_dim_num_splits=1,
                       radius=128,
                       sequence_id=1,
                       write_priority=None,
                       read_priority=None,
                       attention_kwargs=None):
  """Attention to the a neighborood around the source.

  If fully_autoregressive, then query position p can only see memory positions
  in the range (p - radius, p].

  If not fully_autoregressive, then query position p can only see memory
  positions in the range (p - window_size, p + radius].

  In addition, if write_priority and read_priority are provided, then attention
  is limited to position pairs where
  read_priority[query position] >= write_priority[memory position]

  Args:
    q: a Tensor containing length_dim
    k: a Tensor containing length_dim
    v: an optional Tensor containing length_dim.  If none then uses v=k.
    length_dim: a Dimension
    key_dim: a Dimension (the channels dimension of q and k)
    value_dim: a Dimension (the channels dimension of v)
    fully_autoregressive: a boolean
    length_dim_num_splits: an optional integer indicating how many ways the
      length dimension is split
    radius: an integer
    sequence_id: a Tensor or an integer
    write_priority: an optional Tensor containing length_dim
    read_priority: an optional Tensor containing length_dim
    attention_kwargs: optional keyword arguments for attention()

  Returns:
    a Tensor with the shape x.shape - key_dim + value_dim

  Raises:
    ValueError: if channels or depth don't match.
  """
  # Choose a suitable block size.
  # We choose the greatest divisor of length_per_split less than or equal
  # to max(window_size, 128)
  length_per_split = length_dim.size // length_dim_num_splits
  block_length = max(radius, 128)
  while length_per_split % block_length != 0:
    block_length -= 1
  query_block_length = mtf.Dimension("query_block_length", block_length)
  memory_block_length = mtf.Dimension("memory_block_length", block_length)
  # The num_blocks dimension gets the same name as the length dimension,
  # so it will be split in the same way.
  num_blocks = mtf.Dimension(length_dim.name, length_dim.size // block_length)
  def _reshape_query(x):
    return mtf.replace_dimensions(
        x, length_dim, [num_blocks, query_block_length])
  def _reshape_memory(x):
    x = mtf.replace_dimensions(
        x, length_dim, [num_blocks, memory_block_length])
    return (mtf.left_halo_exchange if fully_autoregressive
            else mtf.halo_exchange)(
                x, num_blocks, memory_block_length, radius)
  q = _reshape_query(q)
  k = _reshape_memory(k)
  if v:
    v = _reshape_memory(v)
  else:
    v = k
  if sequence_id is None:
    sequence_id = 1
  if (not isinstance(sequence_id, mtf.Tensor) or
      length_dim not in sequence_id.shape.dims):
    sequence_id += mtf.zeros(q.mesh, [length_dim], tf.int32)
  q_sequence_id = _reshape_query(sequence_id)
  m_sequence_id = _reshape_memory(sequence_id)
  pos = mtf.range(q.mesh, length_dim, dtype=tf.int32)
  q_pos = _reshape_query(pos)
  m_pos = _reshape_memory(pos)

  padded_memory_block_length = mtf.Dimension(
      "memory_block_length",
      (1 if fully_autoregressive else 2) * radius + block_length)

  relative_position = m_pos - q_pos
  visible = mtf.equal(q_sequence_id, m_sequence_id)
  visible = mtf.logical_and(visible, mtf.greater(relative_position, -radius))
  visible = mtf.logical_and(visible, mtf.less_equal(
      relative_position, 0 if fully_autoregressive else radius))
  if read_priority is not None:
    write_priority = _reshape_memory(write_priority)
    read_priority = _reshape_query(read_priority)
    visible = mtf.logical_and(
        visible, mtf.greater_equal(read_priority, write_priority))

  bias = visibility_mask_to_attention_bias(visible, q.dtype)
  o = attention(q, k, v, padded_memory_block_length,
                key_dim, value_dim, bias, **attention_kwargs)
  return mtf.replace_dimensions(o, [num_blocks, query_block_length], length_dim)