def test_open_curved_mesh(curve_name): def arc_curve(t, start=0, end=np.pi): return np.vstack([ np.cos((end - start) * t + start), np.sin((end - start) * t + start) ]) if curve_name == "ellipse": from functools import partial from meshmode.mesh.generation import ellipse curve_f = partial(ellipse, 2.0) closed = True elif curve_name == "arc": curve_f = arc_curve closed = False else: raise ValueError("unknown curve") from meshmode.mesh.generation import make_curve_mesh nelements = 32 order = 4 make_curve_mesh(curve_f, np.linspace(0.0, 1.0, nelements + 1), order=order, closed=closed)
def starfish_lpot_source(queue, n_arms): from meshmode.discretization import Discretization from meshmode.discretization.poly_element import ( InterpolatoryQuadratureSimplexGroupFactory) from meshmode.mesh.generation import make_curve_mesh, NArmedStarfish mesh = make_curve_mesh(NArmedStarfish(n_arms, 0.8), np.linspace(0, 1, 1 + PANELS_PER_ARM * n_arms), TARGET_ORDER) pre_density_discr = Discretization( queue.context, mesh, InterpolatoryQuadratureSimplexGroupFactory(TARGET_ORDER)) lpot_kwargs = DEFAULT_LPOT_KWARGS.copy() lpot_kwargs.update(target_association_tolerance=0.025, _expansion_stick_out_factor=TCF, fmm_order=FMM_ORDER, qbx_order=QBX_ORDER, fmm_backend="fmmlib") from pytential.qbx import QBXLayerPotentialSource lpot_source = QBXLayerPotentialSource(pre_density_discr, OVSMP_FACTOR * TARGET_ORDER, **lpot_kwargs) lpot_source, _ = lpot_source.with_refinement() return lpot_source
def get_lpot_source(actx: PyOpenCLArrayContext, dim): from meshmode.discretization import Discretization from meshmode.discretization.poly_element import ( InterpolatoryQuadratureSimplexGroupFactory) target_order = TARGET_ORDER if dim == 2: from meshmode.mesh.generation import starfish, make_curve_mesh mesh = make_curve_mesh(starfish, np.linspace(0, 1, 50), order=target_order) elif dim == 3: from meshmode.mesh.generation import generate_torus mesh = generate_torus(2, 1, order=target_order) else: raise ValueError("unsupported dimension: %d" % dim) pre_density_discr = Discretization( actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) lpot_kwargs = DEFAULT_LPOT_KWARGS.copy() lpot_kwargs.update( _expansion_stick_out_factor=TCF, fmm_order=FMM_ORDER, qbx_order=QBX_ORDER, fmm_backend="fmmlib", ) from pytential.qbx import QBXLayerPotentialSource lpot_source = QBXLayerPotentialSource( pre_density_discr, OVSMP_FACTOR*target_order, **lpot_kwargs) return lpot_source
def make_mesh(nx, ny): from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial base_mesh = make_curve_mesh( partial(ellipse, 1), np.linspace(0, 1, nelements+1), mesh_order) from meshmode.mesh.processing import affine_map, merge_disjoint_meshes dx = 2 / nx meshes = [ affine_map( base_mesh, A=np.diag([dx*0.25, dx*0.25]), b=np.array([dx*(ix-nx/2), dx*(iy-ny/2)])) for ix in range(nx) for iy in range(ny)] mesh = merge_disjoint_meshes(meshes, single_group=True) if 0: from meshmode.mesh.visualization import draw_curve draw_curve(mesh) import matplotlib.pyplot as plt plt.show() return mesh
def test_mesh_rotation(ambient_dim, visualize=False): order = 3 if ambient_dim == 2: nelements = 32 mesh = mgen.make_curve_mesh(partial(mgen.ellipse, 2.0), np.linspace(0.0, 1.0, nelements + 1), order=order) elif ambient_dim == 3: mesh = mgen.generate_torus(4.0, 2.0, order=order) else: raise ValueError("unsupported dimension") from meshmode.mesh.processing import _get_rotation_matrix_from_angle_and_axis mat = _get_rotation_matrix_from_angle_and_axis(np.pi / 3.0, np.array([1.0, 2.0, 1.4])) # check that the matrix is in the rotation group assert abs(abs(la.det(mat)) - 1) < 10e-14 assert la.norm(mat @ mat.T - np.eye(3)) < 1.0e-14 from meshmode.mesh.processing import rotate_mesh_around_axis rotated_mesh = rotate_mesh_around_axis(mesh, theta=np.pi / 2.0, axis=np.array([1, 0, 0])) if visualize: from meshmode.mesh.visualization import write_vertex_vtk_file write_vertex_vtk_file(mesh, "mesh_rotation_original.vtu") write_vertex_vtk_file(rotated_mesh, "mesh_rotation_rotated.vtu")
def test_interpolation(actx_factory, name, source_discr_stage, target_granularity): actx = actx_factory() nelements = 32 target_order = 7 qbx_order = 4 where = sym.as_dofdesc("test_interpolation") from_dd = sym.DOFDescriptor( geometry=where.geometry, discr_stage=source_discr_stage, granularity=sym.GRANULARITY_NODE) to_dd = sym.DOFDescriptor( geometry=where.geometry, discr_stage=sym.QBX_SOURCE_QUAD_STAGE2, granularity=target_granularity) mesh = mgen.make_curve_mesh(mgen.starfish, np.linspace(0.0, 1.0, nelements + 1), target_order) discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) from pytential.qbx import QBXLayerPotentialSource qbx = QBXLayerPotentialSource(discr, fine_order=4 * target_order, qbx_order=qbx_order, fmm_order=False) from pytential import GeometryCollection places = GeometryCollection(qbx, auto_where=where) sigma_sym = sym.var("sigma") op_sym = sym.sin(sym.interp(from_dd, to_dd, sigma_sym)) bound_op = bind(places, op_sym, auto_where=where) def discr_and_nodes(stage): density_discr = places.get_discretization(where.geometry, stage) return density_discr, actx.to_numpy( flatten(density_discr.nodes(), actx) ).reshape(density_discr.ambient_dim, -1) _, target_nodes = discr_and_nodes(sym.QBX_SOURCE_QUAD_STAGE2) source_discr, source_nodes = discr_and_nodes(source_discr_stage) sigma_target = np.sin(la.norm(target_nodes, axis=0)) sigma_dev = unflatten( thaw(source_discr.nodes()[0], actx), actx.from_numpy(la.norm(source_nodes, axis=0)), actx) sigma_target_interp = actx.to_numpy( flatten(bound_op(actx, sigma=sigma_dev), actx) ) if name in ("default", "default_explicit", "stage2", "quad"): error = la.norm(sigma_target_interp - sigma_target) / la.norm(sigma_target) assert error < 1.0e-10 elif name in ("stage2_center",): assert len(sigma_target_interp) == 2 * len(sigma_target) else: raise ValueError(f"unknown test case name: {name}")
def make_mesh(nx, ny, visualize=False): from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial base_mesh = make_curve_mesh(partial(ellipse, 1), np.linspace(0, 1, nelements + 1), mesh_order) from meshmode.mesh.processing import affine_map, merge_disjoint_meshes dx = 2 / nx meshes = [ affine_map(base_mesh, A=np.diag([dx * 0.25, dx * 0.25]), b=np.array([dx * (ix - nx / 2), dx * (iy - ny / 2)])) for ix in range(nx) for iy in range(ny) ] mesh = merge_disjoint_meshes(meshes, single_group=True) if visualize: from meshmode.mesh.visualization import draw_curve draw_curve(mesh) import matplotlib.pyplot as plt plt.show() return mesh
def create_discretization(queue, ndim, nelements=42, mesh_order=5, discr_order=5): ctx = queue.context # construct mesh if ndim == 2: from functools import partial from meshmode.mesh.generation import make_curve_mesh, ellipse mesh = make_curve_mesh(partial(ellipse, 2), np.linspace(0.0, 1.0, nelements + 1), order=mesh_order) elif ndim == 3: from meshmode.mesh.generation import generate_torus mesh = generate_torus(10.0, 5.0, order=mesh_order) else: raise ValueError("Unsupported dimension: {}".format(ndim)) # create discretization from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(discr_order)) return discr
def _build_qbx_discr(queue, ndim=2, nelements=30, target_order=7, qbx_order=4, curve_f=None): if curve_f is None: curve_f = NArmedStarfish(5, 0.25) if ndim == 2: mesh = make_curve_mesh(curve_f, np.linspace(0, 1, nelements + 1), target_order) elif ndim == 3: mesh = generate_torus(10.0, 2.0, order=target_order) else: raise ValueError("unsupported ambient dimension") from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory from pytential.qbx import QBXLayerPotentialSource density_discr = Discretization( queue.context, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx, _ = QBXLayerPotentialSource(density_discr, fine_order=4 * target_order, qbx_order=qbx_order, fmm_order=False).with_refinement() return qbx
def test_geometry(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nelements = 30 order = 5 mesh = make_curve_mesh(partial(ellipse, 1), np.linspace(0, 1, nelements+1), order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) import pytential.symbolic.primitives as prim area_sym = prim.integral(2, 1, 1) area = bind(discr, area_sym)(actx) err = abs(area-2*np.pi) print(err) assert err < 1e-3
def test_geometry(ctx_getter): cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) nelements = 30 order = 5 mesh = make_curve_mesh(partial(ellipse, 1), np.linspace(0, 1, nelements+1), order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) import pytential.symbolic.primitives as prim area_sym = prim.integral(2, 1, 1) area = bind(discr, area_sym)(queue) err = abs(area-2*np.pi) print(err) assert err < 1e-3
def test_off_surface_eval(actx_factory, use_fmm, visualize=False): logging.basicConfig(level=logging.INFO) actx = actx_factory() # prevent cache 'splosion from sympy.core.cache import clear_cache clear_cache() nelements = 30 target_order = 8 qbx_order = 3 if use_fmm: fmm_order = qbx_order else: fmm_order = False mesh = mgen.make_curve_mesh(partial(mgen.ellipse, 3), np.linspace(0, 1, nelements + 1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory pre_density_discr = Discretization( actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource( pre_density_discr, 4 * target_order, qbx_order, fmm_order=fmm_order, ) from pytential.target import PointsTarget fplot = FieldPlotter(np.zeros(2), extent=0.54, npoints=30) targets = PointsTarget(actx.freeze(actx.from_numpy(fplot.points))) places = GeometryCollection((qbx, targets)) density_discr = places.get_discretization(places.auto_source.geometry) from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=-2) sigma = density_discr.zeros(actx) + 1 fld_in_vol = bind(places, op)(actx, sigma=sigma) fld_in_vol_exact = -1 linf_err = actx.to_numpy( actx.np.linalg.norm(fld_in_vol - fld_in_vol_exact, ord=np.inf)) logger.info("l_inf error: %.12e", linf_err) if visualize: fplot.show_scalar_in_matplotlib(actx.to_numpy(fld_in_vol)) import matplotlib.pyplot as pt pt.colorbar() pt.show() assert linf_err < 1e-3
def test_unregularized_off_surface_fmm_vs_direct(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nelements = 300 target_order = 8 fmm_order = 4 # {{{ geometry mesh = make_curve_mesh(WobblyCircle.random(8, seed=30), np.linspace(0, 1, nelements+1), target_order) from pytential.unregularized import UnregularizedLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) direct = UnregularizedLayerPotentialSource( density_discr, fmm_order=False, ) fmm = direct.copy( fmm_level_to_order=lambda kernel, kernel_args, tree, level: fmm_order) sigma = density_discr.zeros(actx) + 1 fplot = FieldPlotter(np.zeros(2), extent=5, npoints=100) from pytential.target import PointsTarget ptarget = PointsTarget(fplot.points) from pytential import GeometryCollection places = GeometryCollection({ "unregularized_direct": direct, "unregularized_fmm": fmm, "targets": ptarget}) # }}} # {{{ check from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None) direct_fld_in_vol = bind(places, op, auto_where=("unregularized_direct", "targets"))( actx, sigma=sigma) fmm_fld_in_vol = bind(places, op, auto_where=("unregularized_fmm", "targets"))(actx, sigma=sigma) err = actx.np.fabs(fmm_fld_in_vol - direct_fld_in_vol) linf_err = actx.to_numpy(err).max() print("l_inf error:", linf_err) assert linf_err < 5e-3
def test_off_surface_eval(ctx_factory, use_fmm, do_plot=False): logging.basicConfig(level=logging.INFO) cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) # prevent cache 'splosion from sympy.core.cache import clear_cache clear_cache() nelements = 30 target_order = 8 qbx_order = 3 if use_fmm: fmm_order = qbx_order else: fmm_order = False mesh = make_curve_mesh(partial(ellipse, 3), np.linspace(0, 1, nelements + 1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx, _ = QBXLayerPotentialSource( pre_density_discr, 4 * target_order, qbx_order, fmm_order=fmm_order, ).with_refinement() density_discr = qbx.density_discr from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=-2) sigma = density_discr.zeros(queue) + 1 fplot = FieldPlotter(np.zeros(2), extent=0.54, npoints=30) from pytential.target import PointsTarget fld_in_vol = bind((qbx, PointsTarget(fplot.points)), op)(queue, sigma=sigma) err = cl.clmath.fabs(fld_in_vol - (-1)) linf_err = cl.array.max(err).get() print("l_inf error:", linf_err) if do_plot: fplot.show_scalar_in_matplotlib(fld_in_vol.get()) import matplotlib.pyplot as pt pt.colorbar() pt.show() assert linf_err < 1e-3
def create_discretization(queue, ndim, nelements=42, mesh_name=None, order=4): ctx = queue.context # construct mesh if ndim == 2: from functools import partial from meshmode.mesh.generation import make_curve_mesh, ellipse, starfish if mesh_name is None: mesh_name = "ellipse" t = np.linspace(0.0, 1.0, nelements + 1) if mesh_name == "ellipse": mesh = make_curve_mesh(partial(ellipse, 2), t, order=order) elif mesh_name == "starfish": mesh = make_curve_mesh(starfish, t, order=order) else: raise ValueError('unknown mesh name: {}'.format(mesh_name)) elif ndim == 3: from meshmode.mesh.generation import generate_torus from meshmode.mesh.generation import generate_warped_rect_mesh if mesh_name is None: mesh_name = "torus" if mesh_name == "torus": mesh = generate_torus(10.0, 5.0, order=order, n_inner=nelements, n_outer=nelements) elif mesh_name == "warp": mesh = generate_warped_rect_mesh(ndim, order=order, n=nelements) else: raise ValueError("unknown mesh name: {}".format(mesh_name)) else: raise ValueError("unsupported dimension: {}".format(ndim)) # create discretization from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) return discr
def create_discretization(queue, ndim, nelements=42, mesh_name=None, order=4): ctx = queue.context # construct mesh if ndim == 2: from functools import partial from meshmode.mesh.generation import make_curve_mesh, ellipse, starfish if mesh_name is None: mesh_name = "ellipse" t = np.linspace(0.0, 1.0, nelements + 1) if mesh_name == "ellipse": mesh = make_curve_mesh(partial(ellipse, 2), t, order=order) elif mesh_name == "starfish": mesh = make_curve_mesh(starfish, t, order=order) else: raise ValueError('unknown mesh name: {}'.format(mesh_name)) elif ndim == 3: from meshmode.mesh.generation import generate_torus from meshmode.mesh.generation import generate_warped_rect_mesh if mesh_name is None: mesh_name = "torus" if mesh_name == "torus": mesh = generate_torus(10.0, 5.0, order=order, n_minor=nelements, n_major=nelements) elif mesh_name == "warp": mesh = generate_warped_rect_mesh(ndim, order=order, n=nelements) else: raise ValueError("unknown mesh name: {}".format(mesh_name)) else: raise ValueError("unsupported dimension: {}".format(ndim)) # create discretization from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) return discr
def main(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) target_order = 10 from functools import partial nelements = 30 qbx_order = 4 from sumpy.kernel import LaplaceKernel from meshmode.mesh.generation import ( # noqa ellipse, cloverleaf, starfish, drop, n_gon, qbx_peanut, make_curve_mesh) mesh = make_curve_mesh(partial(ellipse, 1), np.linspace(0, 1, nelements+1), target_order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization(cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) from pytential.qbx import QBXLayerPotentialSource qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order, fmm_order=False) from pytools.obj_array import join_fields sig_sym = sym.var("sig") knl = LaplaceKernel(2) op = join_fields( sym.tangential_derivative(mesh.ambient_dim, sym.D(knl, sig_sym, qbx_forced_limit=+1)).as_scalar(), sym.tangential_derivative(mesh.ambient_dim, sym.D(knl, sig_sym, qbx_forced_limit=-1)).as_scalar(), ) nodes = density_discr.nodes().with_queue(queue) angle = cl.clmath.atan2(nodes[1], nodes[0]) n = 10 sig = cl.clmath.sin(n*angle) dt_sig = n*cl.clmath.cos(n*angle) res = bind(qbx, op)(queue, sig=sig) extval = res[0].get() intval = res[1].get() pv = 0.5*(extval + intval) dt_sig_h = dt_sig.get() import matplotlib.pyplot as pt pt.plot(extval, label="+num") pt.plot(pv + dt_sig_h*0.5, label="+ex") pt.legend(loc="best") pt.show()
def test_parallel_vtk_file(actx_factory, dim): r""" Simple test just generates a sample parallel PVTU file and checks it against the expected result. The expected result is just a file in the tests directory. """ logging.basicConfig(level=logging.INFO) actx = actx_factory() nelements = 64 target_order = 4 if dim == 1: mesh = mgen.make_curve_mesh(mgen.NArmedStarfish(5, 0.25), np.linspace(0.0, 1.0, nelements + 1), target_order) elif dim == 2: mesh = mgen.generate_torus(5.0, 1.0, order=target_order) elif dim == 3: mesh = mgen.generate_warped_rect_mesh(dim, target_order, nelements_side=4) else: raise ValueError("unknown dimensionality") from meshmode.discretization import Discretization discr = Discretization( actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) from meshmode.discretization.visualization import make_visualizer vis = make_visualizer(actx, discr, target_order) class FakeComm: def Get_rank(self): # noqa: N802 return 0 def Get_size(self): # noqa: N802 return 2 file_name_pattern = f"visualizer_vtk_linear_{dim}_{{rank}}.vtu" pvtu_filename = file_name_pattern.format(rank=0).replace("vtu", "pvtu") vis.write_parallel_vtk_file( FakeComm(), file_name_pattern, [("scalar", discr.zeros(actx)), ("vector", make_obj_array([discr.zeros(actx) for i in range(dim)]))], overwrite=True) import os assert os.path.exists(pvtu_filename) import filecmp assert filecmp.cmp(f"ref-{pvtu_filename}", pvtu_filename)
def test_is_affine_group_check(mesh_name): order = 4 nelements = 16 if mesh_name.startswith("box"): dim = int(mesh_name[-2]) is_affine = True mesh = mgen.generate_regular_rect_mesh( a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nelements, ) * dim, order=order) elif mesh_name.startswith("warped_box"): dim = int(mesh_name[-2]) is_affine = False mesh = mgen.generate_warped_rect_mesh(dim, order, nelements_side=nelements) elif mesh_name == "cross_warped_box": dim = 2 is_affine = False mesh = _generate_cross_warped_rect_mesh(dim, order, nelements) elif mesh_name == "circle": is_affine = False mesh = mgen.make_curve_mesh(lambda t: mgen.ellipse(1.0, t), np.linspace(0.0, 1.0, nelements + 1), order=order) elif mesh_name == "ellipse": is_affine = False mesh = mgen.make_curve_mesh(lambda t: mgen.ellipse(2.0, t), np.linspace(0.0, 1.0, nelements + 1), order=order) elif mesh_name == "sphere": is_affine = False mesh = mgen.generate_icosphere(r=1.0, order=order) elif mesh_name == "torus": is_affine = False mesh = mgen.generate_torus(10.0, 2.0, order=order) else: raise ValueError(f"unknown mesh name: {mesh_name}") assert all(grp.is_affine for grp in mesh.groups) == is_affine
def test_mesh_with_interior_unit_nodes(actx_factory, ambient_dim): actx = actx_factory() # NOTE: smaller orders or coarser meshes make the cases fail the # node_vertex_consistency test; the default warp_and_blend_nodes have # nodes at the vertices, so they pass for much smaller tolerances order = 8 nelements = 32 n_minor = 2 * nelements uniform_refinement_rounds = 4 import modepy as mp if ambient_dim == 2: unit_nodes = mp.LegendreGaussQuadrature(order, force_dim_axis=True).nodes mesh = mgen.make_curve_mesh(partial(mgen.ellipse, 2.0), np.linspace(0.0, 1.0, nelements + 1), order=order, unit_nodes=unit_nodes) elif ambient_dim == 3: unit_nodes = mp.VioreanuRokhlinSimplexQuadrature(order, 2).nodes mesh = mgen.generate_torus(4.0, 2.0, n_major=2 * n_minor, n_minor=n_minor, order=order, unit_nodes=unit_nodes) mesh = mgen.generate_icosphere( 1.0, uniform_refinement_rounds=uniform_refinement_rounds, order=order, unit_nodes=unit_nodes) else: raise ValueError(f"unsupported dimension: '{ambient_dim}'") assert mesh.facial_adjacency_groups assert mesh.nodal_adjacency from meshmode.discretization import Discretization from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory discr = Discretization(actx, mesh, QuadratureSimplexGroupFactory(order)) from meshmode.discretization.connection import make_face_restriction conn = make_face_restriction( actx, discr, group_factory=QuadratureSimplexGroupFactory(order), boundary_tag=FACE_RESTR_ALL) assert conn
def test_target_association_failure(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # {{{ generate circle order = 5 nelements = 40 # Make the curve mesh. curve_f = partial(ellipse, 1) mesh = make_curve_mesh(curve_f, np.linspace(0, 1, nelements + 1), order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory factory = InterpolatoryQuadratureSimplexGroupFactory(order) discr = Discretization(actx, mesh, factory) lpot_source = QBXLayerPotentialSource( discr, qbx_order=order, # not used in target association fine_order=order) places = GeometryCollection(lpot_source) # }}} # {{{ generate targets and check close_circle = 0.999 * np.exp( 2j * np.pi * np.linspace(0, 1, 500, endpoint=False)) from pytential.target import PointsTarget close_circle_target = (PointsTarget( actx.from_numpy(np.array([close_circle.real, close_circle.imag])))) targets = ((close_circle_target, 0), ) from pytential.qbx.target_assoc import (TargetAssociationCodeContainer, associate_targets_to_qbx_centers, QBXTargetAssociationFailedException ) from pytential.qbx.utils import TreeCodeContainer code_container = TargetAssociationCodeContainer(actx, TreeCodeContainer(actx)) with pytest.raises(QBXTargetAssociationFailedException): associate_targets_to_qbx_centers(places, places.auto_source, code_container.get_wrangler(actx), targets, target_association_tolerance=1e-10)
def test_target_association_failure(ctx_getter): cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) # {{{ generate circle order = 5 nelements = 40 # Make the curve mesh. curve_f = partial(ellipse, 1) mesh = make_curve_mesh(curve_f, np.linspace(0, 1, nelements+1), order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory factory = InterpolatoryQuadratureSimplexGroupFactory(order) discr = Discretization(cl_ctx, mesh, factory) lpot_source = QBXLayerPotentialSource(discr, qbx_order=order, # not used in target association fine_order=order) # }}} # {{{ generate targets and check close_circle = 0.999 * np.exp( 2j * np.pi * np.linspace(0, 1, 500, endpoint=False)) from pytential.target import PointsTarget close_circle_target = ( PointsTarget(cl.array.to_device( queue, np.array([close_circle.real, close_circle.imag])))) targets = ( (close_circle_target, 0), ) from pytential.qbx.target_assoc import ( TargetAssociationCodeContainer, associate_targets_to_qbx_centers, QBXTargetAssociationFailedException) from pytential.qbx.utils import TreeCodeContainer code_container = TargetAssociationCodeContainer( cl_ctx, TreeCodeContainer(cl_ctx)) with pytest.raises(QBXTargetAssociationFailedException): associate_targets_to_qbx_centers( lpot_source, code_container.get_wrangler(queue), targets, target_association_tolerance=1e-10)
def test_interpolation(ctx_factory, name, source_discr_stage, target_granularity): ctx = ctx_factory() queue = cl.CommandQueue(ctx) nelements = 32 target_order = 7 qbx_order = 4 mesh = make_curve_mesh(starfish, np.linspace(0.0, 1.0, nelements + 1), target_order) discr = Discretization( ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) from pytential.qbx import QBXLayerPotentialSource qbx, _ = QBXLayerPotentialSource(discr, fine_order=4 * target_order, qbx_order=qbx_order, fmm_order=False).with_refinement() where = 'test-interpolation' from_dd = sym.DOFDescriptor(geometry=where, discr_stage=source_discr_stage, granularity=sym.GRANULARITY_NODE) to_dd = sym.DOFDescriptor(geometry=where, discr_stage=sym.QBX_SOURCE_QUAD_STAGE2, granularity=target_granularity) sigma_sym = sym.var("sigma") op_sym = sym.sin(sym.interp(from_dd, to_dd, sigma_sym)) bound_op = bind(qbx, op_sym, auto_where=where) target_nodes = qbx.quad_stage2_density_discr.nodes().get(queue) if source_discr_stage == sym.QBX_SOURCE_STAGE2: source_nodes = qbx.stage2_density_discr.nodes().get(queue) elif source_discr_stage == sym.QBX_SOURCE_QUAD_STAGE2: source_nodes = target_nodes else: source_nodes = qbx.density_discr.nodes().get(queue) sigma_dev = cl.array.to_device(queue, la.norm(source_nodes, axis=0)) sigma_target = np.sin(la.norm(target_nodes, axis=0)) sigma_target_interp = bound_op(queue, sigma=sigma_dev).get(queue) if name in ('default', 'default-explicit', 'stage2', 'quad'): error = la.norm(sigma_target_interp - sigma_target) / la.norm(sigma_target) assert error < 1.0e-10 elif name in ('stage2-center', ): assert len(sigma_target_interp) == 2 * len(sigma_target) else: raise ValueError('unknown test case name: {}'.format(name))
def test_open_curved_mesh(curve_name): def arc_curve(t, start=0, end=np.pi): return np.vstack([ np.cos((end - start) * t + start), np.sin((end - start) * t + start) ]) if curve_name == "ellipse": curve_f = partial(mgen.ellipse, 2.0) closed = True elif curve_name == "arc": curve_f = arc_curve closed = False else: raise ValueError("unknown curve") nelements = 32 order = 4 mgen.make_curve_mesh(curve_f, np.linspace(0.0, 1.0, nelements + 1), order=order, closed=closed)
def test_discr_nodes_caching(actx_factory): actx = actx_factory() nelements = 30 target_order = 5 mesh = mgen.make_curve_mesh( mgen.NArmedStarfish(5, 0.25), np.linspace(0.0, 1.0, nelements + 1), target_order) discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) discr.nodes(cached=False) assert discr._cached_nodes is None discr.nodes() assert discr._cached_nodes is not None
def main(): from meshmode.mesh.generation import ( # noqa make_curve_mesh, starfish) mesh1 = make_curve_mesh(starfish, np.linspace(0, 1, 20), 4) from meshmode.mesh.processing import affine_map, merge_disjoint_meshes mesh2 = affine_map(mesh1, b=np.array([2, 3])) mesh = merge_disjoint_meshes((mesh1, mesh2)) from meshmode.mesh.visualization import draw_2d_mesh draw_2d_mesh(mesh, set_bounding_box=True) import matplotlib.pyplot as pt pt.show()
def get_square_with_ref_mean_curvature(cl_ctx): nelements = 8 order = 8 from extra_curve_data import unit_square mesh = make_curve_mesh( unit_square, np.linspace(0, 1, nelements+1), order) discr = Discretization(cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) return discr, 0
def test_copy_visualizer(actx_factory, ambient_dim, visualize=True): actx = actx_factory() target_order = 4 if ambient_dim == 2: nelements = 128 mesh = mgen.make_curve_mesh(partial(mgen.ellipse, 1.0), np.linspace(0.0, 1.0, nelements + 1), target_order) elif ambient_dim == 3: mesh = mgen.generate_icosphere(1.0, target_order, uniform_refinement_rounds=2) else: raise ValueError(f"unsupported dimension: {ambient_dim}") from meshmode.mesh.processing import affine_map translated_mesh = affine_map(mesh, b=np.array([2.5, 0.0, 0.0][:ambient_dim])) from meshmode.discretization import Discretization discr = Discretization(actx, mesh, PolynomialWarpAndBlendGroupFactory(target_order)) translated_discr = Discretization( actx, translated_mesh, PolynomialWarpAndBlendGroupFactory(target_order)) from meshmode.discretization.visualization import make_visualizer vis = make_visualizer(actx, discr, target_order, force_equidistant=True) assert vis._vtk_connectivity assert vis._vtk_lagrange_connectivity translated_vis = vis.copy_with_same_connectivity(actx, translated_discr) assert translated_vis._cached_vtk_connectivity is not None assert translated_vis._cached_vtk_lagrange_connectivity is not None assert translated_vis._vtk_connectivity \ is vis._vtk_connectivity assert translated_vis._vtk_lagrange_connectivity \ is vis._vtk_lagrange_connectivity if not visualize: return vis.write_vtk_file(f"visualizer_copy_{ambient_dim}d_orig.vtu", [], overwrite=True) translated_vis.write_vtk_file( f"visualizer_copy_{ambient_dim}d_translated.vtu", [], overwrite=True)
def get_ellipse_with_ref_mean_curvature(cl_ctx, nelements, aspect=1): order = 4 mesh = make_curve_mesh(partial(ellipse, aspect), np.linspace(0, 1, nelements + 1), order) discr = Discretization(cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) with cl.CommandQueue(cl_ctx) as queue: nodes = discr.nodes().get(queue=queue) a = 1 b = 1 / aspect t = np.arctan2(nodes[1] * aspect, nodes[0]) return discr, a * b / ((a * np.sin(t))**2 + (b * np.cos(t))**2)**(3 / 2)
def test_source_refinement_2d(actx_factory, curve_name, curve_f, nelements, visualize=False): helmholtz_k = 10 order = 8 mesh = mgen.make_curve_mesh(curve_f, np.linspace(0, 1, nelements + 1), order) run_source_refinement_test(actx_factory, mesh, order, helmholtz_k=helmholtz_k, surface_name=curve_name, visualize=visualize)
def test_as_python(): from meshmode.mesh.generation import make_curve_mesh, cloverleaf mesh = make_curve_mesh(cloverleaf, np.linspace(0, 1, 100), order=3) mesh.element_connectivity from meshmode.mesh import as_python code = as_python(mesh) print(code) exec_dict = {} exec(compile(code, "gen_code.py", "exec"), exec_dict) mesh_2 = exec_dict["make_mesh"]() assert mesh == mesh_2
def get_ellipse_with_ref_mean_curvature(actx, nelements, aspect=1): order = 4 mesh = make_curve_mesh(partial(ellipse, aspect), np.linspace(0, 1, nelements + 1), order) discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) from meshmode.dof_array import thaw nodes = thaw(actx, discr.nodes()) a = 1 b = 1 / aspect t = actx.np.arctan2(nodes[1] * aspect, nodes[0]) return discr, a * b / ((a * actx.np.sin(t))**2 + (b * actx.np.cos(t))**2)**(3 / 2)
def test_unregularized_with_ones_kernel(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nelements = 10 order = 8 mesh = make_curve_mesh(partial(ellipse, 1), np.linspace(0, 1, nelements+1), order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) from pytential.unregularized import UnregularizedLayerPotentialSource lpot_source = UnregularizedLayerPotentialSource(discr) from pytential.target import PointsTarget targets = PointsTarget(np.zeros((2, 1), dtype=float)) places = GeometryCollection({ sym.DEFAULT_SOURCE: lpot_source, sym.DEFAULT_TARGET: lpot_source, "target_non_self": targets}) from sumpy.kernel import one_kernel_2d sigma_sym = sym.var("sigma") op = sym.IntG(one_kernel_2d, sigma_sym, qbx_forced_limit=None) sigma = discr.zeros(actx) + 1 result_self = bind(places, op, auto_where=places.auto_where)( actx, sigma=sigma) result_nonself = bind(places, op, auto_where=(places.auto_source, "target_non_self"))( actx, sigma=sigma) from meshmode.dof_array import flatten assert np.allclose(actx.to_numpy(flatten(result_self)), 2 * np.pi) assert np.allclose(actx.to_numpy(result_nonself), 2 * np.pi)
def test_unregularized_off_surface_fmm_vs_direct(ctx_getter): cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) nelements = 300 target_order = 8 fmm_order = 4 mesh = make_curve_mesh(WobblyCircle.random(8, seed=30), np.linspace(0, 1, nelements+1), target_order) from pytential.unregularized import UnregularizedLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) direct = UnregularizedLayerPotentialSource( density_discr, fmm_order=False, ) fmm = direct.copy( fmm_level_to_order=lambda kernel, kernel_args, tree, level: fmm_order) sigma = density_discr.zeros(queue) + 1 fplot = FieldPlotter(np.zeros(2), extent=5, npoints=100) from pytential.target import PointsTarget ptarget = PointsTarget(fplot.points) from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None) direct_fld_in_vol = bind((direct, ptarget), op)(queue, sigma=sigma) fmm_fld_in_vol = bind((fmm, ptarget), op)(queue, sigma=sigma) err = cl.clmath.fabs(fmm_fld_in_vol - direct_fld_in_vol) linf_err = cl.array.max(err).get() print("l_inf error:", linf_err) assert linf_err < 5e-3
def test_unregularized_off_surface_fmm_vs_direct(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) nelements = 300 target_order = 8 fmm_order = 4 mesh = make_curve_mesh(WobblyCircle.random(8, seed=30), np.linspace(0, 1, nelements + 1), target_order) from pytential.unregularized import UnregularizedLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) direct = UnregularizedLayerPotentialSource( density_discr, fmm_order=False, ) fmm = direct.copy( fmm_level_to_order=lambda kernel, kernel_args, tree, level: fmm_order) sigma = density_discr.zeros(queue) + 1 fplot = FieldPlotter(np.zeros(2), extent=5, npoints=100) from pytential.target import PointsTarget ptarget = PointsTarget(fplot.points) from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None) direct_fld_in_vol = bind((direct, ptarget), op)(queue, sigma=sigma) fmm_fld_in_vol = bind((fmm, ptarget), op)(queue, sigma=sigma) err = cl.clmath.fabs(fmm_fld_in_vol - direct_fld_in_vol) linf_err = cl.array.max(err).get() print("l_inf error:", linf_err) assert linf_err < 5e-3
def get_ellipse_with_ref_mean_curvature(cl_ctx, aspect=1): nelements = 20 order = 16 mesh = make_curve_mesh( partial(ellipse, aspect), np.linspace(0, 1, nelements+1), order) a = 1 b = 1/aspect discr = Discretization(cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) with cl.CommandQueue(cl_ctx) as queue: nodes = discr.nodes().get(queue=queue) t = np.arctan2(nodes[1] * aspect, nodes[0]) return discr, a*b / ((a*np.sin(t))**2 + (b*np.cos(t))**2)**(3/2)
def test_lookup_tree(do_plot=False): from meshmode.mesh.generation import make_curve_mesh, cloverleaf mesh = make_curve_mesh(cloverleaf, np.linspace(0, 1, 1000), order=3) from meshmode.mesh.tools import make_element_lookup_tree tree = make_element_lookup_tree(mesh) from meshmode.mesh.processing import find_bounding_box bbox_min, bbox_max = find_bounding_box(mesh) extent = bbox_max-bbox_min for i in range(20): pt = bbox_min + np.random.rand(2) * extent print(pt) for igrp, iel in tree.generate_matches(pt): print(igrp, iel) if do_plot: with open("tree.dat", "w") as outf: tree.visualize(outf)
def test_lookup_tree(do_plot=False): from meshmode.mesh.generation import make_curve_mesh, cloverleaf mesh = make_curve_mesh(cloverleaf, np.linspace(0, 1, 1000), order=3) from meshmode.mesh.tools import make_element_lookup_tree tree = make_element_lookup_tree(mesh) from meshmode.mesh.processing import find_bounding_box bbox_min, bbox_max = find_bounding_box(mesh) extent = bbox_max - bbox_min for i in range(20): pt = bbox_min + np.random.rand(2) * extent print(pt) for igrp, iel in tree.generate_matches(pt): print(igrp, iel) if do_plot: with open("tree.dat", "w") as outf: tree.visualize(outf)
def test_node_reduction(ctx_factory): ctx = ctx_factory() queue = cl.CommandQueue(ctx) actx = PyOpenCLArrayContext(queue) # {{{ build discretization target_order = 4 nelements = 32 mesh = make_curve_mesh(starfish, np.linspace(0.0, 1.0, nelements + 1), target_order) discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) # }}} # {{{ test # create a shuffled [1, nelements + 1] array ary = [] el_nr_base = 0 for grp in discr.groups: x = 1 + np.arange(el_nr_base, grp.nelements) np.random.shuffle(x) ary.append(actx.freeze(actx.from_numpy(x.reshape(-1, 1)))) el_nr_base += grp.nelements from meshmode.dof_array import DOFArray ary = DOFArray(actx, tuple(ary)) for func, expected in [ (sym.NodeSum, nelements * (nelements + 1) // 2), (sym.NodeMax, nelements), (sym.NodeMin, 1), ]: r = bind(discr, func(sym.var("x")))(actx, x=ary) assert abs(r - expected) < 1.0e-15, r
def test_unregularized_with_ones_kernel(ctx_getter): cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) nelements = 10 order = 8 mesh = make_curve_mesh(partial(ellipse, 1), np.linspace(0, 1, nelements+1), order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory discr = Discretization(cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(order)) from pytential.unregularized import UnregularizedLayerPotentialSource lpot_src = UnregularizedLayerPotentialSource(discr) from sumpy.kernel import one_kernel_2d expr = sym.IntG(one_kernel_2d, sym.var("sigma"), qbx_forced_limit=None) from pytential.target import PointsTarget op_self = bind(lpot_src, expr) op_nonself = bind((lpot_src, PointsTarget(np.zeros((2, 1), dtype=float))), expr) with cl.CommandQueue(cl_ctx) as queue: sigma = cl.array.zeros(queue, discr.nnodes, dtype=float) sigma.fill(1) sigma.finish() result_self = op_self(queue, sigma=sigma) result_nonself = op_nonself(queue, sigma=sigma) assert np.allclose(result_self.get(), 2 * np.pi) assert np.allclose(result_nonself.get(), 2 * np.pi)
def test_refinement_connection( ctx_getter, refiner_cls, group_factory, mesh_name, dim, mesh_pars, mesh_order, refine_flags, visualize=False): from random import seed seed(13) # Discretization order order = 5 cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) from meshmode.discretization import Discretization from meshmode.discretization.connection import ( make_refinement_connection, check_connection) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for mesh_par in mesh_pars: # {{{ get mesh if mesh_name == "circle": assert dim == 1 h = 1 / mesh_par mesh = make_curve_mesh( partial(ellipse, 1), np.linspace(0, 1, mesh_par + 1), order=mesh_order) elif mesh_name == "blob": if mesh_order == 5: pytest.xfail("https://gitlab.tiker.net/inducer/meshmode/issues/2") assert dim == 2 mesh = get_blob_mesh(mesh_par, mesh_order) h = float(mesh_par) elif mesh_name == "warp": from meshmode.mesh.generation import generate_warped_rect_mesh mesh = generate_warped_rect_mesh(dim, order=mesh_order, n=mesh_par) h = 1/mesh_par else: raise ValueError("mesh_name not recognized") # }}} from meshmode.mesh.processing import find_bounding_box mesh_bbox_low, mesh_bbox_high = find_bounding_box(mesh) mesh_ext = mesh_bbox_high-mesh_bbox_low def f(x): result = 1 if mesh_name == "blob": factor = 15 else: factor = 9 for iaxis in range(len(x)): result = result * cl.clmath.sin(factor * (x[iaxis]/mesh_ext[iaxis])) return result discr = Discretization(cl_ctx, mesh, group_factory(order)) refiner = refiner_cls(mesh) flags = refine_flags(mesh) refiner.refine(flags) connection = make_refinement_connection( refiner, discr, group_factory(order)) check_connection(connection) fine_discr = connection.to_discr x = discr.nodes().with_queue(queue) x_fine = fine_discr.nodes().with_queue(queue) f_coarse = f(x) f_interp = connection(queue, f_coarse).with_queue(queue) f_true = f(x_fine).with_queue(queue) if visualize == "dots": import matplotlib.pyplot as plt x = x.get(queue) err = np.array(np.log10( 1e-16 + np.abs((f_interp - f_true).get(queue))), dtype=float) import matplotlib.cm as cm cmap = cm.ScalarMappable(cmap=cm.jet) cmap.set_array(err) plt.scatter(x[0], x[1], c=cmap.to_rgba(err), s=20, cmap=cmap) plt.colorbar(cmap) plt.show() elif visualize == "vtk": from meshmode.discretization.visualization import make_visualizer fine_vis = make_visualizer(queue, fine_discr, mesh_order) fine_vis.write_vtk_file( "refine-fine-%s-%dd-%s.vtu" % (mesh_name, dim, mesh_par), [ ("f_interp", f_interp), ("f_true", f_true), ]) import numpy.linalg as la err = la.norm((f_interp - f_true).get(queue), np.inf) eoc_rec.add_data_point(h, err) order_slack = 0.5 if mesh_name == "blob" and order > 1: order_slack = 1 print(eoc_rec) assert ( eoc_rec.order_estimate() >= order-order_slack or eoc_rec.max_error() < 1e-14)
def test_off_surface_eval(ctx_getter, use_fmm, do_plot=False): logging.basicConfig(level=logging.INFO) cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) # prevent cache 'splosion from sympy.core.cache import clear_cache clear_cache() nelements = 30 target_order = 8 qbx_order = 3 if use_fmm: fmm_order = qbx_order else: fmm_order = False mesh = make_curve_mesh(partial(ellipse, 3), np.linspace(0, 1, nelements+1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx, _ = QBXLayerPotentialSource( pre_density_discr, 4*target_order, qbx_order, fmm_order=fmm_order, ).with_refinement() density_discr = qbx.density_discr from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=-2) sigma = density_discr.zeros(queue) + 1 fplot = FieldPlotter(np.zeros(2), extent=0.54, npoints=30) from pytential.target import PointsTarget fld_in_vol = bind( (qbx, PointsTarget(fplot.points)), op)(queue, sigma=sigma) err = cl.clmath.fabs(fld_in_vol - (-1)) linf_err = cl.array.max(err).get() print("l_inf error:", linf_err) if do_plot: fplot.show_scalar_in_matplotlib(fld_in_vol.get()) import matplotlib.pyplot as pt pt.colorbar() pt.show() assert linf_err < 1e-3
def run_int_eq_test( cl_ctx, queue, curve_f, nelements, qbx_order, bc_type, loc_sign, k, target_order, source_order): mesh = make_curve_mesh(curve_f, np.linspace(0, 1, nelements+1), target_order) if 0: from pytential.visualization import show_mesh show_mesh(mesh) pt.gca().set_aspect("equal") pt.show() from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) if source_order is None: source_order = 4*target_order qbx = QBXLayerPotentialSource( density_discr, fine_order=source_order, qbx_order=qbx_order, # Don't use FMM for now fmm_order=False) # {{{ set up operator from pytential.symbolic.pde.scalar import ( DirichletOperator, NeumannOperator) from sumpy.kernel import LaplaceKernel, HelmholtzKernel, AxisTargetDerivative if k: knl = HelmholtzKernel(2) knl_kwargs = {"k": k} else: knl = LaplaceKernel(2) knl_kwargs = {} if knl.is_complex_valued: dtype = np.complex128 else: dtype = np.float64 if bc_type == "dirichlet": op = DirichletOperator((knl, knl_kwargs), loc_sign, use_l2_weighting=True) elif bc_type == "neumann": op = NeumannOperator((knl, knl_kwargs), loc_sign, use_l2_weighting=True, use_improved_operator=False) else: assert False op_u = op.operator(sym.var("u")) # }}} # {{{ set up test data inner_radius = 0.1 outer_radius = 2 if loc_sign < 0: test_src_geo_radius = outer_radius test_tgt_geo_radius = inner_radius else: test_src_geo_radius = inner_radius test_tgt_geo_radius = outer_radius point_sources = make_circular_point_group(10, test_src_geo_radius, func=lambda x: x**1.5) test_targets = make_circular_point_group(20, test_tgt_geo_radius) np.random.seed(22) source_charges = np.random.randn(point_sources.shape[1]) source_charges[-1] = -np.sum(source_charges[:-1]) source_charges = source_charges.astype(dtype) assert np.sum(source_charges) < 1e-15 # }}} if 0: # show geometry, centers, normals nodes_h = density_discr.nodes().get(queue=queue) pt.plot(nodes_h[0], nodes_h[1], "x-") normal = bind(density_discr, sym.normal())(queue).as_vector(np.object) pt.quiver(nodes_h[0], nodes_h[1], normal[0].get(queue), normal[1].get(queue)) pt.gca().set_aspect("equal") pt.show() # {{{ establish BCs from sumpy.p2p import P2P pot_p2p = P2P(cl_ctx, [knl], exclude_self=False, value_dtypes=dtype) evt, (test_direct,) = pot_p2p( queue, test_targets, point_sources, [source_charges], out_host=False, **knl_kwargs) nodes = density_discr.nodes() evt, (src_pot,) = pot_p2p( queue, nodes, point_sources, [source_charges], **knl_kwargs) grad_p2p = P2P(cl_ctx, [AxisTargetDerivative(0, knl), AxisTargetDerivative(1, knl)], exclude_self=False, value_dtypes=dtype) evt, (src_grad0, src_grad1) = grad_p2p( queue, nodes, point_sources, [source_charges], **knl_kwargs) if bc_type == "dirichlet": bc = src_pot elif bc_type == "neumann": normal = bind(density_discr, sym.normal())(queue).as_vector(np.object) bc = (src_grad0*normal[0] + src_grad1*normal[1]) # }}} # {{{ solve bound_op = bind(qbx, op_u) rhs = bind(density_discr, op.prepare_rhs(sym.var("bc")))(queue, bc=bc) from pytential.solve import gmres gmres_result = gmres( bound_op.scipy_op(queue, "u", k=k), rhs, tol=1e-14, progress=True, hard_failure=False) u = gmres_result.solution print("gmres state:", gmres_result.state) if 0: # {{{ build matrix for spectrum check from sumpy.tools import build_matrix mat = build_matrix(bound_op.scipy_op("u")) w, v = la.eig(mat) if 0: pt.imshow(np.log10(1e-20+np.abs(mat))) pt.colorbar() pt.show() #assert abs(s[-1]) < 1e-13, "h #assert abs(s[-2]) > 1e-7 #from pudb import set_trace; set_trace() # }}} # }}} # {{{ error check from pytential.target import PointsTarget bound_tgt_op = bind((qbx, PointsTarget(test_targets)), op.representation(sym.var("u"))) test_via_bdry = bound_tgt_op(queue, u=u, k=k) err = test_direct-test_via_bdry err = err.get() test_direct = test_direct.get() test_via_bdry = test_via_bdry.get() # {{{ remove effect of net source charge if k == 0 and bc_type == "neumann" and loc_sign == -1: # remove constant offset in interior Laplace Neumann error tgt_ones = np.ones_like(test_direct) tgt_ones = tgt_ones/la.norm(tgt_ones) err = err - np.vdot(tgt_ones, err)*tgt_ones # }}} rel_err_2 = la.norm(err)/la.norm(test_direct) rel_err_inf = la.norm(err, np.inf)/la.norm(test_direct, np.inf) # }}} print("rel_err_2: %g rel_err_inf: %g" % (rel_err_2, rel_err_inf)) # {{{ test tangential derivative bound_t_deriv_op = bind(qbx, op.representation( sym.var("u"), map_potentials=sym.tangential_derivative, qbx_forced_limit=loc_sign)) #print(bound_t_deriv_op.code) tang_deriv_from_src = bound_t_deriv_op(queue, u=u).as_scalar().get() tangent = bind( density_discr, sym.pseudoscalar()/sym.area_element())(queue).as_vector(np.object) tang_deriv_ref = (src_grad0 * tangent[0] + src_grad1 * tangent[1]).get() if 0: pt.plot(tang_deriv_ref.real) pt.plot(tang_deriv_from_src.real) pt.show() td_err = tang_deriv_from_src - tang_deriv_ref rel_td_err_inf = la.norm(td_err, np.inf)/la.norm(tang_deriv_ref, np.inf) print("rel_td_err_inf: %g" % rel_td_err_inf) # }}} # {{{ plotting if 0: fplot = FieldPlotter(np.zeros(2), extent=1.25*2*max(test_src_geo_radius, test_tgt_geo_radius), npoints=200) #pt.plot(u) #pt.show() evt, (fld_from_src,) = pot_p2p( queue, fplot.points, point_sources, [source_charges], **knl_kwargs) fld_from_bdry = bind( (qbx, PointsTarget(fplot.points)), op.representation(sym.var("u")) )(queue, u=u, k=k) fld_from_src = fld_from_src.get() fld_from_bdry = fld_from_bdry.get() nodes = density_discr.nodes().get(queue=queue) def prep(): pt.plot(point_sources[0], point_sources[1], "o", label="Monopole 'Point Charges'") pt.plot(test_targets[0], test_targets[1], "v", label="Observation Points") pt.plot(nodes[0], nodes[1], "k-", label=r"$\Gamma$") from matplotlib.cm import get_cmap cmap = get_cmap() cmap._init() if 0: cmap._lut[(cmap.N*99)//100:, -1] = 0 # make last percent transparent? prep() if 1: pt.subplot(131) pt.title("Field error (loc_sign=%s)" % loc_sign) log_err = np.log10(1e-20+np.abs(fld_from_src-fld_from_bdry)) log_err = np.minimum(-3, log_err) fplot.show_scalar_in_matplotlib(log_err, cmap=cmap) #from matplotlib.colors import Normalize #im.set_norm(Normalize(vmin=-6, vmax=1)) cb = pt.colorbar(shrink=0.9) cb.set_label(r"$\log_{10}(\mathdefault{Error})$") if 1: pt.subplot(132) prep() pt.title("Source Field") fplot.show_scalar_in_matplotlib( fld_from_src.real, max_val=3) pt.colorbar(shrink=0.9) if 1: pt.subplot(133) prep() pt.title("Solved Field") fplot.show_scalar_in_matplotlib( fld_from_bdry.real, max_val=3) pt.colorbar(shrink=0.9) # total field #fplot.show_scalar_in_matplotlib( #fld_from_src.real+fld_from_bdry.real, max_val=0.1) #pt.colorbar() pt.legend(loc="best", prop=dict(size=15)) from matplotlib.ticker import NullFormatter pt.gca().xaxis.set_major_formatter(NullFormatter()) pt.gca().yaxis.set_major_formatter(NullFormatter()) pt.gca().set_aspect("equal") if 0: border_factor_top = 0.9 border_factor = 0.3 xl, xh = pt.xlim() xhsize = 0.5*(xh-xl) pt.xlim(xl-border_factor*xhsize, xh+border_factor*xhsize) yl, yh = pt.ylim() yhsize = 0.5*(yh-yl) pt.ylim(yl-border_factor_top*yhsize, yh+border_factor*yhsize) #pt.savefig("helmholtz.pdf", dpi=600) pt.show() # }}} class Result(Record): pass return Result( rel_err_2=rel_err_2, rel_err_inf=rel_err_inf, rel_td_err_inf=rel_td_err_inf, gmres_result=gmres_result)
def test_perf_data_gathering(ctx_getter, n_arms=5): cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) # prevent cache 'splosion from sympy.core.cache import clear_cache clear_cache() target_order = 8 starfish_func = NArmedStarfish(n_arms, 0.8) mesh = make_curve_mesh( starfish_func, np.linspace(0, 1, n_arms * 30), target_order) sigma_sym = sym.var("sigma") # The kernel doesn't really matter here from sumpy.kernel import LaplaceKernel k_sym = LaplaceKernel(mesh.ambient_dim) sym_op = sym.S(k_sym, sigma_sym, qbx_forced_limit=+1) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import ( InterpolatoryQuadratureSimplexGroupFactory) pre_density_discr = Discretization( queue.context, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) results = [] def inspect_geo_data(insn, bound_expr, geo_data): from pytential.qbx.fmm import assemble_performance_data perf_data = assemble_performance_data(geo_data, uses_pde_expansions=True) results.append(perf_data) return False # no need to do the actual FMM from pytential.qbx import QBXLayerPotentialSource lpot_source = QBXLayerPotentialSource( pre_density_discr, 4*target_order, # qbx order and fmm order don't really matter 10, fmm_order=10, _expansions_in_tree_have_extent=True, _expansion_stick_out_factor=0.5, geometry_data_inspector=inspect_geo_data, target_association_tolerance=1e-10, ) lpot_source, _ = lpot_source.with_refinement() density_discr = lpot_source.density_discr if 0: from meshmode.discretization.visualization import draw_curve draw_curve(density_discr) import matplotlib.pyplot as plt plt.show() nodes = density_discr.nodes().with_queue(queue) sigma = cl.clmath.sin(10 * nodes[0]) bind(lpot_source, sym_op)(queue, sigma=sigma)
def main(): logging.basicConfig(level=logging.INFO) nelements = 60 qbx_order = 3 k_fac = 4 k0 = 3*k_fac k1 = 2.9*k_fac mesh_order = 10 bdry_quad_order = mesh_order bdry_ovsmp_quad_order = bdry_quad_order * 4 fmm_order = qbx_order * 2 cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial mesh = make_curve_mesh( partial(ellipse, 3), np.linspace(0, 1, nelements+1), mesh_order) density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order)) logger.info("%d elements" % mesh.nelements) # from meshmode.discretization.visualization import make_visualizer # bdry_vis = make_visualizer(queue, density_discr, 20) # {{{ solve bvp from sumpy.kernel import HelmholtzKernel kernel = HelmholtzKernel(2) beta = 2.5*k_fac K0 = np.sqrt(k0**2-beta**2) K1 = np.sqrt(k1**2-beta**2) from pytential.symbolic.pde.scalar import DielectricSDRep2DBoundaryOperator pde_op = DielectricSDRep2DBoundaryOperator( mode='tm', k_vacuum=1, interfaces=((0, 1, sym.DEFAULT_SOURCE),), domain_k_exprs=(k0, k1), beta=beta) op_unknown_sym = pde_op.make_unknown("unknown") representation0_sym = pde_op.representation(op_unknown_sym, 0) representation1_sym = pde_op.representation(op_unknown_sym, 1) from pytential.qbx import QBXLayerPotentialSource qbx = QBXLayerPotentialSource( density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order, fmm_order=fmm_order ) bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym)) # in inner domain sources_1 = make_obj_array(list(np.array([ [-1.5, 0.5] ]).T.copy())) strengths_1 = np.array([1]) from sumpy.p2p import P2P pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False) _, (Einc,) = pot_p2p(queue, density_discr.nodes(), sources_1, [strengths_1], out_host=False, k=K0) sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue) bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object) for i_bc, terms in enumerate(pde_op.bcs): for term in terms: assert term.i_interface == 0 assert term.field_kind == pde_op.field_kind_e if term.direction == pde_op.dir_none: bvp_rhs[i_bc] += ( term.coeff_outer * (-Einc) ) elif term.direction == pde_op.dir_normal: # no jump in normal derivative bvp_rhs[i_bc] += 0*Einc else: raise NotImplementedError("direction spec in RHS") bvp_rhs[i_bc] *= sqrt_w from pytential.solve import gmres gmres_result = gmres( bound_pde_op.scipy_op(queue, "unknown", dtype=np.complex128, domains=[sym.DEFAULT_TARGET]*2, K0=K0, K1=K1), bvp_rhs, tol=1e-6, progress=True, hard_failure=True, stall_iterations=0) # }}} unknown = gmres_result.solution # {{{ visualize from pytential.qbx import QBXLayerPotentialSource lap_qbx = QBXLayerPotentialSource( density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order, fmm_order=qbx_order ) from sumpy.visualization import FieldPlotter fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300) from pytential.target import PointsTarget fld0 = bind( (qbx, PointsTarget(fplot.points)), representation0_sym)(queue, unknown=unknown, K0=K0).get() fld1 = bind( (qbx, PointsTarget(fplot.points)), representation1_sym)(queue, unknown=unknown, K1=K1).get() ones = cl.array.empty(queue, density_discr.nnodes, np.float64) dom1_indicator = -bind( (lap_qbx, PointsTarget(fplot.points)), sym.D(0, sym.var("sigma")))( queue, sigma=ones.fill(1)).get() _, (fld_inc_vol,) = pot_p2p(queue, fplot.points, sources_1, [strengths_1], out_host=True, k=K0) #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file( "potential.vts", [ ("fld0", fld0), ("fld1", fld1), ("fld_inc_vol", fld_inc_vol), ("fld_total", ( (fld_inc_vol + fld0)*(1-dom1_indicator) + fld1*dom1_indicator )), ("dom1_indicator", dom1_indicator), ] )
qbx_order = 3 nelements = 60 mode_nr = 3 k = 2 if k: kernel = HelmholtzKernel(helmholtz_k_name="k") else: kernel = LaplaceKernel() #kernel = OneKernel() from meshmode.mesh.generation import ( # noqa make_curve_mesh, starfish, ellipse, drop) mesh = make_curve_mesh( #lambda t: ellipse(1, t), starfish, np.linspace(0, 1, nelements+1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order, fmm_order=qbx_order) nodes = density_discr.nodes().with_queue(queue)
def test_off_surface_eval_vs_direct(ctx_getter, do_plot=False): logging.basicConfig(level=logging.INFO) cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) # prevent cache 'splosion from sympy.core.cache import clear_cache clear_cache() nelements = 300 target_order = 8 qbx_order = 3 mesh = make_curve_mesh(WobblyCircle.random(8, seed=30), np.linspace(0, 1, nelements+1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) direct_qbx, _ = QBXLayerPotentialSource( pre_density_discr, 4*target_order, qbx_order, fmm_order=False, target_association_tolerance=0.05, ).with_refinement() fmm_qbx, _ = QBXLayerPotentialSource( pre_density_discr, 4*target_order, qbx_order, fmm_order=qbx_order + 3, _expansions_in_tree_have_extent=True, target_association_tolerance=0.05, ).with_refinement() fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000) from pytential.target import PointsTarget ptarget = PointsTarget(fplot.points) from sumpy.kernel import LaplaceKernel op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None) from pytential.qbx import QBXTargetAssociationFailedException try: direct_density_discr = direct_qbx.density_discr direct_sigma = direct_density_discr.zeros(queue) + 1 direct_fld_in_vol = bind((direct_qbx, ptarget), op)( queue, sigma=direct_sigma) except QBXTargetAssociationFailedException as e: fplot.show_scalar_in_matplotlib(e.failed_target_flags.get(queue)) import matplotlib.pyplot as pt pt.show() raise fmm_density_discr = fmm_qbx.density_discr fmm_sigma = fmm_density_discr.zeros(queue) + 1 fmm_fld_in_vol = bind((fmm_qbx, ptarget), op)(queue, sigma=fmm_sigma) err = cl.clmath.fabs(fmm_fld_in_vol - direct_fld_in_vol) linf_err = cl.array.max(err).get() print("l_inf error:", linf_err) if do_plot: #fplot.show_scalar_in_mayavi(0.1*.get(queue)) fplot.write_vtk_file("potential.vts", [ ("fmm_fld_in_vol", fmm_fld_in_vol.get(queue)), ("direct_fld_in_vol", direct_fld_in_vol.get(queue)) ]) assert linf_err < 1e-3
def main(): import logging logging.basicConfig(level=logging.INFO) cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial mesh = make_curve_mesh( partial(ellipse, 3), np.linspace(0, 1, nelements+1), mesh_order) density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order)) from pytential.qbx import QBXLayerPotentialSource qbx = QBXLayerPotentialSource( density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order, fmm_order=fmm_order ) # {{{ describe bvp from sumpy.kernel import HelmholtzKernel kernel = HelmholtzKernel(2) cse = sym.cse sigma_sym = sym.var("sigma") sqrt_w = sym.sqrt_jac_q_weight() inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w) # Brakhage-Werner parameter alpha = 1j # -1 for interior Dirichlet # +1 for exterior Dirichlet loc_sign = -1 bdry_op_sym = (-loc_sign*0.5*sigma_sym + sqrt_w*( alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k")) - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k")) )) # }}} bound_op = bind(qbx, bdry_op_sym) # {{{ fix rhs and solve mode_nr = 3 nodes = density_discr.nodes().with_queue(queue) angle = cl.clmath.atan2(nodes[1], nodes[0]) bc = cl.clmath.cos(mode_nr*angle) bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc) from pytential.solve import gmres gmres_result = gmres( bound_op.scipy_op(queue, "sigma", k=k), bvp_rhs, tol=1e-14, progress=True, stall_iterations=0, hard_failure=True) # }}} # {{{ postprocess/visualize sigma = gmres_result.solution representation_sym = ( alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k")) - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))) from sumpy.visualization import FieldPlotter fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500) from pytential.target import PointsTarget fld_in_vol = bind( (qbx, PointsTarget(fplot.points)), representation_sym)(queue, sigma=sigma, k=k).get() #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file( "potential.vts", [ ("potential", fld_in_vol) ] )
def main(): import logging logging.basicConfig(level=logging.INFO) cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial mesh = make_curve_mesh( partial(ellipse, 2), np.linspace(0, 1, nelements+1), mesh_order) pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order)) from pytential.qbx import ( QBXLayerPotentialSource, QBXTargetAssociationFailedException) qbx, _ = QBXLayerPotentialSource( pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order, fmm_order=fmm_order, expansion_disks_in_tree_have_extent=True, ).with_refinement() density_discr = qbx.density_discr from pytential.symbolic.pde.cahn_hilliard import CahnHilliardOperator chop = CahnHilliardOperator( # FIXME: Constants? lambda1=1.5, lambda2=1.25, c=1) unk = chop.make_unknown("sigma") bound_op = bind(qbx, chop.operator(unk)) # {{{ fix rhs and solve nodes = density_discr.nodes().with_queue(queue) def g(xvec): x, y = xvec return cl.clmath.atan2(y, x) bc = sym.make_obj_array([ # FIXME: Realistic BC g(nodes), -g(nodes), ]) from pytential.solve import gmres gmres_result = gmres( bound_op.scipy_op(queue, "sigma", dtype=np.complex128), bc, tol=1e-8, progress=True, stall_iterations=0, hard_failure=True) # }}} # {{{ postprocess/visualize sigma = gmres_result.solution from sumpy.visualization import FieldPlotter fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500) targets = cl.array.to_device(queue, fplot.points) qbx_stick_out = qbx.copy(target_association_tolerance=0.05) indicator_qbx = qbx_stick_out.copy(qbx_order=2) from sumpy.kernel import LaplaceKernel ones_density = density_discr.zeros(queue) ones_density.fill(1) indicator = bind( (indicator_qbx, PointsTarget(targets)), sym.D(LaplaceKernel(2), sym.var("sigma")))( queue, sigma=ones_density).get() try: fld_in_vol = bind( (qbx_stick_out, PointsTarget(targets)), chop.representation(unk))(queue, sigma=sigma).get() except QBXTargetAssociationFailedException as e: fplot.write_vtk_file( "failed-targets.vts", [ ("failed", e.failed_target_flags.get(queue)) ] ) raise #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file( "potential.vts", [ ("potential", fld_in_vol), ("indicator", indicator), ] )
def main(): import logging logging.basicConfig(level=logging.WARNING) # INFO for more progress info cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial if 0: mesh = make_curve_mesh( partial(ellipse, 1), np.linspace(0, 1, nelements+1), mesh_order) else: base_mesh = make_curve_mesh( partial(ellipse, 1), np.linspace(0, 1, nelements+1), mesh_order) from meshmode.mesh.processing import affine_map, merge_disjoint_meshes nx = 2 ny = 2 dx = 2 / nx meshes = [ affine_map( base_mesh, A=np.diag([dx*0.25, dx*0.25]), b=np.array([dx*(ix-nx/2), dx*(iy-ny/2)])) for ix in range(nx) for iy in range(ny)] mesh = merge_disjoint_meshes(meshes, single_group=True) if 0: from meshmode.mesh.visualization import draw_curve draw_curve(mesh) import matplotlib.pyplot as plt plt.show() pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order)) from pytential.qbx import ( QBXLayerPotentialSource, QBXTargetAssociationFailedException) qbx, _ = QBXLayerPotentialSource( pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order, fmm_order=fmm_order ).with_refinement() density_discr = qbx.density_discr # {{{ describe bvp from sumpy.kernel import LaplaceKernel, HelmholtzKernel kernel = HelmholtzKernel(2) cse = sym.cse sigma_sym = sym.var("sigma") sqrt_w = sym.sqrt_jac_q_weight(2) inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w) # Brakhage-Werner parameter alpha = 1j # -1 for interior Dirichlet # +1 for exterior Dirichlet loc_sign = +1 bdry_op_sym = (-loc_sign*0.5*sigma_sym + sqrt_w*( alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"), qbx_forced_limit=+1) - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"), qbx_forced_limit="avg") )) # }}} bound_op = bind(qbx, bdry_op_sym) # {{{ fix rhs and solve nodes = density_discr.nodes().with_queue(queue) k_vec = np.array([2, 1]) k_vec = k * k_vec / la.norm(k_vec, 2) def u_incoming_func(x): return cl.clmath.exp( 1j * (x[0] * k_vec[0] + x[1] * k_vec[1])) bc = -u_incoming_func(nodes) bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc) from pytential.solve import gmres gmres_result = gmres( bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k), bvp_rhs, tol=1e-8, progress=True, stall_iterations=0, hard_failure=True) # }}} # {{{ postprocess/visualize sigma = gmres_result.solution repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=None) representation_sym = ( alpha*sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs) - sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs)) from sumpy.visualization import FieldPlotter fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500) targets = cl.array.to_device(queue, fplot.points) u_incoming = u_incoming_func(targets) qbx_stick_out = qbx.copy(target_association_tolerance=0.05) ones_density = density_discr.zeros(queue) ones_density.fill(1) indicator = bind( (qbx_stick_out, PointsTarget(targets)), sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None))( queue, sigma=ones_density).get() try: fld_in_vol = bind( (qbx_stick_out, PointsTarget(targets)), representation_sym)(queue, sigma=sigma, k=k).get() except QBXTargetAssociationFailedException as e: fplot.write_vtk_file( "failed-targets.vts", [ ("failed", e.failed_target_flags.get(queue)) ] ) raise #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file( "potential-helm.vts", [ ("potential", fld_in_vol), ("indicator", indicator), ("u_incoming", u_incoming.get()), ] )
def main(): import logging logging.basicConfig(level=logging.WARNING) # INFO for more progress info cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) target_order = 16 qbx_order = 3 nelements = 60 mode_nr = 0 k = 0 if k: kernel = HelmholtzKernel(2) else: kernel = LaplaceKernel(2) #kernel = OneKernel() mesh = make_curve_mesh( #lambda t: ellipse(1, t), starfish, np.linspace(0, 1, nelements+1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) slow_qbx, _ = QBXLayerPotentialSource( pre_density_discr, fine_order=2*target_order, qbx_order=qbx_order, fmm_order=False, target_association_tolerance=.05 ).with_refinement() qbx = slow_qbx.copy(fmm_order=10) density_discr = slow_qbx.density_discr nodes = density_discr.nodes().with_queue(queue) angle = cl.clmath.atan2(nodes[1], nodes[0]) from pytential import bind, sym #op = sym.d_dx(sym.S(kernel, sym.var("sigma")), qbx_forced_limit=None) #op = sym.D(kernel, sym.var("sigma"), qbx_forced_limit=None) op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None) sigma = cl.clmath.cos(mode_nr*angle) if isinstance(kernel, HelmholtzKernel): sigma = sigma.astype(np.complex128) fplot = FieldPlotter(np.zeros(2), extent=5, npoints=600) from pytential.target import PointsTarget fld_in_vol = bind( (slow_qbx, PointsTarget(fplot.points)), op)(queue, sigma=sigma, k=k).get() fmm_fld_in_vol = bind( (qbx, PointsTarget(fplot.points)), op)(queue, sigma=sigma, k=k).get() err = fmm_fld_in_vol-fld_in_vol import matplotlib matplotlib.use('Agg') im = fplot.show_scalar_in_matplotlib(np.log10(np.abs(err) + 1e-17)) from matplotlib.colors import Normalize im.set_norm(Normalize(vmin=-12, vmax=0)) import matplotlib.pyplot as pt from matplotlib.ticker import NullFormatter pt.gca().xaxis.set_major_formatter(NullFormatter()) pt.gca().yaxis.set_major_formatter(NullFormatter()) cb = pt.colorbar(shrink=0.9) cb.set_label(r"$\log_{10}(\mathdefault{Error})$") pt.savefig("fmm-error-order-%d.pdf" % qbx_order)
def find_mode(): import warnings warnings.simplefilter("error", np.ComplexWarning) cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) k0 = 1.4447 k1 = k0*1.02 beta_sym = sym.var("beta") from pytential.symbolic.pde.scalar import ( # noqa DielectricSRep2DBoundaryOperator as SRep, DielectricSDRep2DBoundaryOperator as SDRep) pde_op = SDRep( mode="te", k_vacuum=1, interfaces=((0, 1, sym.DEFAULT_SOURCE),), domain_k_exprs=(k0, k1), beta=beta_sym, use_l2_weighting=False) u_sym = pde_op.make_unknown("u") op = pde_op.operator(u_sym) # {{{ discretization setup from meshmode.mesh.generation import ellipse, make_curve_mesh curve_f = partial(ellipse, 1) target_order = 7 qbx_order = 4 nelements = 30 from meshmode.mesh.processing import affine_map mesh = make_curve_mesh(curve_f, np.linspace(0, 1, nelements+1), target_order) lambda_ = 1.55 circle_radius = 3.4*2*np.pi/lambda_ mesh = affine_map(mesh, A=circle_radius*np.eye(2)) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory from pytential.qbx import QBXLayerPotentialSource density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order, # Don't use FMM for now fmm_order=False) # }}} x_vec = np.random.randn(len(u_sym)*density_discr.nnodes) y_vec = np.random.randn(len(u_sym)*density_discr.nnodes) def muller_solve_func(beta): from pytential.symbolic.execution import build_matrix mat = build_matrix( queue, qbx, op, u_sym, context={"beta": beta}).get() return 1/x_vec.dot(la.solve(mat, y_vec)) starting_guesses = (1+0j)*( k0 + (k1-k0) * np.random.rand(3)) from pytential.muller import muller beta, niter = muller(muller_solve_func, z_start=starting_guesses) print("beta")
def test_identities(ctx_getter, zero_op_name, curve_name, curve_f, qbx_order, k): cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) # prevent cache 'splosion from sympy.core.cache import clear_cache clear_cache() target_order = 7 u_sym = sym.var("u") grad_u_sym = sym.VectorVariable("grad_u") dn_u_sym = sym.var("dn_u") if k == 0: k_sym = 0 else: k_sym = "k" zero_op_table = { "green": sym.S(k_sym, dn_u_sym) - sym.D(k_sym, u_sym) - 0.5*u_sym, "green_grad": d1.nabla * d1(sym.S(k_sym, dn_u_sym)) - d2.nabla * d2(sym.D(k_sym, u_sym)) - 0.5*grad_u_sym, # only for k==0: "zero_calderon": -sym.Dp(0, sym.S(0, u_sym)) - 0.25*u_sym + sym.Sp(0, sym.Sp(0, u_sym)) } order_table = { "green": qbx_order, "green_grad": qbx_order-1, "zero_calderon": qbx_order-1, } zero_op = zero_op_table[zero_op_name] from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for nelements in [30, 50, 70]: mesh = make_curve_mesh(curve_f, np.linspace(0, 1, nelements+1), target_order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory from pytential.qbx import QBXLayerPotentialSource density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order, # Don't use FMM for now fmm_order=False) # {{{ compute values of a solution to the PDE nodes_host = density_discr.nodes().get(queue) normal = bind(density_discr, sym.normal())(queue).as_vector(np.object) normal_host = [normal[0].get(), normal[1].get()] if k != 0: angle = 0.3 wave_vec = np.array([np.cos(angle), np.sin(angle)]) u = np.exp(1j*k*np.tensordot(wave_vec, nodes_host, axes=1)) grad_u = 1j*k*wave_vec[:, np.newaxis]*u else: center = np.array([3, 1]) diff = nodes_host - center[:, np.newaxis] dist_squared = np.sum(diff**2, axis=0) dist = np.sqrt(dist_squared) u = np.log(dist) grad_u = diff/dist_squared dn_u = normal_host[0]*grad_u[0] + normal_host[1]*grad_u[1] # }}} u_dev = cl.array.to_device(queue, u) dn_u_dev = cl.array.to_device(queue, dn_u) grad_u_dev = cl.array.to_device(queue, grad_u) key = (qbx_order, curve_name, nelements, zero_op_name) bound_op = bind(qbx, zero_op) error = bound_op( queue, u=u_dev, dn_u=dn_u_dev, grad_u=grad_u_dev, k=k) if 0: pt.plot(error) pt.show() l2_error_norm = norm(density_discr, queue, error) print(key, l2_error_norm) eoc_rec.add_data_point(1/nelements, l2_error_norm) print(eoc_rec) tgt_order = order_table[zero_op_name] assert eoc_rec.order_estimate() > tgt_order - 1.3
def main(): import logging logging.basicConfig(level=logging.WARNING) # INFO for more progress info cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import ( # noqa make_curve_mesh, starfish, ellipse, drop) mesh = make_curve_mesh( #lambda t: ellipse(1, t), starfish, np.linspace(0, 1, nelements+1), target_order) from pytential.qbx import QBXLayerPotentialSource from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory pre_density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx, _ = QBXLayerPotentialSource(pre_density_discr, 4*target_order, qbx_order, fmm_order=qbx_order+3, target_association_tolerance=0.005).with_refinement() density_discr = qbx.density_discr nodes = density_discr.nodes().with_queue(queue) angle = cl.clmath.atan2(nodes[1], nodes[0]) def op(**kwargs): kwargs.update(kernel_kwargs) #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), **kwargs)) return sym.D(kernel, sym.var("sigma"), **kwargs) #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None, **kwargs) sigma = cl.clmath.cos(mode_nr*angle) if 0: sigma = 0*angle from random import randrange for i in range(5): sigma[randrange(len(sigma))] = 1 if isinstance(kernel, HelmholtzKernel): sigma = sigma.astype(np.complex128) bound_bdry_op = bind(qbx, op()) #mlab.figure(bgcolor=(1, 1, 1)) if 1: fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000) from pytential.target import PointsTarget targets_dev = cl.array.to_device(queue, fplot.points) fld_in_vol = bind( (qbx, PointsTarget(targets_dev)), op(qbx_forced_limit=None))(queue, sigma=sigma, k=k).get() if enable_mayavi: fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) else: fplot.write_vtk_file( "potential-2d.vts", [ ("potential", fld_in_vol) ] ) if 0: def apply_op(density): return bound_bdry_op( queue, sigma=cl.array.to_device(queue, density), k=k).get() from sumpy.tools import build_matrix n = len(sigma) mat = build_matrix(apply_op, dtype=np.float64, shape=(n, n)) import matplotlib.pyplot as pt pt.imshow(mat) pt.colorbar() pt.show() if enable_mayavi: # {{{ plot boundary field fld_on_bdry = bound_bdry_op(queue, sigma=sigma, k=k).get() nodes_host = density_discr.nodes().get(queue=queue) mlab.points3d(nodes_host[0], nodes_host[1], fld_on_bdry.real, scale_factor=0.03) # }}} if enable_mayavi: mlab.colorbar() mlab.show()
def run_dielectric_test(cl_ctx, queue, nelements, qbx_order, op_class, mode, k0=3, k1=2.9, mesh_order=10, bdry_quad_order=None, bdry_ovsmp_quad_order=None, use_l2_weighting=False, fmm_order=None, visualize=False): if fmm_order is None: fmm_order = qbx_order * 2 if bdry_quad_order is None: bdry_quad_order = mesh_order if bdry_ovsmp_quad_order is None: bdry_ovsmp_quad_order = 4*bdry_quad_order from meshmode.mesh.generation import ellipse, make_curve_mesh from functools import partial mesh = make_curve_mesh( partial(ellipse, 3), np.linspace(0, 1, nelements+1), mesh_order) density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order)) logger.info("%d elements" % mesh.nelements) # from meshmode.discretization.visualization import make_visualizer # bdry_vis = make_visualizer(queue, density_discr, 20) # {{{ solve bvp from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative kernel = HelmholtzKernel(2) beta = 2.5 K0 = np.sqrt(k0**2-beta**2) # noqa K1 = np.sqrt(k1**2-beta**2) # noqa pde_op = op_class( mode, k_vacuum=1, interfaces=((0, 1, sym.DEFAULT_SOURCE),), domain_k_exprs=(k0, k1), beta=beta, use_l2_weighting=use_l2_weighting) op_unknown_sym = pde_op.make_unknown("unknown") representation0_sym = pde_op.representation(op_unknown_sym, 0) representation1_sym = pde_op.representation(op_unknown_sym, 1) from pytential.qbx import QBXLayerPotentialSource qbx = QBXLayerPotentialSource( density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order, fmm_order=fmm_order ).with_refinement() #print(sym.pretty(pde_op.operator(op_unknown_sym))) #1/0 bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym)) e_factor = float(pde_op.ez_enabled) h_factor = float(pde_op.hz_enabled) e_sources_0 = make_obj_array(list(np.array([ [0.1, 0.2] ]).T.copy())) e_strengths_0 = np.array([1*e_factor]) e_sources_1 = make_obj_array(list(np.array([ [4, 4] ]).T.copy())) e_strengths_1 = np.array([1*e_factor]) h_sources_0 = make_obj_array(list(np.array([ [0.2, 0.1] ]).T.copy())) h_strengths_0 = np.array([1*h_factor]) h_sources_1 = make_obj_array(list(np.array([ [4, 5] ]).T.copy())) h_strengths_1 = np.array([1*h_factor]) kernel_grad = [ AxisTargetDerivative(i, kernel) for i in range(density_discr.ambient_dim)] from sumpy.p2p import P2P pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False) pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False) normal = bind(density_discr, sym.normal())(queue).as_vector(np.object) tangent = bind( density_discr, sym.pseudoscalar()/sym.area_element())(queue).as_vector(np.object) _, (E0,) = pot_p2p(queue, density_discr.nodes(), e_sources_0, [e_strengths_0], out_host=False, k=K0) _, (E1,) = pot_p2p(queue, density_discr.nodes(), e_sources_1, [e_strengths_1], out_host=False, k=K1) _, (grad0_E0, grad1_E0) = pot_p2p_grad( queue, density_discr.nodes(), e_sources_0, [e_strengths_0], out_host=False, k=K0) _, (grad0_E1, grad1_E1) = pot_p2p_grad( queue, density_discr.nodes(), e_sources_1, [e_strengths_1], out_host=False, k=K1) _, (H0,) = pot_p2p(queue, density_discr.nodes(), h_sources_0, [h_strengths_0], out_host=False, k=K0) _, (H1,) = pot_p2p(queue, density_discr.nodes(), h_sources_1, [h_strengths_1], out_host=False, k=K1) _, (grad0_H0, grad1_H0) = pot_p2p_grad( queue, density_discr.nodes(), h_sources_0, [h_strengths_0], out_host=False, k=K0) _, (grad0_H1, grad1_H1) = pot_p2p_grad( queue, density_discr.nodes(), h_sources_1, [h_strengths_1], out_host=False, k=K1) E0_dntarget = (grad0_E0*normal[0] + grad1_E0*normal[1]) # noqa E1_dntarget = (grad0_E1*normal[0] + grad1_E1*normal[1]) # noqa H0_dntarget = (grad0_H0*normal[0] + grad1_H0*normal[1]) # noqa H1_dntarget = (grad0_H1*normal[0] + grad1_H1*normal[1]) # noqa E0_dttarget = (grad0_E0*tangent[0] + grad1_E0*tangent[1]) # noqa E1_dttarget = (grad0_E1*tangent[0] + grad1_E1*tangent[1]) # noqa H0_dttarget = (grad0_H0*tangent[0] + grad1_H0*tangent[1]) # noqa H1_dttarget = (grad0_H1*tangent[0] + grad1_H1*tangent[1]) # noqa sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue) bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object) for i_bc, terms in enumerate(pde_op.bcs): for term in terms: assert term.i_interface == 0 if term.field_kind == pde_op.field_kind_e: if term.direction == pde_op.dir_none: bvp_rhs[i_bc] += ( term.coeff_outer * E0 + term.coeff_inner * E1) elif term.direction == pde_op.dir_normal: bvp_rhs[i_bc] += ( term.coeff_outer * E0_dntarget + term.coeff_inner * E1_dntarget) elif term.direction == pde_op.dir_tangential: bvp_rhs[i_bc] += ( term.coeff_outer * E0_dttarget + term.coeff_inner * E1_dttarget) else: raise NotImplementedError("direction spec in RHS") elif term.field_kind == pde_op.field_kind_h: if term.direction == pde_op.dir_none: bvp_rhs[i_bc] += ( term.coeff_outer * H0 + term.coeff_inner * H1) elif term.direction == pde_op.dir_normal: bvp_rhs[i_bc] += ( term.coeff_outer * H0_dntarget + term.coeff_inner * H1_dntarget) elif term.direction == pde_op.dir_tangential: bvp_rhs[i_bc] += ( term.coeff_outer * H0_dttarget + term.coeff_inner * H1_dttarget) else: raise NotImplementedError("direction spec in RHS") if use_l2_weighting: bvp_rhs[i_bc] *= sqrt_w scipy_op = bound_pde_op.scipy_op(queue, "unknown", domains=[sym.DEFAULT_TARGET]*len(pde_op.bcs), K0=K0, K1=K1, dtype=np.complex128) if mode == "tem" or op_class is SRep: from sumpy.tools import vector_from_device, vector_to_device from pytential.solve import lu unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs)) unknown = vector_to_device(queue, unknown) else: from pytential.solve import gmres gmres_result = gmres(scipy_op, bvp_rhs, tol=1e-14, progress=True, hard_failure=True, stall_iterations=0) unknown = gmres_result.solution # }}} targets_0 = make_obj_array(list(np.array([ [3.2 + t, -4] for t in [0, 0.5, 1] ]).T.copy())) targets_1 = make_obj_array(list(np.array([ [t*-0.3, t*-0.2] for t in [0, 0.5, 1] ]).T.copy())) from pytential.target import PointsTarget from sumpy.tools import vector_from_device F0_tgt = vector_from_device(queue, bind( # noqa (qbx, PointsTarget(targets_0)), representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1)) F1_tgt = vector_from_device(queue, bind( # noqa (qbx, PointsTarget(targets_1)), representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1)) _, (E0_tgt_true,) = pot_p2p(queue, targets_0, e_sources_0, [e_strengths_0], out_host=True, k=K0) _, (E1_tgt_true,) = pot_p2p(queue, targets_1, e_sources_1, [e_strengths_1], out_host=True, k=K1) _, (H0_tgt_true,) = pot_p2p(queue, targets_0, h_sources_0, [h_strengths_0], out_host=True, k=K0) _, (H1_tgt_true,) = pot_p2p(queue, targets_1, h_sources_1, [h_strengths_1], out_host=True, k=K1) err_F0_total = 0 # noqa err_F1_total = 0 # noqa i_field = 0 def vec_norm(ary): return la.norm(ary.reshape(-1)) def field_kind_to_string(field_kind): return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind] for field_kind in pde_op.field_kinds: if not pde_op.is_field_present(field_kind): continue if field_kind == pde_op.field_kind_e: F0_tgt_true = E0_tgt_true # noqa F1_tgt_true = E1_tgt_true # noqa elif field_kind == pde_op.field_kind_h: F0_tgt_true = H0_tgt_true # noqa F1_tgt_true = H1_tgt_true # noqa else: assert False abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true) # noqa abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true) # noqa rel_err_F0 = abs_err_F0/vec_norm(F0_tgt_true) # noqa rel_err_F1 = abs_err_F1/vec_norm(F1_tgt_true) # noqa err_F0_total = max(rel_err_F0, err_F0_total) # noqa err_F1_total = max(rel_err_F1, err_F1_total) # noqa print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0) print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1) print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0) print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1) i_field += 1 if visualize: from sumpy.visualization import FieldPlotter fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300) from pytential.target import PointsTarget fld0 = bind( (qbx, PointsTarget(fplot.points)), representation0_sym)(queue, unknown=unknown, K0=K0) fld1 = bind( (qbx, PointsTarget(fplot.points)), representation1_sym)(queue, unknown=unknown, K1=K1) comp_fields = [] i_field = 0 for field_kind in pde_op.field_kinds: if not pde_op.is_field_present(field_kind): continue fld_str = field_kind_to_string(field_kind) comp_fields.extend([ ("%s_fld0" % fld_str, fld0[i_field].get()), ("%s_fld1" % fld_str, fld1[i_field].get()), ]) i_field += 0 low_order_qbx = QBXLayerPotentialSource( density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=2, fmm_order=3).with_refinement() from sumpy.kernel import LaplaceKernel from pytential.target import PointsTarget ones = (cl.array.empty(queue, (density_discr.nnodes,), dtype=np.float64) .fill(1)) ind_func = - bind((low_order_qbx, PointsTarget(fplot.points)), sym.D(LaplaceKernel(2), sym.var("u")))( queue, u=ones).get() _, (e_fld0_true,) = pot_p2p( queue, fplot.points, e_sources_0, [e_strengths_0], out_host=True, k=K0) _, (e_fld1_true,) = pot_p2p( queue, fplot.points, e_sources_1, [e_strengths_1], out_host=True, k=K1) _, (h_fld0_true,) = pot_p2p( queue, fplot.points, h_sources_0, [h_strengths_0], out_host=True, k=K0) _, (h_fld1_true,) = pot_p2p( queue, fplot.points, h_sources_1, [h_strengths_1], out_host=True, k=K1) #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5) fplot.write_vtk_file( "potential-n%d.vts" % nelements, [ ("e_fld0_true", e_fld0_true), ("e_fld1_true", e_fld1_true), ("h_fld0_true", h_fld0_true), ("h_fld1_true", h_fld1_true), ("ind", ind_func), ] + comp_fields ) return err_F0_total, err_F1_total
def get_mesh(self, resolution, target_order): return make_curve_mesh( self.curve_func, np.linspace(0, 1, resolution+1), target_order)
def test_ellipse_eigenvalues(ctx_getter, ellipse_aspect, mode_nr, qbx_order): logging.basicConfig(level=logging.INFO) print("ellipse_aspect: %s, mode_nr: %d, qbx_order: %d" % ( ellipse_aspect, mode_nr, qbx_order)) cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) target_order = 7 from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory from pytential.qbx import QBXLayerPotentialSource from pytools.convergence import EOCRecorder s_eoc_rec = EOCRecorder() d_eoc_rec = EOCRecorder() sp_eoc_rec = EOCRecorder() if ellipse_aspect != 1: nelements_values = [60, 100, 150, 200] else: nelements_values = [30, 70] # See # # [1] G. J. Rodin and O. Steinbach, "Boundary Element Preconditioners # for Problems Defined on Slender Domains", SIAM Journal on Scientific # Computing, Vol. 24, No. 4, pg. 1450, 2003. # http://dx.doi.org/10.1137/S1064827500372067 for nelements in nelements_values: mesh = make_curve_mesh(partial(ellipse, ellipse_aspect), np.linspace(0, 1, nelements+1), target_order) fmm_order = qbx_order if fmm_order > 3: # FIXME: for now fmm_order = False density_discr = Discretization( cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order, fmm_order=fmm_order) nodes = density_discr.nodes().with_queue(queue) if 0: # plot geometry, centers, normals centers = qbx.centers(density_discr, 1) nodes_h = nodes.get() centers_h = [centers[0].get(), centers[1].get()] pt.plot(nodes_h[0], nodes_h[1], "x-") pt.plot(centers_h[0], centers_h[1], "o") normal = bind(qbx, sym.normal())(queue).as_vector(np.object) pt.quiver(nodes_h[0], nodes_h[1], normal[0].get(), normal[1].get()) pt.gca().set_aspect("equal") pt.show() angle = cl.clmath.atan2(nodes[1]*ellipse_aspect, nodes[0]) ellipse_fraction = ((1-ellipse_aspect)/(1+ellipse_aspect))**mode_nr # (2.6) in [1] J = cl.clmath.sqrt( # noqa cl.clmath.sin(angle)**2 + (1/ellipse_aspect)**2 * cl.clmath.cos(angle)**2) # {{{ single layer sigma = cl.clmath.cos(mode_nr*angle)/J s_sigma_op = bind(qbx, sym.S(0, sym.var("sigma"))) s_sigma = s_sigma_op(queue=queue, sigma=sigma) # SIGN BINGO! :) s_eigval = 1/(2*mode_nr) * (1 + (-1)**mode_nr * ellipse_fraction) # (2.12) in [1] s_sigma_ref = s_eigval*J*sigma if 0: #pt.plot(s_sigma.get(), label="result") #pt.plot(s_sigma_ref.get(), label="ref") pt.plot((s_sigma_ref-s_sigma).get(), label="err") pt.legend() pt.show() s_err = ( norm(density_discr, queue, s_sigma - s_sigma_ref) / norm(density_discr, queue, s_sigma_ref)) s_eoc_rec.add_data_point(1/nelements, s_err) # }}} # {{{ double layer sigma = cl.clmath.cos(mode_nr*angle) d_sigma_op = bind(qbx, sym.D(0, sym.var("sigma"))) d_sigma = d_sigma_op(queue=queue, sigma=sigma) # SIGN BINGO! :) d_eigval = -(-1)**mode_nr * 1/2*ellipse_fraction d_sigma_ref = d_eigval*sigma if 0: pt.plot(d_sigma.get(), label="result") pt.plot(d_sigma_ref.get(), label="ref") pt.legend() pt.show() if ellipse_aspect == 1: d_ref_norm = norm(density_discr, queue, sigma) else: d_ref_norm = norm(density_discr, queue, d_sigma_ref) d_err = ( norm(density_discr, queue, d_sigma - d_sigma_ref) / d_ref_norm) d_eoc_rec.add_data_point(1/nelements, d_err) # }}} if ellipse_aspect == 1: # {{{ S' sigma = cl.clmath.cos(mode_nr*angle) sp_sigma_op = bind(qbx, sym.Sp(0, sym.var("sigma"))) sp_sigma = sp_sigma_op(queue=queue, sigma=sigma) sp_eigval = 0 sp_sigma_ref = sp_eigval*sigma sp_err = ( norm(density_discr, queue, sp_sigma - sp_sigma_ref) / norm(density_discr, queue, sigma)) sp_eoc_rec.add_data_point(1/nelements, sp_err) # }}} print("Errors for S:") print(s_eoc_rec) required_order = qbx_order + 1 assert s_eoc_rec.order_estimate() > required_order - 1.5 print("Errors for D:") print(d_eoc_rec) required_order = qbx_order assert d_eoc_rec.order_estimate() > required_order - 1.5 if ellipse_aspect == 1: print("Errors for S':") print(sp_eoc_rec) required_order = qbx_order assert sp_eoc_rec.order_estimate() > required_order - 1.5