示例#1
0
    def render_data(self):
        logging.basicConfig(level=logging.WARNING)
        for dataset in self.datasets:
            logging.info('Generating data for dataset %s' % dataset.name)
            object_keys = dataset.object_keys

            for obj_key in object_keys:
                self.tensor_datapoint['obj_labels'] = self.cur_obj_label
                if self.cur_obj_label % 10 == 0:
                    logging.info("Object number: %d" % self.cur_obj_label)
                self.obj = dataset[obj_key]

                grasps = dataset.grasps(self.obj.key, gripper=self.gripper.name)

                # Load grasp metrics
                grasp_metrics = dataset.grasp_metrics(self.obj.key,
                                                      grasps,
                                                      gripper=self.gripper.name)

                # setup collision checker
                collision_checker = GraspCollisionChecker(self.gripper)
                collision_checker.set_graspable_object(self.obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(self.obj.key)

                # Iterate through stable poses
                for i, stable_pose in enumerate(stable_poses):
                    if not stable_pose.p > self._stable_pose_min_p:
                        continue
                    self.tensor_datapoint['pose_labels'] = self.cur_pose_label

                    # setup table in collision checker
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_table = self.obj.mesh.get_T_surface_obj(T_obj_stp,
                                                                  delta=self._table_offset).as_frames('obj', 'table')
                    T_table_obj = T_obj_table.inverse()
                    T_obj_stp = self.obj.mesh.get_T_surface_obj(T_obj_stp)

                    collision_checker.set_table(self._table_mesh_filename, T_table_obj)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table', to_frame='obj')
                    scene_objs = {'table': SceneObject(self.table_mesh, T_table_obj)}

                    # Set up image renderer
                    samples = self.render_images(scene_objs,
                                                 stable_pose,
                                                 self.config['images_per_stable_pose'],
                                                 camera_config=self._camera_configs())
                    for sample in samples:
                        self.save_samples(sample, grasps, T_obj_stp, collision_checker, grasp_metrics, stable_pose)
                    self.cur_pose_label += 1
                    gc.collect()
                    # next stable pose
                self.cur_obj_label += 1
                # next object
        # Save dataset
        self.tensor_dataset.flush()
示例#2
0
    def start_rendering(self):
        self._load_file_ids()

        for object_id in self.all_objects:
            self._load_data(object_id)

            for i, stable_pose in enumerate(self.stable_poses):
                try:
                    candidate_grasp_info = self.candidate_grasps_dict[
                        stable_pose.id]
                except KeyError:
                    continue

                if not candidate_grasp_info:
                    Warning("Candidate grasp info of object id %s empty" %
                            object_id)
                    Warning("Continue.")
                    continue
                T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                T_obj_stp = self.object_mesh.get_T_surface_obj(T_obj_stp)

                T_table_obj = RigidTransform(from_frame='table',
                                             to_frame='obj')
                scene_objs = {
                    'table': SceneObject(self.table_mesh, T_table_obj)
                }

                urv = UniformPlanarWorksurfaceImageRandomVariable(
                    self.object_mesh,
                    [RenderMode.DEPTH_SCENE, RenderMode.SEGMASK],
                    'camera',
                    self.config['env_rv_params'],
                    scene_objs=scene_objs,
                    stable_pose=stable_pose)
                render_sample = urv.rvs(size=self.random_positions)
                # for render_sample in render_samples:

                binary_im = render_sample.renders[RenderMode.SEGMASK].image
                depth_im = render_sample.renders[
                    RenderMode.DEPTH_SCENE].image.crop(300, 300)
                orig_im = Image.fromarray(self._scale_image(depth_im.data))
                if self.show_images:
                    orig_im.show()
                orig_im.convert('RGB').save(self.output_dir + '/images/' +
                                            object_id + '_elev_' +
                                            str(self.elev) + '_original.png')
                print("Saved original")

                T_stp_camera = render_sample.camera.object_to_camera_pose
                shifted_camera_intr = render_sample.camera.camera_intr.crop(
                    300, 300, 240, 320)
                depth_points = self._reproject_to_3D(depth_im,
                                                     shifted_camera_intr)

                transformed_points, T_camera = self._transformation(
                    depth_points)

                camera_dir = np.dot(T_camera.rotation,
                                    np.array([0.0, 0.0, -1.0]))

                pcd = o3d.geometry.PointCloud()
                # print(camera_dir)
                pcd.points = o3d.utility.Vector3dVector(transformed_points.T)
                # TODO check normals!!
                #  pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
                #  pcd.normals = o3d.utility.Vector3dVector(-np.asarray(pcd.normals))
                normals = np.repeat([camera_dir],
                                    len(transformed_points.T),
                                    axis=0)
                pcd.normals = o3d.utility.Vector3dVector(normals)

                # cs_points = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]
                # cs_lines = [[0, 1], [0, 2], [0, 3]]
                # colors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
                # cs = o3d.geometry.LineSet(points=o3d.utility.Vector3dVector(cs_points),
                #                           lines=o3d.utility.Vector2iVector(cs_lines))
                # cs.colors = o3d.utility.Vector3dVector(colors)
                # o3d.visualization.draw_geometries([pcd])

                depth = self._o3d_meshing(pcd)

                # projected_depth_im,new_camera_intr,table_height = self._projection(new_points,shifted_camera_intr)
                new_camera_intr = shifted_camera_intr
                new_camera_intr.cx = 150
                new_camera_intr.cy = 150
                projected_depth_im = np.asarray(depth)
                projected_depth_im[projected_depth_im == 0.0] = -1.0
                table_height = np.median(
                    projected_depth_im[projected_depth_im != -1.0].flatten())
                print("Minimum depth:", min(projected_depth_im.flatten()))
                print("Maximum depth:", max(projected_depth_im.flatten()))

                im = Image.fromarray(self._scale_image(projected_depth_im))

                projected_depth_im = DepthImage(projected_depth_im,
                                                frame='new_camera')

                cx = projected_depth_im.center[1]
                cy = projected_depth_im.center[0]

                # Grasp conversion
                T_obj_old_camera = T_stp_camera * T_obj_stp.as_frames(
                    'obj', T_stp_camera.from_frame)
                T_obj_camera = T_camera.dot(T_obj_old_camera)
                for grasp_info in candidate_grasp_info:
                    grasp = grasp_info.grasp
                    collision_free = grasp_info.collision_free

                    grasp_2d = grasp.project_camera(T_obj_camera,
                                                    new_camera_intr)
                    dx = cx - grasp_2d.center.x
                    dy = cy - grasp_2d.center.y
                    translation = np.array([dy, dx])

                    # Project 3D old_camera_cs contact points into new camera cs

                    contact_points = np.append(grasp_info.contact_point1, 1).T
                    new_cam = np.dot(T_obj_camera.matrix, contact_points)
                    c1 = new_camera_intr.project(
                        Point(new_cam[0:3], frame=new_camera_intr.frame))
                    contact_points = np.append(grasp_info.contact_point2, 1).T
                    new_cam = np.dot(T_obj_camera.matrix, contact_points)
                    c2 = new_camera_intr.project(
                        Point(new_cam[0:3], frame=new_camera_intr.frame))

                    # Check if there are occlusions at contact points
                    if projected_depth_im.data[
                            c1.x, c1.y] == -1.0 or projected_depth_im.data[
                                c2.x, c2.y] == -1.0:
                        print("Contact point at occlusion")
                        contact_occlusion = True
                    else:
                        contact_occlusion = False
                    # Mark contact points in image
                    im = im.convert('RGB')
                    if False:
                        im_draw = ImageDraw.Draw(im)
                        im_draw.line([(c1[0], c1[1] - 10),
                                      (c1[0], c1[1] + 10)],
                                     fill=(255, 0, 0, 255))
                        im_draw.line([(c1[0] - 10, c1[1]),
                                      (c1[0] + 10, c1[1])],
                                     fill=(255, 0, 0, 255))
                        im_draw.line([(c2[0], c2[1] - 10),
                                      (c2[0], c2[1] + 10)],
                                     fill=(255, 0, 0, 255))
                        im_draw.line([(c2[0] - 10, c2[1]),
                                      (c2[0] + 10, c2[1])],
                                     fill=(255, 0, 0, 255))
                    if self.show_images:
                        im.show()
                    im.save(self.output_dir + '/images/' + object_id +
                            '_elev_' + str(self.elev) + '_reprojected.png')

                    # Transform and crop image

                    depth_im_tf = projected_depth_im.transform(
                        translation, grasp_2d.angle)
                    depth_im_tf = depth_im_tf.crop(96, 96)

                    # Apply transformation to contact points
                    trans_map = np.array([[1, 0, dx], [0, 1, dy]])
                    rot_map = cv2.getRotationMatrix2D(
                        (cx, cy), np.rad2deg(grasp_2d.angle), 1)
                    trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]
                    rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]
                    full_map = rot_map_aff.dot(trans_map_aff)
                    # print("Full map",full_map)
                    c1_rotated = (np.dot(full_map, np.r_[c1.vector, [1]]) -
                                  np.array([150 - 48, 150 - 48, 0])) / 3
                    c2_rotated = (np.dot(full_map, np.r_[c2.vector, [1]]) -
                                  np.array([150 - 48, 150 - 48, 0])) / 3

                    grasp_line = depth_im_tf.data[48]
                    occlusions = len(np.where(np.squeeze(grasp_line) == -1)[0])

                    # Set occlusions to table height for resizing image
                    depth_im_tf.data[depth_im_tf.data == -1.0] = table_height

                    depth_image = Image.fromarray(np.asarray(depth_im_tf.data))\
                        .resize((32, 32), resample=Image.BILINEAR)
                    depth_im_tf_table = np.asarray(depth_image).reshape(
                        32, 32, 1)

                    # depth_im_tf_table = depth_im_tf.resize((32, 32,), interp='bilinear')

                    im = Image.fromarray(
                        self._scale_image(depth_im_tf_table.reshape(
                            32, 32))).convert('RGB')
                    draw = ImageDraw.Draw(im)
                    draw.line([(c1_rotated[0], c1_rotated[1] - 3),
                               (c1_rotated[0], c1_rotated[1] + 3)],
                              fill=(255, 0, 0, 255))
                    draw.line([(c1_rotated[0] - 3, c1_rotated[1]),
                               (c1_rotated[0] + 3, c1_rotated[1])],
                              fill=(255, 0, 0, 255))
                    draw.line([(c2_rotated[0], c2_rotated[1] - 3),
                               (c2_rotated[0], c2_rotated[1] + 3)],
                              fill=(255, 0, 0, 255))
                    draw.line([(c2_rotated[0] - 3, c2_rotated[1]),
                               (c2_rotated[0] + 3, c2_rotated[1])],
                              fill=(255, 0, 0, 255))
                    if self.show_images:
                        im.show()
                    im.save(self.output_dir + '/images/' + object_id +
                            '_elev_' + str(self.elev) + '_transformed.png')

                    hand_pose = np.r_[grasp_2d.center.y, grasp_2d.center.x,
                                      grasp_2d.depth, grasp_2d.angle,
                                      grasp_2d.center.y - new_camera_intr.cy,
                                      grasp_2d.center.x - new_camera_intr.cx,
                                      grasp_2d.width_px / 3]

                    self.tensor_datapoint[
                        'depth_ims_tf_table'] = depth_im_tf_table
                    self.tensor_datapoint['hand_poses'] = hand_pose
                    self.tensor_datapoint['obj_labels'] = self.cur_obj_label
                    self.tensor_datapoint['collision_free'] = collision_free
                    self.tensor_datapoint['pose_labels'] = self.cur_pose_label
                    self.tensor_datapoint[
                        'image_labels'] = self.cur_image_label
                    self.tensor_datapoint['files'] = [self.tensor, self.array]
                    self.tensor_datapoint['occlusions'] = occlusions
                    self.tensor_datapoint[
                        'contact_occlusion'] = contact_occlusion

                    for metric_name, metric_val in self.grasp_metrics[str(
                            grasp.id)].iteritems():
                        coll_free_metric = (1 * collision_free) * metric_val
                        self.tensor_datapoint[metric_name] = coll_free_metric
                    self.tensor_dataset.add(self.tensor_datapoint)
                    print("Saved dataset point")
                    self.cur_image_label += 1
                self.cur_pose_label += 1
                gc.collect()
            self.cur_obj_label += 1

        self.tensor_dataset.flush()
示例#3
0
def generate_gqcnn_dataset(dataset_path, database, target_object_keys,
                           env_rv_params, gripper_name, config):
    """
    Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras.

    Parameters
    ----------
    dataset_path : str
        path to save the dataset to
    database : :obj:`Hdf5Database`
        Dex-Net database containing the 3D meshes, grasps, and grasp metrics
    target_object_keys : :obj:`OrderedDict`
        dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys)
    env_rv_params : :obj:`OrderedDict`
        parameters of the camera and object random variables used in sampling (see meshpy.UniformPlanarWorksurfaceImageRandomVariable for more info)
    gripper_name : str
        name of the gripper to use
    config : :obj:`autolab_core.YamlConfig`
        other parameters for dataset generation

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------    
    images_per_stable_pose : int
        number of object and camera poses to sample for each stable pose
    stable_pose_min_p : float
        minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses
    
    gqcnn/crop_width : int
        width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/crop_height : int
        height, in pixels,  of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/final_width : int
        width, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)
    gqcnn/final_height : int
        height, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)

    table_alignment/max_approach_table_angle : float
        max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal
    table_alignment/max_approach_offset : float
        max deviation from perpendicular approach direction to use in grasp collision checking
    table_alignment/num_approach_offset_samples : int
        number of approach samples to use in collision checking

    collision_checking/table_offset : float
        max allowable interpenetration between the gripper and table to be considered collision free
    collision_checking/table_mesh_filename : str
        path to a table mesh for collision checking (default data/meshes/table.obj)
    collision_checking/approach_dist : float
        distance, in meters, between the approach pose and final grasp pose along the grasp axis
    collision_checking/delta_approach : float
        amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose

    tensors/datapoints_per_file : int
        number of datapoints to store in each unique tensor file on disk
    tensors/fields : :obj:`dict`
        dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor

    debug : bool
        True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise
    vis/candidate_grasps : bool
        True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging)
    vis/rendered_images : bool
        True (or 1) if the rendered images for each stable pose should be displayed (for debugging)
    vis/grasp_images : bool
        True (or 1) if the transformed grasp images should be displayed (for debugging)
    """
    # read data gen params
    output_dir = dataset_path
    gripper = RobotGripper.load(gripper_name)
    image_samples_per_stable_pose = config['images_per_stable_pose']
    stable_pose_min_p = config['stable_pose_min_p']

    # read gqcnn params
    gqcnn_params = config['gqcnn']
    im_crop_height = gqcnn_params['crop_height']
    im_crop_width = gqcnn_params['crop_width']
    im_final_height = gqcnn_params['final_height']
    im_final_width = gqcnn_params['final_width']
    cx_crop = float(im_crop_width) / 2
    cy_crop = float(im_crop_height) / 2

    # open database
    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    # set target objects
    for dataset in datasets:
        if target_object_keys[dataset.name] == 'all':
            target_object_keys[dataset.name] = dataset.object_keys

    # setup grasp params
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(
            os.path.dirname(os.path.realpath(__file__)), '..',
            table_mesh_filename)
    table_mesh = ObjFile(table_mesh_filename).read()

    # set tensor dataset config
    tensor_config = config['tensors']
    tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height
    tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width
    tensor_config['fields']['obj_masks']['height'] = im_final_height
    tensor_config['fields']['obj_masks']['width'] = im_final_width

    # add available metrics (assuming same are computed for all objects)
    metric_names = []
    dataset = datasets[0]
    obj_keys = dataset.object_keys
    if len(obj_keys) == 0:
        raise ValueError('No valid objects in dataset %s' % (dataset.name))

    obj = dataset[obj_keys[0]]
    grasps = dataset.grasps(obj.key, gripper=gripper.name)
    grasp_metrics = dataset.grasp_metrics(obj.key,
                                          grasps,
                                          gripper=gripper.name)
    metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys()
    for metric_name in metric_names:
        tensor_config['fields'][metric_name] = {}
        tensor_config['fields'][metric_name]['dtype'] = 'float32'

    # init tensor dataset
    tensor_dataset = TensorDataset(output_dir, tensor_config)
    tensor_datapoint = tensor_dataset.datapoint_template

    # setup log file
    experiment_log_filename = os.path.join(output_dir,
                                           'dataset_generation.log')
    formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    hdlr = logging.FileHandler(experiment_log_filename)
    hdlr.setFormatter(formatter)
    logging.getLogger().addHandler(hdlr)
    root_logger = logging.getLogger()

    # copy config
    out_config_filename = os.path.join(output_dir, 'dataset_generation.json')
    ordered_dict_config = collections.OrderedDict()
    for key in config.keys():
        ordered_dict_config[key] = config[key]
    with open(out_config_filename, 'w') as outfile:
        json.dump(ordered_dict_config, outfile)

    # 1. Precompute the set of valid grasps for each stable pose:
    #    i) Perpendicular to the table
    #   ii) Collision-free along the approach direction

    # load grasps if they already exist
    grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME)
    if os.path.exists(grasp_cache_filename):
        logging.info('Loading grasp candidates from file')
        candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb'))
    # otherwise re-compute by reading from the database and enforcing constraints
    else:
        # create grasps dict
        candidate_grasps_dict = {}

        # loop through datasets and objects
        for dataset in datasets:
            logging.info('Reading dataset %s' % (dataset.name))
            for obj in dataset:
                if obj.key not in target_object_keys[dataset.name]:
                    continue

                # init candidate grasp storage
                candidate_grasps_dict[obj.key] = {}

                # setup collision checker
                collision_checker = GraspCollisionChecker(gripper)
                collision_checker.set_graspable_object(obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(obj.key)
                for i, stable_pose in enumerate(stable_poses):
                    # render images if stable pose is valid
                    if stable_pose.p > stable_pose_min_p:
                        candidate_grasps_dict[obj.key][stable_pose.id] = []

                        # setup table in collision checker
                        T_obj_stp = stable_pose.T_obj_table.as_frames(
                            'obj', 'stp')
                        T_obj_table = obj.mesh.get_T_surface_obj(
                            T_obj_stp,
                            delta=table_offset).as_frames('obj', 'table')
                        T_table_obj = T_obj_table.inverse()
                        collision_checker.set_table(table_mesh_filename,
                                                    T_table_obj)

                        # read grasp and metrics
                        grasps = dataset.grasps(obj.key, gripper=gripper.name)
                        logging.info(
                            'Aligning %d grasps for object %s in stable %s' %
                            (len(grasps), obj.key, stable_pose.id))

                        # align grasps with the table
                        aligned_grasps = [
                            grasp.perpendicular_table(stable_pose)
                            for grasp in grasps
                        ]

                        # check grasp validity
                        logging.info(
                            'Checking collisions for %d grasps for object %s in stable %s'
                            % (len(grasps), obj.key, stable_pose.id))
                        for aligned_grasp in aligned_grasps:
                            # check angle with table plane and skip unaligned grasps
                            _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                                stable_pose)
                            perpendicular_table = (
                                np.abs(grasp_approach_table_angle) <
                                max_grasp_approach_table_angle)
                            if not perpendicular_table:
                                continue

                            # check whether any valid approach directions are collision free
                            collision_free = False
                            for phi_offset in phi_offsets:
                                rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                                    phi_offset)
                                collides = collision_checker.collides_along_approach(
                                    rotated_grasp, approach_dist,
                                    delta_approach)
                                if not collides:
                                    collision_free = True
                                    break

                            # store if aligned to table
                            candidate_grasps_dict[obj.key][
                                stable_pose.id].append(
                                    GraspInfo(aligned_grasp, collision_free))

                            # visualize if specified
                            if collision_free and config['vis'][
                                    'candidate_grasps']:
                                logging.info('Grasp %d' % (aligned_grasp.id))
                                vis.figure()
                                vis.gripper_on_object(gripper, aligned_grasp,
                                                      obj,
                                                      stable_pose.T_obj_world)
                                vis.show()

        # save to file
        logging.info('Saving to file')
        pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb'))

    # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database

    # setup variables
    obj_category_map = {}
    pose_category_map = {}

    cur_pose_label = 0
    cur_obj_label = 0
    cur_image_label = 0

    # render images for each stable pose of each object in the dataset
    render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE]
    for dataset in datasets:
        logging.info('Generating data for dataset %s' % (dataset.name))

        # iterate through all object keys
        object_keys = dataset.object_keys
        for obj_key in object_keys:
            obj = dataset[obj_key]
            if obj.key not in target_object_keys[dataset.name]:
                continue

            # read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)
            for i, stable_pose in enumerate(stable_poses):

                # render images if stable pose is valid
                if stable_pose.p > stable_pose_min_p:
                    # log progress
                    logging.info('Rendering images for object %s in %s' %
                                 (obj.key, stable_pose.id))

                    # add to category maps
                    if obj.key not in obj_category_map.keys():
                        obj_category_map[obj.key] = cur_obj_label
                    pose_category_map['%s_%s' %
                                      (obj.key,
                                       stable_pose.id)] = cur_pose_label

                    # read in candidate grasps and metrics
                    candidate_grasp_info = candidate_grasps_dict[obj.key][
                        stable_pose.id]
                    candidate_grasps = [g.grasp for g in candidate_grasp_info]
                    grasp_metrics = dataset.grasp_metrics(obj.key,
                                                          candidate_grasps,
                                                          gripper=gripper.name)

                    # compute object pose relative to the table
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(table_mesh, T_table_obj)
                    }
                    urv = UniformPlanarWorksurfaceImageRandomVariable(
                        obj.mesh,
                        render_modes,
                        'camera',
                        env_rv_params,
                        stable_pose=stable_pose,
                        scene_objs=scene_objs)

                    render_start = time.time()
                    render_samples = urv.rvs(
                        size=image_samples_per_stable_pose)
                    render_stop = time.time()
                    logging.info('Rendering images took %.3f sec' %
                                 (render_stop - render_start))

                    # visualize
                    if config['vis']['rendered_images']:
                        d = int(np.ceil(
                            np.sqrt(image_samples_per_stable_pose)))

                        # binary
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.SEGMASK].image)

                        # depth table
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.DEPTH_SCENE].image)
                        vis2d.show()

                    # tally total amount of data
                    num_grasps = len(candidate_grasps)
                    num_images = image_samples_per_stable_pose
                    num_save = num_images * num_grasps
                    logging.info('Saving %d datapoints' % (num_save))

                    # for each candidate grasp on the object compute the projection
                    # of the grasp into image space
                    for render_sample in render_samples:
                        # read images
                        binary_im = render_sample.renders[
                            RenderMode.SEGMASK].image
                        depth_im_table = render_sample.renders[
                            RenderMode.DEPTH_SCENE].image
                        # read camera params
                        T_stp_camera = render_sample.camera.object_to_camera_pose
                        shifted_camera_intr = render_sample.camera.camera_intr

                        # read pixel offsets
                        cx = depth_im_table.center[1]
                        cy = depth_im_table.center[0]

                        # compute intrinsics for virtual camera of the final
                        # cropped and rescaled images
                        camera_intr_scale = float(im_final_height) / float(
                            im_crop_height)
                        cropped_camera_intr = shifted_camera_intr.crop(
                            im_crop_height, im_crop_width, cy, cx)
                        final_camera_intr = cropped_camera_intr.resize(
                            camera_intr_scale)

                        # create a thumbnail for each grasp
                        for grasp_info in candidate_grasp_info:
                            # read info
                            grasp = grasp_info.grasp
                            collision_free = grasp_info.collision_free

                            # get the gripper pose
                            T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
                                'obj', T_stp_camera.from_frame)
                            grasp_2d = grasp.project_camera(
                                T_obj_camera, shifted_camera_intr)

                            # center images on the grasp, rotate to image x axis
                            dx = cx - grasp_2d.center.x
                            dy = cy - grasp_2d.center.y
                            translation = np.array([dy, dx])

                            binary_im_tf = binary_im.transform(
                                translation, grasp_2d.angle)
                            depth_im_tf_table = depth_im_table.transform(
                                translation, grasp_2d.angle)

                            # crop to image size
                            binary_im_tf = binary_im_tf.crop(
                                im_crop_height, im_crop_width)
                            depth_im_tf_table = depth_im_tf_table.crop(
                                im_crop_height, im_crop_width)

                            # resize to image size
                            binary_im_tf = binary_im_tf.resize(
                                (im_final_height, im_final_width),
                                interp='nearest')
                            depth_im_tf_table = depth_im_tf_table.resize(
                                (im_final_height, im_final_width))

                            # visualize the transformed images
                            if config['vis']['grasp_images']:
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)
                                tf_grasp_2d = Grasp2D(
                                    grasp_center,
                                    0,
                                    grasp_2d.depth,
                                    width=gripper.max_width,
                                    camera_intr=final_camera_intr)

                                # plot 2D grasp image
                                vis2d.figure()
                                vis2d.subplot(2, 2, 1)
                                vis2d.imshow(binary_im)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 2)
                                vis2d.imshow(depth_im_table)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 3)
                                vis2d.imshow(binary_im_tf)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.subplot(2, 2, 4)
                                vis2d.imshow(depth_im_tf_table)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.title('Coll Free? %d' %
                                            (grasp_info.collision_free))
                                vis2d.show()

                                # plot 3D visualization
                                vis.figure()
                                T_obj_world = vis.mesh_stable_pose(
                                    obj.mesh,
                                    stable_pose.T_obj_world,
                                    style='surface',
                                    dim=0.5)
                                vis.gripper(gripper,
                                            grasp,
                                            T_obj_world,
                                            color=(0.3, 0.3, 0.3))
                                vis.show()

                            # form hand pose array
                            hand_pose = np.r_[grasp_2d.center.y,
                                              grasp_2d.center.x,
                                              grasp_2d.depth, grasp_2d.angle,
                                              grasp_2d.center.y -
                                              shifted_camera_intr.cy,
                                              grasp_2d.center.x -
                                              shifted_camera_intr.cx,
                                              grasp_2d.width_px]

                            # store to data buffers
                            tensor_datapoint[
                                'depth_ims_tf_table'] = depth_im_tf_table.raw_data
                            tensor_datapoint[
                                'obj_masks'] = binary_im_tf.raw_data
                            tensor_datapoint['hand_poses'] = hand_pose
                            tensor_datapoint['collision_free'] = collision_free
                            tensor_datapoint['obj_labels'] = cur_obj_label
                            tensor_datapoint['pose_labels'] = cur_pose_label
                            tensor_datapoint['image_labels'] = cur_image_label

                            for metric_name, metric_val in grasp_metrics[
                                    grasp.id].iteritems():
                                coll_free_metric = (
                                    1 * collision_free) * metric_val
                                tensor_datapoint[
                                    metric_name] = coll_free_metric
                            tensor_dataset.add(tensor_datapoint)

                        # update image label
                        cur_image_label += 1

                    # update pose label
                    cur_pose_label += 1

                    # force clean up
                    gc.collect()

            # update object label
            cur_obj_label += 1

            # force clean up
            gc.collect()

    # save last file
    tensor_dataset.flush()

    # save category mappings
    obj_cat_filename = os.path.join(output_dir, 'object_category_map.json')
    json.dump(obj_category_map, open(obj_cat_filename, 'w'))
    pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json')
    json.dump(pose_category_map, open(pose_cat_filename, 'w'))
示例#4
0
                                    to_frame="primesense_overhead")
    # T_world_camera = RigidTransform(rotation = np.array([[1,0,0],[0,1,0],[0,0,1]]),
    #                                 translation=np.array([-.2,0,0]).T,
    #                                 from_frame="world",
    #                                 to_frame="primesense_overhead")

    # squares = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)]
    # for i, square in enumerate(squares):

    T_rook2_world = RigidTransform(rotation=np.eye(3),
                                   translation=np.array([.06, .06, 0]).T,
                                   from_frame="rook2",
                                   to_frame="obj")
    of2 = ObjFile(dexnet_path + "/data/meshes/chess_pieces/WizRook.obj")
    rook2 = of2.read()
    camera.add_to_scene("rook2", SceneObject(rook2, T_rook2_world))

    T_table_world = RigidTransform(rotation=np.eye(3),
                                   translation=np.array([0, 0, -.0025]).T,
                                   from_frame="table",
                                   to_frame="obj")
    of3 = ObjFile(dexnet_path +
                  "/data/meshes/Table_triangulated_faces_resized.obj")
    table = of3.read()
    camera.add_to_scene("table", SceneObject(table, T_table_world))

    of3 = ObjFile(dexnet_path + "/data/meshes/chess_pieces/WizRook.obj")
    rook3 = of3.read()
    T_rook3_world = RigidTransform(rotation=np.eye(3),
                                   translation=np.array([-.06, .06, 0]).T,
                                   from_frame="rook3",
示例#5
0
    def render_data(self):
        logging.basicConfig(level=logging.WARNING)
        for dataset in self.datasets:
            logging.info('Generating data for dataset %s' % dataset.name)
            object_keys = dataset.object_keys

            for obj_key in object_keys:
                logging.info("Object number: %d" % self.cur_obj_label)
                self.obj = dataset[obj_key]

                grasps = dataset.grasps(self.obj.key,
                                        gripper=self.gripper.name)
                positive_grasps = self.get_positive_grasps(dataset, grasps)

                # Load grasp metrics
                grasp_metrics = dataset.grasp_metrics(
                    self.obj.key, grasps, gripper=self.gripper.name)

                # setup collision checker
                collision_checker = GraspCollisionChecker(self.gripper)
                collision_checker.set_graspable_object(self.obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(self.obj.key)

                # Iterate through stable poses
                for i, stable_pose in enumerate(stable_poses):
                    if not stable_pose.p > self._stable_pose_min_p:
                        continue

                    # setup table in collision checker
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_table = self.obj.mesh.get_T_surface_obj(
                        T_obj_stp,
                        delta=self._table_offset).as_frames('obj', 'table')
                    T_table_obj = T_obj_table.inverse()
                    T_obj_stp = self.obj.mesh.get_T_surface_obj(T_obj_stp)

                    collision_checker.set_table(self._table_mesh_filename,
                                                T_table_obj)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(self.table_mesh, T_table_obj)
                    }

                    # Set up image renderer
                    for _ in range(self.config['images_per_stable_pose']):
                        elev_angle = np.random.choice(
                            self.camera_distributions)
                        camera_config = self._camera_configs()
                        camera_config['min_elev'] = elev_angle * 5.0
                        camera_config['max_elev'] = (elev_angle + 1) * 5.0
                        sample = self.render_images(
                            scene_objs,
                            stable_pose,
                            1,
                            camera_config=camera_config)
                        self.save_samples(sample, grasps, T_obj_stp,
                                          collision_checker, grasp_metrics)
                        # Get camera elevation angle for current sample
                        elev_angle = sample.camera.elev * 180 / np.pi
                        elev_bar = int(elev_angle // 5)
                        # Sample number of positive images from distribution
                        number_positive_images = np.random.choice(
                            self.grasp_upsample_distribuitions[elev_bar])
                        # Render only positive images
                        new_config = self._camera_configs()
                        new_config['min_elev'] = elev_angle
                        new_config['max_elev'] = elev_angle
                        positive_render_samples = self.render_images(
                            scene_objs,
                            stable_pose,
                            number_positive_images,
                            camera_config=new_config)
                        if type(positive_render_samples) == list:
                            for pos_sample in positive_render_samples:
                                self.save_samples(pos_sample,
                                                  positive_grasps,
                                                  T_obj_stp,
                                                  collision_checker,
                                                  grasp_metrics,
                                                  only_positive=True)
                        else:
                            self.save_samples(positive_render_samples,
                                              positive_grasps,
                                              T_obj_stp,
                                              collision_checker,
                                              grasp_metrics,
                                              only_positive=True)

                    self.cur_pose_label += 1
                    gc.collect()
                    # next stable pose
                self.cur_obj_label += 1
                # next object
        # Save dataset
        self.tensor_dataset.flush()
obj_key = dataset.object_keys[0]
obj = dataset[obj_key]

# read in the stable poses of the mesh
stable_poses = dataset.stable_poses(obj.key)

stable_pose = stable_poses[0]
# setup table in collision checker
T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
T_obj_table = obj.mesh.get_T_surface_obj(T_obj_stp,
                                         delta=table_offset).as_frames(
                                             'obj', 'table')

# sample images from random variable
T_table_obj = RigidTransform(from_frame='table', to_frame='obj')
scene_objs = {'table': SceneObject(table_mesh, T_table_obj)}

# Set up image renderer
deltas = np.arange(0, 0.4, 0.05)
camera_dist = config['env_rv_params']['min_radius']
for delta in deltas:
    config['env_rv_params']['min_radius'] = camera_dist + delta
    config['env_rv_params']['max_radius'] = camera_dist + delta

    urv = UniformPlanarWorksurfaceImageRandomVariable(obj.mesh,
                                                      [RenderMode.DEPTH_SCENE],
                                                      'camera',
                                                      config['env_rv_params'],
                                                      scene_objs=scene_objs,
                                                      stable_pose=stable_pose)
    # Render images
示例#7
0
                                         specular=0.25,
                                         T_light_camera=T_light_camera,
                                         cutoff=180)

        # create material props
        mat_props = MaterialProperties(color=(249, 241, 21),
                                       ambient=0.5,
                                       diffuse=1.0,
                                       specular=1,
                                       shininess=0)

        # create scene objects
        scene_objs = {
            'table':
            SceneObject(table_mesh,
                        T_obj_world.inverse(),
                        mat_props=table_mat_props)
        }
        for name, scene_obj in scene_objs.iteritems():
            virtual_camera.add_to_scene(name, scene_obj)

        # camera pose
        cam_dist = 0.3
        T_camera_world = RigidTransform(rotation=np.array([[0, 1,
                                                            0], [1, 0, 0],
                                                           [0, 0, -1]]),
                                        translation=[0, 0, cam_dist],
                                        from_frame=camera_intr.frame,
                                        to_frame='world')

        T_obj_camera = T_camera_world.inverse() * T_obj_world