示例#1
0
def test_rectangle():
    points, cells = meshzoo.rectangle(nx=11, ny=11, zigzag=False)
    assert len(points) == 121
    assert _near_equal(numpy.sum(points, axis=0), [60.5, 60.5, 0.0])
    assert len(cells) == 200

    points, cells = meshzoo.rectangle(nx=11, ny=11, zigzag=True)
    assert len(points) == 121
    assert _near_equal(numpy.sum(points, axis=0), [60.5, 60.5, 0.0])
    assert len(cells) == 200

    points, cells = meshzoo.rectangle(nx=2, ny=2, zigzag=True)
    assert len(points) == 4
    assert _near_equal(numpy.sum(points, axis=0), [2.0, 2.0, 0.0])
    assert len(cells) == 2

    points, cells = meshzoo.rectangle(nx=3, ny=2, zigzag=False)
    assert len(points) == 6
    assert _near_equal(numpy.sum(points, axis=0), [3.0, 3.0, 0.0])
    assert len(cells) == 4
    assert set(cells[0]) == set([0, 1, 4])
    assert set(cells[2]) == set([0, 3, 4])

    points, cells = meshzoo.rectangle(nx=3, ny=2, zigzag=True)
    assert len(points) == 6
    assert _near_equal(numpy.sum(points, axis=0), [3.0, 3.0, 0.0])
    assert len(cells) == 4
    assert set(cells[0]) == set([0, 1, 4])
    assert set(cells[2]) == set([0, 3, 4])

    return
示例#2
0
def test_rectangle():
    points, cells = meshzoo.rectangle(nx=11, ny=11, variant="up")
    assert len(points) == 121
    assert _near_equal(numpy.sum(points, axis=0), [60.5, 60.5])
    assert len(cells) == 200

    points, cells = meshzoo.rectangle(nx=11, ny=11, variant="zigzag")
    assert len(points) == 121
    assert _near_equal(numpy.sum(points, axis=0), [60.5, 60.5])
    assert len(cells) == 200

    points, cells = meshzoo.rectangle(nx=2, ny=2, variant="zigzag")
    assert len(points) == 4
    assert _near_equal(numpy.sum(points, axis=0), [2.0, 2.0])
    assert len(cells) == 2

    points, cells = meshzoo.rectangle(nx=3, ny=2, variant="up")
    assert len(points) == 6
    assert _near_equal(numpy.sum(points, axis=0), [3.0, 3.0])
    assert len(cells) == 4
    assert set(cells[0]) == {0, 1, 4}
    assert set(cells[2]) == {0, 3, 4}

    points, cells = meshzoo.rectangle(nx=3, ny=2, variant="zigzag")
    assert len(points) == 6
    assert _near_equal(numpy.sum(points, axis=0), [3.0, 3.0])
    assert len(cells) == 4
    assert set(cells[0]) == {0, 1, 4}
    assert set(cells[2]) == {0, 3, 4}
示例#3
0
def test_rectangle():
    points, cells = meshzoo.rectangle(nx=11, ny=11, zigzag=False)
    assert len(points) == 121
    assert _near_equal(numpy.sum(points, axis=0), [60.5, 60.5, 0.0])
    assert len(cells) == 200

    points, cells = meshzoo.rectangle(nx=11, ny=11, zigzag=True)
    assert len(points) == 121
    assert _near_equal(numpy.sum(points, axis=0), [60.5, 60.5, 0.0])
    assert len(cells) == 200

    points, cells = meshzoo.rectangle(nx=2, ny=2, zigzag=True)
    assert len(points) == 4
    assert _near_equal(numpy.sum(points, axis=0), [2.0, 2.0, 0.0])
    assert len(cells) == 2

    points, cells = meshzoo.rectangle(nx=3, ny=2, zigzag=False)
    assert len(points) == 6
    assert _near_equal(numpy.sum(points, axis=0), [3.0, 3.0, 0.0])
    assert len(cells) == 4
    assert set(cells[0]) == set([0, 1, 4])
    assert set(cells[2]) == set([0, 3, 4])

    points, cells = meshzoo.rectangle(nx=3, ny=2, zigzag=True)
    assert len(points) == 6
    assert _near_equal(numpy.sum(points, axis=0), [3.0, 3.0, 0.0])
    assert len(cells) == 4
    assert set(cells[0]) == set([0, 1, 4])
    assert set(cells[2]) == set([0, 3, 4])

    return
示例#4
0
def test():
    class EnergyEdgeKernel(object):
        def __init__(self):
            self.subdomains = [None]
            return

        def eval(self, mesh, cell_mask):
            edge_ce_ratio = mesh.ce_ratios[..., cell_mask]
            beta = 1.0
            return numpy.array(
                [
                    [edge_ce_ratio, -edge_ce_ratio * numpy.exp(1j * beta)],
                    [-edge_ce_ratio * numpy.exp(-1j * beta), edge_ce_ratio],
                ]
            )

    vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix = pyfvm.get_fvm_matrix(mesh, [EnergyEdgeKernel()], [], [], [])
    rhs = mesh.control_volumes.copy()

    sa = pyamg.smoothed_aggregation_solver(matrix, smooth="energy")
    u = sa.solve(rhs, tol=1e-10)

    # Cannot write complex data ot VTU; split real and imaginary parts first.
    # <http://stackoverflow.com/a/38902227/353337>
    mesh.write("out.vtk", point_data={"u": u.view("(2,)float")})
    return
示例#5
0
def test():
    class Bratu:
        def apply(self, u):
            return integrate(lambda x: -n_dot_grad(u(x)), dS) - integrate(
                lambda x: 2.0 * exp(u(x)), dV)

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    f, jac_u = pyfvm.discretize(Bratu(), mesh)

    def jacobian_solver(u0, rhs):
        from scipy.sparse import linalg

        jac = jac_u.get_linear_operator(u0)
        return linalg.spsolve(jac, rhs)

    u0 = numpy.zeros(len(vertices))
    u = pyfvm.newton(lambda u: f.eval(u), jacobian_solver, u0)
    # import scipy.optimize
    # u = scipy.optimize.newton_krylov(f_eval, u0)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#6
0
def plot_tree_2d(n,
                 *args,
                 res=100,
                 colorbar=True,
                 cmap="RdBu_r",
                 clim=None,
                 **kwargs):
    import dufte
    import meshzoo
    from matplotlib import pyplot as plt

    plt.style.use(dufte.style)

    points, cells = meshzoo.rectangle(-1.0, 1.0, -1.0, 1.0, res, res)
    evaluator = Eval(points.T, *args, **kwargs)

    plt.set_cmap(cmap)
    plt.gca().set_aspect("equal")
    plt.axis("off")

    for k, values in enumerate(itertools.islice(evaluator, n + 1)):
        for r, z in enumerate(values):
            offset = [2.8 * (r - k / 2), -2.6 * k]
            pts = points + offset

            plt.tripcolor(pts[:, 0], pts[:, 1], cells, z, shading="flat")
            plt.clim(clim)

            # rectangle outlines
            corners = numpy.array([[-1, 1, 1, -1, -1], [-1, -1, 1, 1, -1]])
            corners = (corners.T + offset).T
            plt.plot(corners[0], corners[1], "-k")

    if colorbar:
        plt.colorbar()
def test_jacobian():
    from test_ginzburg_landau import GinzburgLandau

    a = 10.0
    n = 10
    points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, n, n)
    mesh = meshplex.MeshTri(points, cells)

    gl = GinzburgLandau(mesh)
    glr = GinzburgLandauReal(mesh)

    n = points.shape[0]

    numpy.random.seed(123)

    for _ in range(10):
        psi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
        mu = numpy.random.rand(1)[0]
        jac0 = gl.jacobian(psi, mu)
        jac1 = glr.jacobian(to_real(psi), mu)
        for _ in range(10):
            phi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
            out0 = (jac0 * phi) * mesh.control_volumes
            out1 = to_complex(jac1 * to_real(phi))
            assert numpy.all(numpy.abs(out0 - out1) < 1.0e-12)
示例#8
0
def test():
    class Bratu(object):
        def apply(self, u):
            return integrate(lambda x: -n_dot_grad(u(x)), dS) - integrate(
                lambda x: 2.0 * exp(u(x)), dV
            )

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    f, jac_u = pyfvm.discretize(Bratu(), mesh)

    def jacobian_solver(u0, rhs):
        from scipy.sparse import linalg

        jac = jac_u.get_linear_operator(u0)
        return linalg.spsolve(jac, rhs)

    u0 = numpy.zeros(len(vertices))
    u = pyfvm.newton(lambda u: f.eval(u), jacobian_solver, u0)
    # import scipy.optimize
    # u = scipy.optimize.newton_krylov(f_eval, u0)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#9
0
def test():
    class D1(Subdomain):
        def is_inside(self, x):
            return x[1] < 0.5

        is_boundary_only = True

    class Poisson(object):
        def apply(self, u):
            return (
                integrate(lambda x: -n_dot_grad(u(x)), dS)
                + integrate(lambda x: 3.0, dGamma)
                - integrate(lambda x: 1.0, dV)
            )

        def dirichlet(self, u):
            return [(u, D1())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(Poisson(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#10
0
def test():
    class EnergyEdgeKernel:
        def __init__(self):
            self.subdomains = [None]
            return

        def eval(self, mesh, cell_mask):
            edge_ce_ratio = mesh.ce_ratios[..., cell_mask]
            beta = 1.0
            return numpy.array([
                [edge_ce_ratio, -edge_ce_ratio * numpy.exp(1j * beta)],
                [-edge_ce_ratio * numpy.exp(-1j * beta), edge_ce_ratio],
            ])

    vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix = pyfvm.get_fvm_matrix(mesh, [EnergyEdgeKernel()], [], [], [])
    rhs = mesh.control_volumes.copy()

    sa = pyamg.smoothed_aggregation_solver(matrix, smooth="energy")
    u = sa.solve(rhs, tol=1e-10)

    # Cannot write complex data ot VTU; split real and imaginary parts first.
    # <http://stackoverflow.com/a/38902227/353337>
    mesh.write("out.vtk", point_data={"u": u.view("(2,)float")})
    return
示例#11
0
def test_2d(solver, write_file=False):
    n = 200
    np.random.seed(123)
    x0 = np.random.rand(n, 2) - 0.5
    # y0 = np.ones(n)
    # y0 = x0[:, 0]
    # y0 = x0[:, 0]**2
    # y0 = np.cos(np.pi*x0.T[0])
    # y0 = np.cos(np.pi*x0.T[0]) * np.cos(np.pi*x0.T[1])
    y0 = np.cos(np.pi * np.sqrt(x0.T[0]**2 + x0.T[1]**2))

    import meshzoo

    points, cells = meshzoo.rectangle(-1.0, 1.0, -1.0, 1.0, 32, 32)

    # import pygmsh
    # geom = pygmsh.built_in.Geometry()
    # geom.add_circle([0.0, 0.0, 0.0], 1.0, 0.1)
    # points, cells, _, _, _ = pygmsh.generate_mesh(geom)
    # cells = cells['triangle']

    u = smoothfit.fit(x0, y0, points, cells, lmbda=1.0e-5, solver=solver)

    # ref = 4.411_214_155_799_310_5
    # val = assemble(u * u * dx)
    # assert abs(val - ref) < 1.0e-10 * ref

    if write_file:
        from dolfin import XDMFFile

        xdmf = XDMFFile("temp.xdmf")
        xdmf.write(u)
示例#12
0
def test():
    class D1(Subdomain):
        def is_inside(self, x):
            return x[1] < 0.5

        is_boundary_only = True

    class Poisson:
        def apply(self, u):
            return (integrate(lambda x: -n_dot_grad(u(x)), dS) +
                    integrate(lambda x: 3.0, dGamma) -
                    integrate(lambda x: 1.0, dV))

        def dirichlet(self, u):
            return [(u, D1())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(Poisson(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#13
0
 def get_mesh(self, k):
     n = 2**(k + 1)
     vertices, cells = meshzoo.rectangle(0.0,
                                         1.0,
                                         0.0,
                                         1.0,
                                         n + 1,
                                         n + 1,
                                         zigzag=True)
     return meshplex.MeshTri(vertices, cells)
示例#14
0
 def __init__(self):
     points, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 30, 30)
     self.mesh = meshplex.MeshTri(points, cells)
     # This matrix self.A is negative semidefinite
     self.A, _ = pyfvm.discretize_linear(Poisson(), self.mesh)
     tol = 1.0e-12
     self.idx_left = numpy.where(self.mesh.node_coords[:, 0] < tol)[0]
     self.idx_right = numpy.where(self.mesh.node_coords[:, 0] > 1.0 - tol)[0]
     self.idx_bottom = numpy.where(self.mesh.node_coords[:, 1] < tol)[0]
     self.idx_top = numpy.where(self.mesh.node_coords[:, 1] > 1.0 - tol)[0]
示例#15
0
def test_ginzburg_landau(max_steps=5, n=20):
    a = 10.0
    points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, n, n)
    mesh = meshplex.MeshTri(points, cells)

    problem = GinzburgLandau(mesh)
    n = problem.mesh.control_volumes.shape[0]
    u0 = numpy.ones(n, dtype=complex)
    mu0 = 0.0

    mu_list = []

    filename = "sol.xdmf"
    with meshio.xdmf.TimeSeriesWriter(filename) as writer:
        writer.write_points_cells(problem.mesh.node_coords,
                                  {"triangle": problem.mesh.cells["nodes"]})

        def callback(k, mu, sol):
            mu_list.append(mu)
            # Store the solution
            psi = numpy.array([numpy.real(sol), numpy.imag(sol)]).T
            writer.write_data(k, point_data={"psi": psi})
            with open("data.yml", "w") as fh:
                yaml.dump(
                    {
                        "filename": filename,
                        "mu": [float(m) for m in mu_list]
                    }, fh)

        # pacopy.natural(
        #     problem,
        #     u0,
        #     mu0,
        #     callback,
        #     max_steps=1000,
        #     lambda_stepsize0=1.0e-2,
        #     newton_max_steps=5,
        #     newton_tol=1.0e-10,
        # )
        pacopy.euler_newton(
            problem,
            u0,
            mu0,
            callback,
            max_steps=max_steps,
            stepsize0=1.0e-2,
            stepsize_max=1.0,
            newton_tol=1.0e-10,
        )
示例#16
0
    def __init__(self):
        a = 24.0
        points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, 50, 50)
        self.mesh = meshplex.MeshTri(points, cells)

        x, y, z = self.mesh.node_coords.T
        assert numpy.all(numpy.abs(z) < 1.0e-15)

        self.omega = 0.2
        self.V = 0.5 * self.omega**2 * (x**2 + y**2)

        # For the preconditioner
        assert numpy.all(self.V >= 0)

        self.A, _ = pyfvm.discretize_linear(Poisson(), self.mesh)
示例#17
0
    def __init__(self):
        a = 20.0
        points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, 40, 40)
        self.mesh = meshplex.MeshTri(points, cells)
        self.A, _ = pyfvm.get_fvm_matrix(self.mesh, [Poisson()])

        # k = 1
        # ka = 4.5
        # DD = 8
        # nu = np.sqrt(1 / DD)
        # kbcrit = np.sqrt(1 + ka * nu)

        self.a = 4.0
        self.d1 = 1.0
        self.d2 = 2.0
示例#18
0
def test_f_i_psi():
    """Assert that <f(psi), i psi> == 0.
    """
    points, cells = meshzoo.rectangle(-5.0, 5.0, -5.0, 5.0, 30, 30)
    mesh = meshplex.MeshTri(points, cells)

    problem = GinzburgLandau(mesh)
    n = problem.mesh.control_volumes.shape[0]

    numpy.random.seed(0)

    for _ in range(100):
        mu = numpy.random.rand(1)
        psi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
        f = problem.f(psi, mu)
        assert abs(problem.inner(1j * psi, f)) < 1.0e-13
def test_self_adjointness():
    a = 10.0
    n = 10
    points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, n, n)
    mesh = meshplex.MeshTri(points, cells)

    problem = GinzburgLandauReal(mesh)
    n = problem.mesh.control_volumes.shape[0]
    psi = numpy.random.rand(2 * n)
    jac = problem.jacobian(psi, 0.1)

    for _ in range(1000):
        u = numpy.random.rand(2 * n)
        v = numpy.random.rand(2 * n)
        a0 = problem.inner(u, jac * v)
        a1 = problem.inner(jac * u, v)
        assert abs(a0 - a1) < 1.0e-12
示例#20
0
def test_io_2d():
    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 2, 2)
    mesh = meshplex.MeshTri(vertices, cells)
    # mesh = meshplex.read('pacman.vtu')

    assert mesh.num_delaunay_violations() == 0

    # mesh.show(show_axes=False, boundary_edge_color="g")
    # mesh.show_vertex(0)

    _, fname = tempfile.mkstemp(suffix=".vtk")
    mesh.write(fname)

    mesh2 = meshplex.read(fname)

    for k in range(len(mesh.cells["nodes"])):
        assert tuple(mesh.cells["nodes"][k]) == tuple(mesh2.cells["nodes"][k])
def test():
    class Singular:
        def apply(self, u):
            return (integrate(lambda x: -1.0e-2 * n_dot_grad(u(x)), dS) +
                    integrate(u, dV) - integrate(lambda x: 1.0, dV))

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(Singular(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#22
0
def test_io_2d():
    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 2, 2, zigzag=True)
    mesh = voropy.mesh_tri.MeshTri(vertices, cells)
    # mesh, _, _, _ = voropy.read('pacman.vtu')

    assert mesh.num_delaunay_violations() == 0

    mesh.show(show_axes=False, boundary_edge_color='g')
    mesh.show_vertex(0)

    _, fname = tempfile.mkstemp(suffix='.msh')
    mesh.write(fname)

    mesh2, _, _, _ = voropy.read(fname)

    for k in range(len(mesh.cells['nodes'])):
        assert tuple(mesh.cells['nodes'][k]) == tuple(mesh2.cells['nodes'][k])
    return
示例#23
0
文件: utils.py 项目: zzh-tech/RSCD
def generate_2D_mesh(H, W):
    _, faces = meshzoo.rectangle(xmin=-1.,
                                 xmax=1.,
                                 ymin=-1.,
                                 ymax=1.,
                                 nx=W,
                                 ny=H,
                                 zigzag=True)

    x = torch.arange(0, W, 1).float().cuda()
    y = torch.arange(0, H, 1).float().cuda()

    xx = x.repeat(H, 1)
    yy = y.view(H, 1).repeat(1, W)

    grid = torch.stack([xx, yy], dim=0)

    return grid, faces
示例#24
0
def test():
    class DC(object):
        def apply(self, u):
            a = numpy.array([2, 1, 0])
            return integrate(lambda x: -n_dot_grad(u(x)) + n_dot(a) * u(x),
                             dS) - integrate(lambda x: 1.0, dV)

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(DC(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#25
0
def test_df_dlmbda():
    points, cells = meshzoo.rectangle(-5.0, 5.0, -5.0, 5.0, 30, 30)
    mesh = meshplex.MeshTri(points, cells)

    problem = GinzburgLandau(mesh)
    n = problem.mesh.control_volumes.shape[0]
    numpy.random.seed(0)

    for _ in range(100):
        mu = numpy.random.rand(1)
        psi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
        out = problem.df_dlmbda(psi, mu)

        # finite difference
        eps = 1.0e-5
        diff = (problem.f(psi, mu + eps) - problem.f(psi, mu - eps)) / (2 *
                                                                        eps)
        nrm = numpy.dot((out - diff).conj(), out - diff).real
        assert nrm < 1.0e-12
示例#26
0
def test():
    class DC(object):
        def apply(self, u):
            a = numpy.array([2, 1, 0])
            return integrate(
                lambda x: -n_dot_grad(u(x)) + n_dot(a) * u(x), dS
            ) - integrate(lambda x: 1.0, dV)

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(DC(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#27
0
def test_readme_images():
    from dolfin import (
        MeshEditor, Mesh, FunctionSpace, assemble, EigenMatrix, dot, grad, dx,
        TrialFunction, TestFunction
        )
    import meshzoo

    points, cells = meshzoo.rectangle(-1.0, 1.0, -1.0, 1.0, 20, 20)

    # Convert points, cells to dolfin mesh
    editor = MeshEditor()
    mesh = Mesh()
    # topological and geometrical dimension 2
    editor.open(mesh, 'triangle', 2, 2, 1)
    editor.init_vertices(len(points))
    editor.init_cells(len(cells))
    for k, point in enumerate(points):
        editor.add_vertex(k, point[:2])
    for k, cell in enumerate(cells.astype(numpy.uintp)):
        editor.add_cell(k, cell)
    editor.close()

    V = FunctionSpace(mesh, 'CG', 1)
    u = TrialFunction(V)
    v = TestFunction(V)
    L = EigenMatrix()
    assemble(dot(grad(u), grad(v)) * dx, tensor=L)
    A = L.sparray()

    # M = A.T.dot(A)
    M = A

    with tempfile.TemporaryDirectory() as temp_dir:
        filepath = os.path.join(temp_dir, 'test.png')
        betterspy.write_png(filepath, M, border_width=2)

    # betterspy.write_png(
    #     'ATA.png', M, border_width=2,
    #     colormap='viridis'
    #     )
    return
def test_df_dlmbda():
    from test_ginzburg_landau import GinzburgLandau

    a = 10.0
    n = 10
    points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, n, n)
    mesh = meshplex.MeshTri(points, cells)

    gl = GinzburgLandau(mesh)
    glr = GinzburgLandauReal(mesh)

    n = points.shape[0]

    numpy.random.seed(123)

    for _ in range(10):
        psi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
        mu = numpy.random.rand(1)[0]
        out = gl.df_dlmbda(psi, mu) * mesh.control_volumes
        out2 = glr.df_dlmbda(to_real(psi), mu)
        assert numpy.all(numpy.abs(out - to_complex(out2)) < 1.0e-12)
def test():
    class Singular(object):
        def apply(self, u):
            return (
                integrate(lambda x: -1.0e-2 * n_dot_grad(u(x)), dS)
                + integrate(u, dV)
                - integrate(lambda x: 1.0, dV)
            )

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(Singular(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
示例#30
0
def test_2d(solver):
    n = 200
    numpy.random.seed(123)
    x0 = numpy.random.rand(n, 2) - 0.5
    # y0 = numpy.ones(n)
    # y0 = x0[:, 0]
    # y0 = x0[:, 0]**2
    # y0 = numpy.cos(numpy.pi*x0.T[0])
    # y0 = numpy.cos(numpy.pi*x0.T[0]) * numpy.cos(numpy.pi*x0.T[1])
    y0 = numpy.cos(numpy.pi * numpy.sqrt(x0.T[0]**2 + x0.T[1]**2))

    import meshzoo
    points, cells = meshzoo.rectangle(-1.0, 1.0, -1.0, 1.0, 20, 20)

    # import pygmsh
    # geom = pygmsh.built_in.Geometry()
    # geom.add_circle([0.0, 0.0, 0.0], 1.0, 0.1)
    # points, cells, _, _, _ = pygmsh.generate_mesh(geom)
    # cells = cells['triangle']

    u = smoothfit.fit2d(x0,
                        y0,
                        points,
                        cells,
                        eps=1.0e-0,
                        verbose=True,
                        solver=solver)

    ref = 2.277266345700909
    val = assemble(u * u * dx)
    assert abs(val - ref) < 1.0e-10 * ref

    # from dolfin import XDMFFile
    # xdmf = XDMFFile('temp.xdmf')
    # xdmf.write(u)
    return
示例#31
0
def generate_mesh():
    """Generates a fairly large mesh.
    """
    points, cells = meshzoo.rectangle(nx=300, ny=300)
    return meshio.Mesh(points, {"triangle": cells})
示例#32
0
def test_center():
    points, cells = meshzoo.rectangle(nx=11, ny=9, variant="center")
    meshzoo.show2d(points, cells)
    assert len(points) == 99
    assert len(cells) == 160
示例#33
0
    def __init__(self,
                 delta,
                 n,
                 ufunc=None,
                 coarseMesh=None,
                 dim=2,
                 outdim=1,
                 ansatz="CG",
                 boundaryConditionType="Dirichlet",
                 is_constructAdjaciencyGraph=True,
                 zigzag=False):
        ### TEST 27.07.2020
        #self.Zeta = np.arange(12, dtype=np.int).reshape(4, 3)
        #####

        self.n = n
        self.dim = dim
        self.delta = delta
        self.sqdelta = delta**2
        # Construct Meshgrid -------------------------------------------------------------
        if self.dim == 2:
            self.h = 12 / n / 10
            points, cells = meshzoo.rectangle(xmin=-self.delta,
                                              xmax=1.0 + self.delta,
                                              ymin=-self.delta,
                                              ymax=1.0 + self.delta,
                                              nx=n + 1,
                                              ny=n + 1,
                                              variant="up")
            self.vertices = np.array(points[:, :2])

        # Set up Delaunay Triangulation --------------------------------------------------
        # Construct and Sort Vertices ----------------------------------------------------
        self.vertexLabels = np.array(
            [self.get_vertexLabel(v) for v in self.vertices])
        self.argsort_labels = np.argsort(-self.vertexLabels)
        self.vertices = self.vertices[self.argsort_labels]
        self.vertexLabels = self.vertexLabels[self.argsort_labels]

        # Get Number of Vertices in Omega ------------------------------------------------
        self.omega = np.where(self.vertexLabels > 0)[0]
        self.nV = self.vertices.shape[0]
        self.nV_Omega = self.omega.shape[0]

        # Set up Delaunay Triangulation --------------------------------------------------
        self.elements = np.array(cells, dtype=np.int)
        self.remapElements()

        # Get Triangle Labels ------------------------------------------------------------
        self.nE = self.elements.shape[0]
        self.elementLabels = np.zeros(self.nE, dtype=np.int)
        for k, E in enumerate(self.elements):
            self.elementLabels[k] = self.get_elementLabel(E)
        self.nE_Omega = np.sum(self.elementLabels > 0)
        order = np.argsort(-self.elementLabels)
        self.elements = self.elements[order]
        self.elementLabels = self.elementLabels[order]

        # Read adjaciency list
        if is_constructAdjaciencyGraph:
            self.neighbours = constructAdjaciencyGraph(self.elements)
            self.nNeighbours = self.neighbours.shape[1]
        else:
            self.neighbours = None

        # Set Matrix Dimensions ----------------------------------------------------------
        # In case of Neumann conditions we assemble a Maitrx over Omega + OmegaI.
        # In order to achieve that we "redefine" Omega := Omega + OmegaI
        # This is rather a shortcut to make things work quickly.
        self.is_NeumannBoundary = False
        if boundaryConditionType == "Neumann":
            self.nE_Omega = self.nE
            self.nV_Omega = self.nV
            self.is_NeumannBoundary = True
        self.outdim = outdim
        if ansatz == "DG":
            self.K = self.nE * 3 * self.outdim
            self.K_Omega = self.nE_Omega * 3 * self.outdim
            self.is_DiscontinuousGalerkin = True
        else:
            self.K = self.nV * self.outdim
            self.K_Omega = self.nV_Omega * self.outdim
            self.is_DiscontinuousGalerkin = False

        # Set Mesh Data if provided ------------------------------------------------------
        self.u_exact = None
        self.ud = None

        self.diam = self.h * np.sqrt(2)
        if ufunc is not None:
            if hasattr(ufunc, '__call__'):
                self.set_u_exact(ufunc)

        if coarseMesh is not None:
            if coarseMesh.is_DiscontinuousGalerkin:
                coarseDGverts = np.zeros(
                    ((coarseMesh.K // coarseMesh.outdim), coarseMesh.dim))
                for i, E in enumerate(coarseMesh.elements):
                    for ii, vdx in enumerate(E):
                        vert = coarseMesh.vertices[vdx]
                        coarseDGverts[3 * i + ii] = vert
                self.interpolator = LinearNDInterpolator(
                    coarseDGverts, coarseMesh.ud)

                ud_aux = self.interpolator(self.vertices)

                self.ud = np.zeros(((self.K // self.outdim), self.outdim))
                for i, E in enumerate(self.elements):
                    for ii, vdx in enumerate(E):
                        self.ud[3 * i + ii] = ud_aux[vdx]
                pass
            else:
                self.interpolator = LinearNDInterpolator(
                    coarseMesh.vertices, coarseMesh.ud)
                self.ud = self.interpolator(self.vertices)
示例#34
0
def test():
    mu = 5.0e-2
    V = -1.0
    g = 1.0

    class Energy(object):
        """Specification of the kinetic energy operator.
        """

        def __init__(self):
            self.magnetic_field = mu * numpy.array([0.0, 0.0, 1.0])
            self.subdomains = [None]
            return

        def eval(self, mesh, cell_mask):
            nec = mesh.idx_hierarchy[..., cell_mask]
            X = mesh.node_coords[nec]

            edge_midpoint = 0.5 * (X[0] + X[1])
            edge = X[1] - X[0]
            edge_ce_ratio = mesh.ce_ratios[..., cell_mask]

            # project the magnetic potential on the edge at the midpoint
            magnetic_potential = 0.5 * numpy.cross(self.magnetic_field, edge_midpoint)

            # The dot product <magnetic_potential, edge>, executed for many
            # points at once; cf. <http://stackoverflow.com/a/26168677/353337>.
            beta = numpy.einsum("...k,...k->...", magnetic_potential, edge)

            return numpy.array(
                [
                    [edge_ce_ratio, -edge_ce_ratio * numpy.exp(-1j * beta)],
                    [-edge_ce_ratio * numpy.exp(1j * beta), edge_ce_ratio],
                ]
            )

    vertices, cells = meshzoo.rectangle(-5.0, 5.0, -5.0, 5.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    keo = pyfvm.get_fvm_matrix(mesh, edge_kernels=[Energy()])

    def f(psi):
        cv = mesh.control_volumes
        return keo * psi + cv * psi * (V + g * abs(psi) ** 2)

    def jacobian(psi):
        def _apply_jacobian(phi):
            cv = mesh.control_volumes
            y = keo * phi + cv * alpha * phi + cv * gPsi0Squared * phi.conj()
            return y

        alpha = V + g * 2.0 * (psi.real ** 2 + psi.imag ** 2)
        gPsi0Squared = g * psi ** 2

        num_unknowns = len(mesh.node_coords)
        return pykry.LinearOperator(
            (num_unknowns, num_unknowns),
            complex,
            dot=_apply_jacobian,
            dot_adj=_apply_jacobian,
        )

    def jacobian_solver(psi0, rhs):
        jac = jacobian(psi0)
        out = pykry.gmres(
            A=jac,
            b=rhs,
            inner_product=lambda a, b: numpy.dot(a.T.conj(), b).real,
            maxiter=1000,
            tol=1.0e-10,
        )
        return out.xk

    u0 = numpy.ones(len(vertices), dtype=complex)
    u = pyfvm.newton(f, jacobian_solver, u0)

    mesh.write("out.vtk", point_data={"u": u.view("(2,)float")})
    return
def test_continuation(max_steps=5):
    a = 10.0
    n = 20
    points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, n, n)
    mesh = meshplex.MeshTri(points, cells)

    problem = GinzburgLandauReal(mesh)
    num_unknowns = 2 * problem.mesh.control_volumes.shape[0]
    u0 = numpy.ones(num_unknowns)
    u0[1::2] = 0.0
    mu0 = 0.0

    # plt.ion()
    # fig = plt.figure()
    # ax = fig.add_subplot(111)
    # plt.axis("square")
    # plt.xlabel("$\\mu$")
    # plt.ylabel("$||\\psi||_2$")
    # plt.grid()
    # b_list = []
    # values_list = []
    # line1, = ax.plot(b_list, values_list, "-", color="#1f77f4")

    mu_list = []

    filename = "sol.xdmf"
    with meshio.xdmf.TimeSeriesWriter(filename) as writer:
        writer.write_points_cells(problem.mesh.node_coords,
                                  {"triangle": problem.mesh.cells["nodes"]})

        def callback(k, mu, sol):
            mu_list.append(mu)
            # Store the solution
            psi = numpy.array([sol[0::2], sol[1::2]]).T
            writer.write_data(k, point_data={"psi": psi})
            with open("data.yml", "w") as fh:
                yaml.dump(
                    {
                        "filename": filename,
                        "mu": [float(m) for m in mu_list]
                    }, fh)

        # pacopy.natural(
        #     problem,
        #     u0,
        #     b0,
        #     callback,
        #     max_steps=1,
        #     lambda_stepsize0=1.0e-2,
        #     newton_max_steps=5,
        #     newton_tol=1.0e-10,
        # )
        pacopy.euler_newton(
            problem,
            u0,
            mu0,
            callback,
            max_steps=max_steps,
            stepsize0=1.0e-2,
            stepsize_max=1.0,
            newton_tol=1.0e-10,
        )
示例#36
0
 def get_mesh(self, k):
     n = 2 ** (k + 1)
     vertices, cells = meshzoo.rectangle(
         0.0, 1.0, 0.0, 1.0, n + 1, n + 1, zigzag=True
     )
     return meshplex.MeshTri(vertices, cells)
示例#37
0
    def __init__(self, delta, n,
                 ufunc=None,
                 coarseMesh=None,
                 dim=2, outdim=1,
                 n_start=12,
                 ansatz="CG",
                 is_constructAdjaciencyGraph=True,
                 variant="up"):
        ### TEST 27.07.2020
        #self.Zeta = np.arange(12, dtype=np.int).reshape(4, 3)
        #####

        deltaK = int(np.round(delta * 10))
        if not deltaK:
            raise ValueError("Delta has to be of the form delta = deltaK/10. for deltaK in N.")
        n_start = 10 + 2*deltaK

        self.n = n
        self.dim = dim
        self.delta = delta
        self.sqdelta = delta**2
        # Construct Meshgrid -------------------------------------------------------------
        if self.dim == 2:
            self.h = n_start/n/10.
            points, cells = meshzoo.rectangle(
                xmin=-self.delta, xmax=1.0+self.delta,
                ymin=-self.delta, ymax=1.0+self.delta,
                nx=n+1, ny=n+1,
                variant=variant
            )
            self.vertices = np.array(points[:, :2])


        # Set up Delaunay Triangulation --------------------------------------------------
        # Construct and Sort Vertices ----------------------------------------------------
        self.vertexLabels = np.array([self.get_vertexLabel(v) for v in self.vertices])

        # Get Number of Vertices in Omega ------------------------------------------------
        self.nV = self.vertices.shape[0]
        self.nV_Omega = np.sum(self.vertexLabels > 0)

        # Set up Delaunay Triangulation --------------------------------------------------
        self.elements = np.array(cells, dtype=np.int)

        # Get Triangle Labels ------------------------------------------------------------
        self.nE = self.elements.shape[0]
        self.elementLabels = np.zeros(self.nE, dtype=np.int)
        for k, E in enumerate(self.elements):
            self.elementLabels[k] = self.get_elementLabel(E)
        self.nE_Omega = np.sum(self.elementLabels > 0)

        # Read adjaciency list -----------------------------------------------------------
        if is_constructAdjaciencyGraph:
            self.neighbours = constructAdjaciencyGraph(self.elements)
            self.nNeighbours = self.neighbours.shape[1]
        else:
            self.neighbours = None

        # Set Matrix Dimensions ----------------------------------------------------------
        self.is_NeumannBoundary = False
        # This option is deprecated. It is sufficient to simply not
        self.outdim = outdim
        if ansatz == "DG":
            self.K = self.nE*(self.dim+1)*self.outdim
            self.K_Omega = self.nE_Omega*(self.dim+1)*self.outdim
            self.nodeLabels = np.repeat(self.elementLabels, (self.dim+1)*self.outdim)
            self.is_DiscontinuousGalerkin = True
        else:
            self.K = self.nV*self.outdim
            self.K_Omega = self.nV_Omega*self.outdim
            self.nodeLabels = np.repeat(self.vertexLabels, self.outdim)
            self.is_DiscontinuousGalerkin = False

        # Set Mesh Data if provided ------------------------------------------------------
        self.u_exact = None
        self.ud = None

        self.diam = self.h*np.sqrt(2)
        if ufunc is not None:
            if hasattr(ufunc, '__call__'):
                self.set_u_exact(ufunc)

        if coarseMesh is not None:
            if coarseMesh.is_DiscontinuousGalerkin:
                coarseDGverts = np.zeros(((coarseMesh.K // coarseMesh.outdim), coarseMesh.dim))
                for i, E in enumerate(coarseMesh.elements):
                    for ii, vdx in enumerate(E):
                        vert = coarseMesh.vertices[vdx]
                        coarseDGverts[(self.dim+1)*i + ii] = vert
                self.interpolator = LinearNDInterpolator(coarseDGverts, coarseMesh.ud)

                ud_aux = self.interpolator(self.vertices)

                self.ud = np.zeros(((self.K // self.outdim), self.outdim))
                for i, E in enumerate(self.elements):
                    for ii, vdx in enumerate(E):
                        self.ud[(self.dim + 1)*i + ii] = ud_aux[vdx]
                pass
            else:
                self.interpolator = LinearNDInterpolator(coarseMesh.vertices, coarseMesh.ud)
                self.ud = self.interpolator(self.vertices)