示例#1
0
    def inference(self, image_list):
        """Do an inference on the model with a set of inputs.

        # Arguments:
            image_list: The input image list

        Return the result of the inference.
        """
        image = image_list[0]
        image = self.linear_to_srgb(image)
        image = (image * 255).astype(np.uint8)
        kernel = self.kernel_size * 2 + 1
        blur = cv2.GaussianBlur(image, (kernel, kernel), 0)
        blur = blur.astype(np.float32) / 255.
        blur = self.srgb_to_linear(blur)

        # If make_blur button is pressed in Nuke
        if self.make_blur:
            script_msg = message_pb2.FieldValuePairAttrib()
            script_msg.name = "PythonScript"
            # Create a Python script message to run in Nuke
            python_script = self.blur_script(blur)
            script_msg_val = script_msg.values.add()
            script_msg_str = script_msg_val.string_attributes.add()
            script_msg_str.values.extend([python_script])
            return [blur, script_msg]

        return [blur]
示例#2
0
    def inference(self, image_list):
        """Do an inference on the model with a set of inputs.

        # Arguments:
            image_list: The input image list

        Return the result of the inference.
        """
        image = image_list[0]
        image = self.linear_to_srgb(image).copy()
        image = (image * 255).astype(np.uint8)

        if not hasattr(self, 'model'):
            # Initialise tensorflow graph
            tf.compat.v1.reset_default_graph()
            config = tf.compat.v1.ConfigProto()
            config.gpu_options.allow_growth=True
            self.sess=tf.compat.v1.Session(config=config)
            # Load most recent trained model
            self.model = self.load_model()
            self.class_labels = (self.checkpoint_name.split('.')[0]).split('_')

        # If checkpoint name has changed, load new checkpoint
        if self.prev_ckpt_name != self.checkpoint_name or self.checkpoint_name == '':
            self.model = self.load_model()
            self.class_labels = (self.checkpoint_name.split('.')[0]).split('_')
            # If checkpoint correctly loaded, update previous checkpoint name
            self.prev_ckpt_name = self.checkpoint_name

        image = cv2.resize(image, dsize=(224, 224), interpolation=cv2.INTER_NEAREST)
        # Predict on new data
        image_batch = np.expand_dims(image, 0)
        # Preprocess a numpy array encoding a batch of images (RGB values within [0, 255])
        image_batch = tf.keras.applications.mobilenet.preprocess_input(image_batch)
        start = time.time()
        y_prob = self.model.predict(image_batch)
        y_class = y_prob.argmax(axis=-1)[0]
        duration = time.time() - start
        # Print results on server side
        print('Inference duration: {:4.3f}s'.format(duration))
        class_scores = str(["{0:0.4f}".format(i) for i in y_prob[0]]).replace("'", "")
        print("Class scores: {} --> Label: {}".format(class_scores, self.class_labels[y_class]))

        # If get_label button is pressed in Nuke
        if self.get_label:
            # Send back which class was detected
            script_msg = message_pb2.FieldValuePairAttrib()
            script_msg.name = "PythonScript"
            # Create a Python script message to run in Nuke
            nuke_msg = "Class scores: {}\\nLabel: {}".format(class_scores, self.class_labels[y_class])
            python_script = "nuke.message('{}')\n".format(nuke_msg)
            script_msg_val = script_msg.values.add()
            script_msg_str = script_msg_val.string_attributes.add()
            script_msg_str.values.extend([python_script])
            return [image_list[0], script_msg]
        return [image_list[0]]
示例#3
0
    def inference(self, image_list):
        """Do an inference on the model with a set of inputs.

        # Arguments:
            image_list: The input image list

        Return the result of the inference.
        """
        image = image_list[0]
        image = linear_to_srgb(image).copy()

        if not hasattr(self, 'sess'):
            # Initialise tensorflow graph
            tf.compat.v1.reset_default_graph()
            config = tf.compat.v1.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.compat.v1.Session(config=config)
            # Input is stacked histograms of original and gamma-graded images.
            input_shape = [1, 2, 100]
            # Initialise input placeholder size
            self.input = tf.compat.v1.placeholder(tf.float32,
                                                  shape=input_shape)
            self.model = baseline_model(
                input_shape=input_shape[1:],
                output_param_number=self.output_param_number)
            self.infer_op = self.model(self.input)
            # Load latest model checkpoint
            self.saver = tf.compat.v1.train.Saver()
            self.load(self.model)
            self.prev_ckpt_name = self.checkpoint_name

        # If checkpoint name has changed, load new checkpoint
        if self.prev_ckpt_name != self.checkpoint_name or self.checkpoint_name == '':
            self.load(self.model)
            # If checkpoint correctly loaded, update previous checkpoint name
            self.prev_ckpt_name = self.checkpoint_name

        # Preprocess image same way we preprocessed it for training
        # Here for gamma correction compute histograms
        def histogram(x, value_range=[0.0, 1.0], nbins=100):
            """Return histogram of tensor x"""
            h, w, c = x.shape
            hist = tf.histogram_fixed_width(x, value_range, nbins=nbins)
            hist = tf.divide(hist, h * w * c)
            return hist

        with tf.compat.v1.Session() as sess:
            # Convert to grayscale
            img_gray = tf.image.rgb_to_grayscale(image)
            img_gray = tf.image.resize(img_gray,
                                       [self.patch_size, self.patch_size])
            # Apply gamma correction
            img_gray_grade = tf.math.pow(img_gray, self.gamma_to_predict)
            img_grade = tf.math.pow(image, self.gamma_to_predict)
            # Compute histograms
            img_hist = histogram(img_gray)
            img_grade_hist = histogram(img_gray_grade)
            hists_op = tf.stack([img_hist, img_grade_hist], axis=0)
            hists, img_grade = sess.run([hists_op, img_grade])
            res_img = srgb_to_linear(img_grade)

        hists_batch = np.expand_dims(hists, 0)
        start = time.time()
        # Run model inference
        inference = self.sess.run(self.infer_op,
                                  feed_dict={self.input: hists_batch})
        duration = time.time() - start
        print('Inference duration: {:4.3f}s'.format(duration))
        res = inference[-1]
        print("Predicted gamma: {}".format(res))

        # If predict button is pressed in Nuke
        if self.predict:
            script_msg = message_pb2.FieldValuePairAttrib()
            script_msg.name = "PythonScript"
            # Create a Python script message to run in Nuke
            python_script = self.nuke_script(res)
            script_msg_val = script_msg.values.add()
            script_msg_str = script_msg_val.string_attributes.add()
            script_msg_str.values.extend([python_script])
            return [res_img, script_msg]

        return [res_img]