示例#1
0
def cube_stats_f(date_str):
	#date_str='20060123 1600'
	tim_date=num2date(datestr2num(date_str))
	radar1, radar2=netcdf_utis.load_cube('/bm/gdata/scollis/cube_data/'+std_datestr(tim_date, 'uf')+'_winds.nc')
	Re=6371.0*1000.0
	rad_at_radar=Re*sin(pi/2.0 -abs(radar1['radar_loc'][0]*pi/180.0))#ax_radius(float(lat_cpol), units='degrees')
	lons=radar1['radar_loc'][1]+360.0*radar1['xar']/(rad_at_radar*2.0*pi)
	lats=radar1['radar_loc'][0] + 360.0*radar1['yar']/(Re*2.0*pi)	
	angs=array(propigation.make_lobe_grid(radar2['radar_loc'], radar1['radar_loc'], lats,lons))
	mywts=met.make_mask_bad1(radar2, radar1, angs, 1.0, 80.0)
	submask=met.make_submask(mywts)
	X=[radar1['u_array'], radar1['v_array'], radar1['w_array']]
	req=[ 'alt(m)',  'wspd(m/s)',  'wdir(degs)', 'tdry(degs)','press(hPa)' ]
	first_sonde,second_sonde = read_sounding.get_two_best_conc_sondes(date_str, req_vars=req)
	interp_sonde=read_sounding.interp_sonde_time(first_sonde, second_sonde, tim_date, radar1['levs'])
	costs=grad_conj_solver_3d.return_cost(X, radar2, radar1, mywts, interp_sonde, submask,loud=True)
	disag=costs[1]/(mywts.sum()*2.0)
	print disag
示例#2
0
def gracon_3d_packaged(X, radar1, radar2, weights, sounding, **kwargs):
    #!dimensions
    submask = met.make_submask(weights)
    nx, ny, nz = radar1["CZ"].shape
    Fal = 0.0
    i_ter = 1
    grad = 1.0
    nerr = 0
    dimx = 2 * nx * ny * nz
    F = 0.0
    acc = 0.0
    itr = kwargs.get("itr", 100)
    #!Initial guess packaging
    # do i=1,nx
    print "Doing transfer", nx, ny, nz
    # X=array([u_array,v_array, w_array])
    # gradi=sqrt((G**2).sum())
    print "entering loop"
    while (i_ter <= itr + 1) and (grad > acc):
        if i_ter == 1:
            Fm1 = F
            #!----------------------COST FUNCTION--------------------
            G, F, X = cost_function(X, radar1, radar2, weights, sounding, submask, loud=True)
            gradi = sqrt((G ** 2).sum())
            #!----------------------COST FUNCTION--------------------
            #!subroutine rms2(iterc, f, gradi)
        print "Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
        c_X = copy(X)
        c_F = F
        # call rms2(iter,F,gradi)
        #!     -------- To stop in the first iteration -------------------------
        if itr == 0:
            grad = -1.0
            print "Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
            return G, F, X  # need to put vars in
            #!     -----------------------------------------------------------------
            # do i=1,dimx
            # for i in range(dimx):
        XK1 = X
        # XK1(i)=X(i)
        #!     ===============================================================
        #!     ------------------------Steepest descent-----------------------
        if i_ter == 1:
            gg = 0.0
            # do i=1,dimx
            # for i in range(dimx):
            gg = gg + (G ** 2).sum()  # G[i]*G[i]
            D = -G
            GK1 = G
            gd = -gg
        else:
            #!    ----------------------Conjugate Gradient-----------------------
            gg = 0.0
            upk = 0.0
            dok = 0.0
            gg = gg + (G ** 2).sum()
            upk = upk + (G * (G - GK1)).sum()
            dok = dok + (D * (G - GK1)).sum()
            gd = 0.0
            # do i=1,dimx
            # for i in range(dimx):
            GK1 = G
            if dok == 0.0:
                dok = 1.0e-10
            if upk == 0.0:
                upk = 1.0e-10
            # D(i)=-G(i)+(upk/dok)*D(i)
            D = -G + (upk / dok) * D
            #!<<<alain
            #!dd=dd+D(i)*D(i)
            #!>>>alain
            gd = gd + (G * D).sum()
            #!            print*,'Angle between search direction and gradient:',180.0/(4.0*atan(1.0))*acos(-gd/sqrt(dd*gg))
            #!     --------------------------------------------------------------
            # endif
            #!     ===============================================================
            #!     ----------------------- step length ---------------------------
        if i_ter == 1:
            delF = 0.5 * F
        elif i_ter != 1:
            delF = Fm1 - F
        if F != 0.0:
            rdF = delF / F
        if rdF < 1.0e-5:
            print "variation of F too weak"
            return G, F, X  # need to put vars in
        if gd > 0.0:
            gd = -gd
        axpect = -2.0 * delF / gd
        al = min(2.0, axpect)
        Fm1 = F
        ncomp = 0
        subfinish = 0
        # do while (subfinish.eq.0)
        while subfinish == 0:
            # print "in subloop"
            ncomp = ncomp + 1
            nerr = 0
            subfinish = 1
            if ncomp > 200:
                print "too many subiterations"
                print "Current search point: Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
                print "Begining of Subloop Cost: ", c_F
                if c_F < F:
                    print "Using start of subloop"
                    X = c_X
                    F = c_F
                return G, F, X
                # endif
                # do i=1,dimx
                # for i in range(dimx):
                # X(i)=XK1(i) + al*D(i)
            X = XK1 + al * D
            # enddo
            # do i=1,nx
            G, F, X = cost_function(X, radar1, radar2, weights, sounding, submask)
            gradi = sqrt((G ** 2).sum())
            #!----------------------COST FUNCTION--------------------
            if nerr == 1:
                al = al / 2.0
                subfinish = 0
                # endif
            if subfinish == 1:
                gald = 0.0
                # do i=1,dimx
                # for i in range(dimx):
                gald = gald + (G * D).sum()
                # enddo
                if (gald < 0.0) and (Fal < F):
                    al = 4.0 * al
                    subfinish = 0
                    # endif
                if subfinish == 1:
                    z = 3.0 * (F - Fal) / al + gd + gald
                    w = sqrt(z ** 2 - gd * gald)
                    amin = al * (1.0 - (gald + w - z) / (gald - gd + 2.0 * w))
                    # do i=1,dimx
                    # for i in range(dimx):
                    # X(i)=XK1(i) + amin*D(i)
                    X = XK1 + amin * D
                    # enddo
                    #!----------------------COST FUNCTION--------------------
                    #!pack variables
                    # do i=1,nx
                    G, F, X = cost_function(X, radar1, radar2, weights, sounding, submask)
                    gradi = sqrt((G ** 2).sum())
                    #!----------------------COST FUNCTION--------------------
                    if (F > Fm1) or (nerr == 1):
                        al = al / 2.5
                        subfinish = 0
                        # endif
                    if subfinish == 1:
                        i_ter = i_ter + 1
                        grad = gg ** 0.5
                        # endif
                        # endif
                        # endif
                        # enddo
                # enddo
                # do i=1,nx
    print "Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
    return G, F, X
示例#3
0
def gracon_vel2d_3d(gv_u, gv_v, f, u_array, v_array, i_cmpt_r1, j_cmpt_r1, i_cmpt_r2, j_cmpt_r2, vr1, vr2, weights):
    #!dimensions
    submask = met.make_submask(weights)
    nx, ny, nz = u_array.shape
    X = zeros([2 * nx * ny * nz], dtype=float)
    G = zeros([2 * nx * ny * nz], dtype=float)
    XK1 = zeros([2 * nx * ny * nz], dtype=float)
    D = zeros([2 * nx * ny * nz], dtype=float)
    GK1 = zeros([2 * nx * ny * nz], dtype=float)
    Fal = 0.0
    i_ter = 1
    grad = 1.0
    nerr = 0
    dimx = 2 * nx * ny * nz
    F = 0.0
    acc = 0.0
    itr = 100
    #!Initial guess packaging
    # do i=1,nx
    print "Doing transfer", nx, ny, nz
    X = array([u_array, v_array])
    G = array([u_array, v_array])
    gradi = sqrt((G ** 2).sum())
    print "entering loop"
    while (i_ter <= itr + 1) and (grad > acc):
        if i_ter == 1:
            Fm1 = F
            #!----------------------COST FUNCTION--------------------
            #!pack variables
            # do i=1,nx
            # HERE
            u_array = X[0]
            v_array = X[1]
            gv_u = G[0] * 0.0
            gv_v = G[1] * 0.0
            F = 0.0
            # call meas_cost(gv_u, gv_v, F, u_array, v_array, i_cmpt_r1, j_cmpt_r1,&
            # i_cmpt_r2, j_cmpt_r2, nx, ny,nz, vr1, vr2, weights)
            gv_u, gv_v, F = meas_cost(
                gv_u, gv_v, F, u_array, v_array, i_cmpt_r1, j_cmpt_r1, i_cmpt_r2, j_cmpt_r2, vr1, vr2, weights
            )
            #!unpack variables
            # do i=1,nx
            X = array([u_array, v_array])
            G = array([gv_u, gv_v])
            gradi = sqrt((G ** 2).sum())
            #!----------------------COST FUNCTION--------------------
            #!subroutine rms2(iterc, f, gradi)
        print "Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
        # call rms2(iter,F,gradi)
        #!     -------- To stop in the first iteration -------------------------
        if itr == 0:
            grad = -1.0
            print "Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
            return gv_u, gv_v, F, u_array, v_array  # need to put vars in
            #!     -----------------------------------------------------------------
            # do i=1,dimx
            # for i in range(dimx):
        XK1 = X
        # XK1(i)=X(i)
        #!     ===============================================================
        #!     ------------------------Steepest descent-----------------------
        if i_ter == 1:
            gg = 0.0
            # do i=1,dimx
            # for i in range(dimx):
            gg = gg + (G ** 2).sum()  # G[i]*G[i]
            D = -G
            GK1 = G
            gd = -gg
        else:
            #!    ----------------------Conjugate Gradient-----------------------
            gg = 0.0
            upk = 0.0
            dok = 0.0
            gg = gg + (G ** 2).sum()
            upk = upk + (G * (G - GK1)).sum()
            dok = dok + (D * (G - GK1)).sum()
            gd = 0.0
            # do i=1,dimx
            # for i in range(dimx):
            GK1 = G
            if dok == 0.0:
                dok = 1.0e-10
            if upk == 0.0:
                upk = 1.0e-10
            # D(i)=-G(i)+(upk/dok)*D(i)
            D = -G + (upk / dok) * D
            #!<<<alain
            #!dd=dd+D(i)*D(i)
            #!>>>alain
            gd = gd + (G * D).sum()
            #!            print*,'Angle between search direction and gradient:',180.0/(4.0*atan(1.0))*acos(-gd/sqrt(dd*gg))
            #!     --------------------------------------------------------------
            # endif
            #!     ===============================================================
            #!     ----------------------- step length ---------------------------
        if i_ter == 1:
            delF = 0.5 * F
        elif i_ter != 1:
            delF = Fm1 - F
        if F != 0.0:
            rdF = delF / F
        if rdF < 1.0e-5:
            print "variation of F too weak"
            return gv_u, gv_v, F, u_array, v_array  # need to put vars in
        if gd > 0.0:
            gd = -gd
        axpect = -2 * delF / gd
        al = min(2.0, axpect)
        Fm1 = F
        ncomp = 0
        subfinish = 0
        # do while (subfinish.eq.0)
        while subfinish == 0:
            # print "in subloop"
            ncomp = ncomp + 1
            nerr = 0
            subfinish = 1
            if ncomp > 200:
                print "too many subiterations"
                return gv_u, gv_v, F, u_array, v_array  # need vars
                # endif
                # do i=1,dimx
                # for i in range(dimx):
                # X(i)=XK1(i) + al*D(i)
            X = XK1 + al * D
            # enddo
            # do i=1,nx
            u_array = X[0]
            v_array = X[1]
            gv_u = G[0] * 0.0
            gv_v = G[1] * 0.0
            F = 0.0
            gv_u, gv_v, F = meas_cost(
                gv_u, gv_v, F, u_array, v_array, i_cmpt_r1, j_cmpt_r1, i_cmpt_r2, j_cmpt_r2, vr1, vr2, weights
            )
            X = array([u_array, v_array])
            G = array([gv_u, gv_v])
            gradi = sqrt((G ** 2).sum())
            #!----------------------COST FUNCTION--------------------
            if nerr == 1:
                al = al / 2
                subfinish = 0
                # endif
            if subfinish == 1:
                gald = 0.0
                # do i=1,dimx
                # for i in range(dimx):
                gald = gald + (G * D).sum()
                # enddo
                if (gald < 0.0) and (Fal < F):
                    al = 4 * al
                    subfinish = 0
                    # endif
                if subfinish == 1:
                    z = 3.0 * (F - Fal) / al + gd + gald
                    w = sqrt(z ** 2 - gd * gald)
                    amin = al * (1 - (gald + w - z) / (gald - gd + 2 * w))
                    # do i=1,dimx
                    # for i in range(dimx):
                    # X(i)=XK1(i) + amin*D(i)
                    X = XK1 + amin * D
                    # enddo
                    #!----------------------COST FUNCTION--------------------
                    #!pack variables
                    # do i=1,nx
                    u_array = X[0]
                    v_array = X[1]
                    gv_u = G[0] * 0.0
                    gv_v = G[1] * 0.0
                    F = 0.0
                    gv_u, gv_v, F = meas_cost(
                        gv_u, gv_v, F, u_array, v_array, i_cmpt_r1, j_cmpt_r1, i_cmpt_r2, j_cmpt_r2, vr1, vr2, weights
                    )
                    #!unpack variables
                    # do i=1,nx
                    X = array([u_array, v_array])
                    G = array([gv_u, gv_v])
                    gradi = sqrt((G ** 2).sum())
                    #!----------------------COST FUNCTION--------------------
                    if (F > Fm1) or (nerr == 1):
                        al = al / 2.5
                        subfinish = 0
                        # endif
                    if subfinish == 1:
                        i_ter = i_ter + 1
                        grad = gg ** 0.5
                        # endif
                        # endif
                        # endif
                        # enddo
                # enddo
                # do i=1,nx
    u_array = X[0]
    v_array = X[1]
    gv_u = G[0]
    gv_v = G[1]
    print "Iter:", i_ter, " Cost: ", F, " Gradi:", gradi
    return gv_u, gv_v, F, u_array, v_array