def __init__( self, env, policy, rollouts_per_meta_task, meta_batch_size, max_path_length, envs_per_task=None, parallel=False ): super(MetaSampler, self).__init__(env, policy, rollouts_per_meta_task, max_path_length) # assert hasattr(env, 'set_task') self.envs_per_task = rollouts_per_meta_task if envs_per_task is None else envs_per_task self.meta_batch_size = meta_batch_size self.total_samples = meta_batch_size * rollouts_per_meta_task * max_path_length self.parallel = parallel self.total_timesteps_sampled = 0 # setup vectorized environment if self.parallel: self.vec_env = MetaParallelEnvExecutor(env, self.meta_batch_size, self.envs_per_task, self.max_path_length) else: self.vec_env = MetaIterativeEnvExecutor(env, self.meta_batch_size, self.envs_per_task, self.max_path_length)
class MetaSampler(Sampler): """ Sampler for Meta-RL Args: env (meta_policy_search.envs.base.MetaEnv) : environment object policy (meta_policy_search.policies.base.Policy) : policy object batch_size (int) : number of trajectories per task meta_batch_size (int) : number of meta tasks max_path_length (int) : max number of steps per trajectory envs_per_task (int) : number of envs to run vectorized for each task (influences the memory usage) """ def __init__( self, env, policy, rollouts_per_meta_task, meta_batch_size, max_path_length, envs_per_task=None, parallel=False ): super(MetaSampler, self).__init__(env, policy, rollouts_per_meta_task, max_path_length) # assert hasattr(env, 'set_task') self.envs_per_task = rollouts_per_meta_task if envs_per_task is None else envs_per_task self.meta_batch_size = meta_batch_size self.total_samples = meta_batch_size * rollouts_per_meta_task * max_path_length self.parallel = parallel self.total_timesteps_sampled = 0 # setup vectorized environment if self.parallel: self.vec_env = MetaParallelEnvExecutor(env, self.meta_batch_size, self.envs_per_task, self.max_path_length) else: self.vec_env = MetaIterativeEnvExecutor(env, self.meta_batch_size, self.envs_per_task, self.max_path_length) def update_tasks(self, out_disabled=False): """ Samples a new goal for each meta task """ tasks = self.env.sample_tasks(self.meta_batch_size) print ("tasks: ", tasks) assert len(tasks) == self.meta_batch_size self.vec_env.set_tasks(tasks) def obtain_samples(self, log=False, log_prefix=''): """ Collect batch_size trajectories from each task Args: log (boolean): whether to log sampling times log_prefix (str) : prefix for logger Returns: (dict) : A dict of paths of size [meta_batch_size] x (batch_size) x [5] x (max_path_length) """ # initial setup / preparation paths = OrderedDict() for i in range(self.meta_batch_size): paths[i] = [] n_samples = 0 running_paths = [_get_empty_running_paths_dict() for _ in range(self.vec_env.num_envs)] pbar = ProgBar(self.total_samples) policy_time, env_time = 0, 0 policy = self.policy # initial reset of envs obses = self.vec_env.reset() print ("obses shape: ", np.array(obses).shape) while n_samples < self.total_samples: # execute policy t = time.time() obs_per_task = np.split(np.asarray(obses), self.meta_batch_size) actions, agent_infos = policy.get_actions(obs_per_task) policy_time += time.time() - t # step environments t = time.time() actions = np.concatenate(actions) # stack meta batch # print ("actions: ", actions) next_obses, rewards, dones, env_infos = self.vec_env.step(actions) env_time += time.time() - t # stack agent_infos and if no infos were provided (--> None) create empty dicts agent_infos, env_infos = self._handle_info_dicts(agent_infos, env_infos) new_samples = 0 for idx, observation, action, reward, env_info, agent_info, done in zip(itertools.count(), obses, actions, rewards, env_infos, agent_infos, dones): # append new samples to running paths running_paths[idx]["observations"].append(observation) running_paths[idx]["actions"].append(action) running_paths[idx]["rewards"].append(reward) running_paths[idx]["env_infos"].append(env_info) running_paths[idx]["agent_infos"].append(agent_info) # if running path is done, add it to paths and empty the running path if done: paths[idx // self.envs_per_task].append(dict( observations=np.asarray(running_paths[idx]["observations"]), actions=np.asarray(running_paths[idx]["actions"]), rewards=np.asarray(running_paths[idx]["rewards"]), env_infos=utils.stack_tensor_dict_list(running_paths[idx]["env_infos"]), agent_infos=utils.stack_tensor_dict_list(running_paths[idx]["agent_infos"]), )) new_samples += len(running_paths[idx]["rewards"]) running_paths[idx] = _get_empty_running_paths_dict() pbar.update(new_samples) n_samples += new_samples obses = next_obses pbar.stop() self.total_timesteps_sampled += self.total_samples if log: logger.logkv(log_prefix + "PolicyExecTime", policy_time) logger.logkv(log_prefix + "EnvExecTime", env_time) return paths def _handle_info_dicts(self, agent_infos, env_infos): if not env_infos: env_infos = [dict() for _ in range(self.vec_env.num_envs)] if not agent_infos: agent_infos = [dict() for _ in range(self.vec_env.num_envs)] else: assert len(agent_infos) == self.meta_batch_size assert len(agent_infos[0]) == self.envs_per_task agent_infos = sum(agent_infos, []) # stack agent_infos assert len(agent_infos) == self.meta_batch_size * self.envs_per_task == len(env_infos) return agent_infos, env_infos