示例#1
0
    def generate_scheme(self):
        # declaring function input variable
        vx = self.implementation.add_input_variable("x", self.precision)
        vy = self.implementation.add_input_variable("y", self.precision)

        Cst0 = Constant(5, precision=self.precision)
        Cst1 = Constant(7, precision=self.precision)
        comp = Comparison(vx,
                          vy,
                          specifier=Comparison.Greater,
                          precision=ML_Bool,
                          tag="comp")
        comp_eq = Comparison(vx,
                             vy,
                             specifier=Comparison.Equal,
                             precision=ML_Bool,
                             tag="comp_eq")

        scheme = Statement(
            ConditionBlock(
                comp, Return(vy, precision=self.precision),
                ConditionBlock(
                    comp_eq,
                    Return(vx + vy * Cst0 - Cst1, precision=self.precision))),
            ConditionBlock(comp_eq, Return(Cst1 * vy,
                                           precision=self.precision)),
            Return(vx * vy, precision=self.precision))

        return scheme
示例#2
0
def get_output_check_statement(output_signal, output_tag, output_value):
    """ Generate output value check statement """
    test_pass_cond = Comparison(
        output_signal,
        output_value,
        specifier=Comparison.Equal,
        precision=ML_Bool
    )

    check_statement = ConditionBlock(
        LogicalNot(
            test_pass_cond,
            precision = ML_Bool
        ),
        Report(
            Concatenation(
                " result for {}: ".format(output_tag),
                Conversion(
                    output_signal if output_signal.get_precision() is ML_StdLogic else
                    TypeCast(
                        output_signal,
                        precision=ML_StdLogicVectorFormat(
                            output_signal.get_precision().get_bit_size()
                        )
                     ),
                    precision = ML_String
                    ),
                precision = ML_String
            )
        )
    )
    return test_pass_cond, check_statement
示例#3
0
    def test_ref_assign(self):
        """ test behavior of StaticVectorizer on predicated ReferenceAssign """
        va = Variable("a")
        vb = Variable("b")
        vc = Variable("c")
        scheme = Statement(
            ReferenceAssign(va, Constant(3)),
            ConditionBlock(
                (va > vb).modify_attributes(likely=True),
                Statement(ReferenceAssign(vb, va),
                          ReferenceAssign(va, Constant(11)), Return(va)),
            ), ReferenceAssign(va, Constant(7)), Return(vb))
        vectorized_path = StaticVectorizer().extract_vectorizable_path(
            scheme, fallback_policy)

        linearized_most_likely_path = instanciate_variable(
            vectorized_path.linearized_optree,
            vectorized_path.variable_mapping)
        test_result = (isinstance(linearized_most_likely_path, Constant)
                       and linearized_most_likely_path.get_value() == 11)
        if not test_result:
            print("test UT_StaticVectorizer failure")
            print("scheme: {}".format(scheme.get_str()))
            print("linearized_most_likely_path: {}".format(
                linearized_most_likely_path))
        self.assertTrue(test_result)
    def generate_tensor_check_loop(self, tensor_descriptors, input_tables,
                                   output_tables):
        # unpack tensor descriptors tuple
        (input_tensor_descriptor_list,
         output_tensor_descriptor_list) = tensor_descriptors
        # internal array iterator index
        vj = Variable("j", precision=ML_UInt32, var_type=Variable.Local)

        printf_error_detail_function = self.get_printf_error_detail_fct(
            output_tensor_descriptor_list[0])

        NUM_INPUT_ARRAY = len(input_tables)

        # generate the expected table for the whole multi-array
        expected_tables = self.generate_expected_table(tensor_descriptors,
                                                       input_tables)

        # global statement to list all checks
        check_statement = Statement()

        # implement check for each output tensor
        for out_id, out_td in enumerate(output_tensor_descriptor_list):
            # expected values for the (vj)-th entry of the sub-array
            expected_values = [
                TableLoad(expected_tables[out_id], vj, i)
                for i in range(self.accuracy.get_num_output_value())
            ]
            # local result for the (vj)-th entry of the sub-array
            local_result = TableLoad(output_tables[out_id], vj)

            array_len = out_td.get_bounding_size()

            if self.break_error:
                return_statement_break = Statement(
                    printf_error_detail_function(*((vj, ) + (local_result, ))),
                    self.accuracy.get_output_print_call(
                        self.function_name, output_values))
            else:
                return_statement_break = Statement(
                    printf_error_detail_function(*((vj, ) + (local_result, ))),
                    self.accuracy.get_output_print_call(
                        self.function_name, expected_values),
                    Return(Constant(1, precision=ML_Int32)))
            check_array_loop = Loop(
                ReferenceAssign(vj, 0), vj < array_len,
                Statement(
                    ConditionBlock(
                        self.accuracy.get_output_check_test(
                            local_result, expected_values),
                        return_statement_break),
                    ReferenceAssign(vj, vj + 1),
                ))
            check_statement.add(check_array_loop)
        return check_statement
示例#5
0
    def generate_scheme(self):
        # declaring input variable
        vx = self.implementation.add_input_variable("x", self.precision)

        vx2 = vx * vx

        scheme = ConditionBlock(
            vx > 0, Return(vx - 0.33 * vx2 * vx + (2 / 15.0) * vx * vx2 * vx2),
            Return(FP_QNaN(self.precision)))

        return scheme
示例#6
0
文件: fmod.py 项目: metalibm/metalibm
    def generate_scalar_scheme(self, vx, vy):
        div = Division(vx, vy, precision=self.precision)
        div_if = Trunc(div, precision=self.precision)
        rem = Variable("rem",
                       var_type=Variable.Local,
                       precision=self.precision)
        qi = Variable("qi", var_type=Variable.Local, precision=self.precision)
        qi_bound = Constant(S2**self.precision.get_mantissa_size())
        init_rem = FusedMultiplyAdd(-div_if, vy, vx)

        # factorizing 1 / vy to save time
        # NOTES: it makes rem / vy approximate
        # shared_rcp = Division(1, vy, precision=self.precision)

        iterative_fmod = Loop(
            Statement(
                ReferenceAssign(rem, init_rem),
                ReferenceAssign(qi, div_if),
            ),
            Abs(qi) > qi_bound,
            Statement(
                ReferenceAssign(
                    qi,
                    #Trunc(shared_rcp * rem, precision=self.precision)
                    Trunc(rem / vy, precision=self.precision)),
                ReferenceAssign(rem, FMA(-qi, vy, rem))))
        scheme = Statement(
            rem,
            # shared_rcp,
            iterative_fmod,
            ConditionBlock(
                # if rem's sign and vx sign mismatch
                (rem * vx < 0.0).modify_attributes(tag="update_cond",
                                                   debug=debug_multi),
                Return(rem + vy),
                Return(rem),
            ))
        return scheme
    def generate_scheme(self):
        """ main scheme generation """
        input_precision = self.precision
        output_precision = self.precision

        # declaring main input variable
        x_interval = Interval(-10.3, 10.7)
        var_x = self.implementation.add_input_variable("x",
                                                       input_precision,
                                                       interval=x_interval)

        y_interval = Interval(-17.9, 17.2)
        var_y = self.implementation.add_input_variable("y",
                                                       input_precision,
                                                       interval=y_interval)

        z_interval = Interval(-70.3, -57.7)
        var_z = self.implementation.add_input_variable("z",
                                                       input_precision,
                                                       interval=z_interval)

        min_yz = Min(var_z, var_y)

        cst0 = Constant(42.5, tag="cst0", precision=self.precision)
        cst1 = Constant(2.5, tag="cst1", precision=self.precision)
        cst2 = Constant(12.5, tag="cst2", precision=self.precision)

        new_cst = cst0 + cst1 * cst2

        result = min_yz + new_cst

        scheme = ConditionBlock(
            LogicalAnd(
                LogicalOr(cst0 > cst1, LogicalNot(cst1 > cst0)),
                var_x > var_y,
            ), Return(result), Return(cst2))
        return scheme
示例#8
0
def generate_pipeline_stage(entity):
    """ Process a entity to generate pipeline stages required """
    retiming_map = {}
    retime_map = RetimeMap()
    output_assign_list = entity.implementation.get_output_assign()
    for output in output_assign_list:
        Log.report(
            Log.Verbose,
            "generating pipeline from output %s " % (output.get_str(depth=1)))
        retime_op(output, retime_map)
    process_statement = Statement()

    # adding stage forward process
    clk = entity.get_clk_input()
    clock_statement = Statement()
    for stage_id in sorted(retime_map.stage_forward.keys()):
        stage_statement = Statement(*tuple(
            assign for assign in retime_map.stage_forward[stage_id]))
        clock_statement.add(stage_statement)
    # To meet simulation / synthesis tools, we build
    # a single if clock predicate block which contains all
    # the stage register allocation
    clock_block = ConditionBlock(
        LogicalAnd(Event(clk, precision=ML_Bool),
                   Comparison(clk,
                              Constant(1, precision=ML_StdLogic),
                              specifier=Comparison.Equal,
                              precision=ML_Bool),
                   precision=ML_Bool), clock_statement)
    process_statement.add(clock_block)
    pipeline_process = Process(process_statement, sensibility_list=[clk])
    for op in retime_map.pre_statement:
        pipeline_process.add_to_pre_statement(op)
    entity.implementation.add_process(pipeline_process)
    stage_num = len(retime_map.stage_forward.keys())
    #print "there are %d pipeline stages" % (stage_num)
    return stage_num
示例#9
0
    def generate_scheme(self):
        # declaring target and instantiating optimization engine
        vx = self.implementation.add_input_variable("x", self.precision)

        Log.set_dump_stdout(True)

        Log.report(Log.Info,
                   "\033[33;1m generating implementation scheme \033[0m")
        if self.debug_flag:
            Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m")

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            if self.libm_compliant:
                return RaiseReturn(*args, precision=self.precision, **kwords)
            else:
                return Return(kwords["return_value"], precision=self.precision)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=debug_multi,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=debug_multi,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=debug_multi,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=debug_multi,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        # return in case of infinity input
        infty_return = Statement(
            ConditionBlock(
                test_positive,
                Return(FP_PlusInfty(self.precision), precision=self.precision),
                Return(FP_PlusZero(self.precision), precision=self.precision)))
        # return in case of specific value input (NaN or inf)
        specific_return = ConditionBlock(
            test_nan,
            ConditionBlock(
                test_signaling_nan, return_snan,
                Return(FP_QNaN(self.precision), precision=self.precision)),
            infty_return)
        # return in case of standard (non-special) input

        # exclusion of early overflow and underflow cases
        precision_emax = self.precision.get_emax()
        precision_max_value = S2 * S2**precision_emax
        exp_overflow_bound = sollya.ceil(log(precision_max_value))
        early_overflow_test = Comparison(vx,
                                         exp_overflow_bound,
                                         likely=False,
                                         specifier=Comparison.Greater)
        early_overflow_return = Statement(
            ClearException() if self.libm_compliant else Statement(),
            ExpRaiseReturn(ML_FPE_Inexact,
                           ML_FPE_Overflow,
                           return_value=FP_PlusInfty(self.precision)))

        precision_emin = self.precision.get_emin_subnormal()
        precision_min_value = S2**precision_emin
        exp_underflow_bound = floor(log(precision_min_value))

        early_underflow_test = Comparison(vx,
                                          exp_underflow_bound,
                                          likely=False,
                                          specifier=Comparison.Less)
        early_underflow_return = Statement(
            ClearException() if self.libm_compliant else Statement(),
            ExpRaiseReturn(ML_FPE_Inexact,
                           ML_FPE_Underflow,
                           return_value=FP_PlusZero(self.precision)))

        # constant computation
        invlog2 = self.precision.round_sollya_object(1 / log(2), sollya.RN)

        interval_vx = Interval(exp_underflow_bound, exp_overflow_bound)
        interval_fk = interval_vx * invlog2
        interval_k = Interval(floor(inf(interval_fk)),
                              sollya.ceil(sup(interval_fk)))

        log2_hi_precision = self.precision.get_field_size() - (
            sollya.ceil(log2(sup(abs(interval_k)))) + 2)
        Log.report(Log.Info, "log2_hi_precision: %d" % log2_hi_precision)
        invlog2_cst = Constant(invlog2, precision=self.precision)
        log2_hi = round(log(2), log2_hi_precision, sollya.RN)
        log2_lo = self.precision.round_sollya_object(
            log(2) - log2_hi, sollya.RN)

        # argument reduction
        unround_k = vx * invlog2
        unround_k.set_attributes(tag="unround_k", debug=debug_multi)
        k = NearestInteger(unround_k,
                           precision=self.precision,
                           debug=debug_multi)
        ik = NearestInteger(unround_k,
                            precision=self.precision.get_integer_format(),
                            debug=debug_multi,
                            tag="ik")
        ik.set_tag("ik")
        k.set_tag("k")
        exact_pre_mul = (k * log2_hi)
        exact_pre_mul.set_attributes(exact=True)
        exact_hi_part = vx - exact_pre_mul
        exact_hi_part.set_attributes(exact=True,
                                     tag="exact_hi",
                                     debug=debug_multi,
                                     prevent_optimization=True)
        exact_lo_part = -k * log2_lo
        exact_lo_part.set_attributes(tag="exact_lo",
                                     debug=debug_multi,
                                     prevent_optimization=True)
        r = exact_hi_part + exact_lo_part
        r.set_tag("r")
        r.set_attributes(debug=debug_multi)

        approx_interval = Interval(-log(2) / 2, log(2) / 2)

        approx_interval_half = approx_interval / 2
        approx_interval_split = [
            Interval(-log(2) / 2, inf(approx_interval_half)),
            approx_interval_half,
            Interval(sup(approx_interval_half),
                     log(2) / 2)
        ]

        # TODO: should be computed automatically
        exact_hi_interval = approx_interval
        exact_lo_interval = -interval_k * log2_lo

        opt_r = self.optimise_scheme(r, copy={})

        tag_map = {}
        self.opt_engine.register_nodes_by_tag(opt_r, tag_map)

        cg_eval_error_copy_map = {
            vx:
            Variable("x", precision=self.precision, interval=interval_vx),
            tag_map["k"]:
            Variable("k", interval=interval_k, precision=self.precision)
        }

        #try:
        if is_gappa_installed():
            eval_error = self.gappa_engine.get_eval_error_v2(
                self.opt_engine,
                opt_r,
                cg_eval_error_copy_map,
                gappa_filename="red_arg.g")
        else:
            eval_error = 0.0
            Log.report(Log.Warning,
                       "gappa is not installed in this environnement")
        Log.report(Log.Info, "eval error: %s" % eval_error)

        local_ulp = sup(ulp(sollya.exp(approx_interval), self.precision))
        # FIXME refactor error_goal from accuracy
        Log.report(Log.Info, "accuracy: %s" % self.accuracy)
        if isinstance(self.accuracy, ML_Faithful):
            error_goal = local_ulp
        elif isinstance(self.accuracy, ML_CorrectlyRounded):
            error_goal = S2**-1 * local_ulp
        elif isinstance(self.accuracy, ML_DegradedAccuracyAbsolute):
            error_goal = self.accuracy.goal
        elif isinstance(self.accuracy, ML_DegradedAccuracyRelative):
            error_goal = self.accuracy.goal
        else:
            Log.report(Log.Error, "unknown accuracy: %s" % self.accuracy)

        # error_goal = local_ulp #S2**-(self.precision.get_field_size()+1)
        error_goal_approx = S2**-1 * error_goal

        Log.report(Log.Info,
                   "\033[33;1m building mathematical polynomial \033[0m\n")
        poly_degree = max(
            sup(
                guessdegree(
                    expm1(sollya.x) / sollya.x, approx_interval,
                    error_goal_approx)) - 1, 2)
        init_poly_degree = poly_degree

        error_function = lambda p, f, ai, mod, t: dirtyinfnorm(f - p, ai)

        polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_estrin_scheme
        #polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_horner_scheme

        while 1:
            Log.report(Log.Info, "attempting poly degree: %d" % poly_degree)
            precision_list = [1] + [self.precision] * (poly_degree)
            poly_object, poly_approx_error = Polynomial.build_from_approximation_with_error(
                expm1(sollya.x),
                poly_degree,
                precision_list,
                approx_interval,
                sollya.absolute,
                error_function=error_function)
            Log.report(Log.Info, "polynomial: %s " % poly_object)
            sub_poly = poly_object.sub_poly(start_index=2)
            Log.report(Log.Info, "polynomial: %s " % sub_poly)

            Log.report(Log.Info, "poly approx error: %s" % poly_approx_error)

            Log.report(
                Log.Info,
                "\033[33;1m generating polynomial evaluation scheme \033[0m")
            pre_poly = polynomial_scheme_builder(
                poly_object, r, unified_precision=self.precision)
            pre_poly.set_attributes(tag="pre_poly", debug=debug_multi)

            pre_sub_poly = polynomial_scheme_builder(
                sub_poly, r, unified_precision=self.precision)
            pre_sub_poly.set_attributes(tag="pre_sub_poly", debug=debug_multi)

            poly = 1 + (exact_hi_part + (exact_lo_part + pre_sub_poly))
            poly.set_tag("poly")

            # optimizing poly before evaluation error computation
            #opt_poly = self.opt_engine.optimization_process(poly, self.precision, fuse_fma = fuse_fma)
            #opt_sub_poly = self.opt_engine.optimization_process(pre_sub_poly, self.precision, fuse_fma = fuse_fma)
            opt_poly = self.optimise_scheme(poly)
            opt_sub_poly = self.optimise_scheme(pre_sub_poly)

            # evaluating error of the polynomial approximation
            r_gappa_var = Variable("r",
                                   precision=self.precision,
                                   interval=approx_interval)
            exact_hi_gappa_var = Variable("exact_hi",
                                          precision=self.precision,
                                          interval=exact_hi_interval)
            exact_lo_gappa_var = Variable("exact_lo",
                                          precision=self.precision,
                                          interval=exact_lo_interval)
            vx_gappa_var = Variable("x",
                                    precision=self.precision,
                                    interval=interval_vx)
            k_gappa_var = Variable("k",
                                   interval=interval_k,
                                   precision=self.precision)

            #print "exact_hi interval: ", exact_hi_interval

            sub_poly_error_copy_map = {
                #r.get_handle().get_node(): r_gappa_var,
                #vx.get_handle().get_node():  vx_gappa_var,
                exact_hi_part.get_handle().get_node():
                exact_hi_gappa_var,
                exact_lo_part.get_handle().get_node():
                exact_lo_gappa_var,
                #k.get_handle().get_node(): k_gappa_var,
            }

            poly_error_copy_map = {
                exact_hi_part.get_handle().get_node(): exact_hi_gappa_var,
                exact_lo_part.get_handle().get_node(): exact_lo_gappa_var,
            }

            if is_gappa_installed():
                sub_poly_eval_error = -1.0
                sub_poly_eval_error = self.gappa_engine.get_eval_error_v2(
                    self.opt_engine,
                    opt_sub_poly,
                    sub_poly_error_copy_map,
                    gappa_filename="%s_gappa_sub_poly.g" % self.function_name)

                dichotomy_map = [
                    {
                        exact_hi_part.get_handle().get_node():
                        approx_interval_split[0],
                    },
                    {
                        exact_hi_part.get_handle().get_node():
                        approx_interval_split[1],
                    },
                    {
                        exact_hi_part.get_handle().get_node():
                        approx_interval_split[2],
                    },
                ]
                poly_eval_error_dico = self.gappa_engine.get_eval_error_v3(
                    self.opt_engine,
                    opt_poly,
                    poly_error_copy_map,
                    gappa_filename="gappa_poly.g",
                    dichotomy=dichotomy_map)

                poly_eval_error = max(
                    [sup(abs(err)) for err in poly_eval_error_dico])
            else:
                poly_eval_error = 0.0
                sub_poly_eval_error = 0.0
                Log.report(Log.Warning,
                           "gappa is not installed in this environnement")
                Log.report(Log.Info, "stopping autonomous degree research")
                # incrementing polynomial degree to counteract initial decrementation effect
                poly_degree += 1
                break
            Log.report(Log.Info, "poly evaluation error: %s" % poly_eval_error)
            Log.report(Log.Info,
                       "sub poly evaluation error: %s" % sub_poly_eval_error)

            global_poly_error = None
            global_rel_poly_error = None

            for case_index in range(3):
                poly_error = poly_approx_error + poly_eval_error_dico[
                    case_index]
                rel_poly_error = sup(
                    abs(poly_error /
                        sollya.exp(approx_interval_split[case_index])))
                if global_rel_poly_error == None or rel_poly_error > global_rel_poly_error:
                    global_rel_poly_error = rel_poly_error
                    global_poly_error = poly_error
            flag = error_goal > global_rel_poly_error

            if flag:
                break
            else:
                poly_degree += 1

        late_overflow_test = Comparison(ik,
                                        self.precision.get_emax(),
                                        specifier=Comparison.Greater,
                                        likely=False,
                                        debug=debug_multi,
                                        tag="late_overflow_test")
        overflow_exp_offset = (self.precision.get_emax() -
                               self.precision.get_field_size() / 2)
        diff_k = Subtraction(
            ik,
            Constant(overflow_exp_offset,
                     precision=self.precision.get_integer_format()),
            precision=self.precision.get_integer_format(),
            debug=debug_multi,
            tag="diff_k",
        )
        late_overflow_result = (ExponentInsertion(
            diff_k, precision=self.precision) * poly) * ExponentInsertion(
                overflow_exp_offset, precision=self.precision)
        late_overflow_result.set_attributes(silent=False,
                                            tag="late_overflow_result",
                                            debug=debug_multi,
                                            precision=self.precision)
        late_overflow_return = ConditionBlock(
            Test(late_overflow_result, specifier=Test.IsInfty, likely=False),
            ExpRaiseReturn(ML_FPE_Overflow,
                           return_value=FP_PlusInfty(self.precision)),
            Return(late_overflow_result, precision=self.precision))

        late_underflow_test = Comparison(k,
                                         self.precision.get_emin_normal(),
                                         specifier=Comparison.LessOrEqual,
                                         likely=False)
        underflow_exp_offset = 2 * self.precision.get_field_size()
        corrected_exp = Addition(
            ik,
            Constant(underflow_exp_offset,
                     precision=self.precision.get_integer_format()),
            precision=self.precision.get_integer_format(),
            tag="corrected_exp")
        late_underflow_result = (
            ExponentInsertion(corrected_exp, precision=self.precision) *
            poly) * ExponentInsertion(-underflow_exp_offset,
                                      precision=self.precision)
        late_underflow_result.set_attributes(debug=debug_multi,
                                             tag="late_underflow_result",
                                             silent=False)
        test_subnormal = Test(late_underflow_result,
                              specifier=Test.IsSubnormal)
        late_underflow_return = Statement(
            ConditionBlock(
                test_subnormal,
                ExpRaiseReturn(ML_FPE_Underflow,
                               return_value=late_underflow_result)),
            Return(late_underflow_result, precision=self.precision))

        twok = ExponentInsertion(ik,
                                 tag="exp_ik",
                                 debug=debug_multi,
                                 precision=self.precision)
        #std_result = twok * ((1 + exact_hi_part * pre_poly) + exact_lo_part * pre_poly)
        std_result = twok * poly
        std_result.set_attributes(tag="std_result", debug=debug_multi)
        result_scheme = ConditionBlock(
            late_overflow_test, late_overflow_return,
            ConditionBlock(late_underflow_test, late_underflow_return,
                           Return(std_result, precision=self.precision)))
        std_return = ConditionBlock(
            early_overflow_test, early_overflow_return,
            ConditionBlock(early_underflow_test, early_underflow_return,
                           result_scheme))

        # main scheme
        Log.report(Log.Info, "\033[33;1m MDL scheme \033[0m")
        scheme = ConditionBlock(
            test_nan_or_inf,
            Statement(ClearException() if self.libm_compliant else Statement(),
                      specific_return), std_return)

        return scheme
示例#10
0
  def generate_datafile_testbench(self, tc_list, io_map, input_signals, output_signals, time_step, test_fname="test.input"):
    """ Generate testbench with input and output data externalized in
        a data file """
    # textio function to read hexadecimal text
    def FCT_HexaRead_gen(input_format):
        legalized_input_format = input_format
        FCT_HexaRead = FunctionObject("hread", [HDL_LINE, legalized_input_format], ML_Void, FunctionOperator("hread", void_function=True, arity=2))
        return FCT_HexaRead
    # textio function to read binary text
    FCT_Read = FunctionObject("read", [HDL_LINE, ML_StdLogic], ML_Void, FunctionOperator("read", void_function=True, arity=2))
    input_line = Variable("input_line", precision=HDL_LINE, var_type=Variable.Local)

    # building ordered list of input and output signal names
    input_signal_list = [sname for sname in input_signals.keys()]
    input_statement = Statement()
    for input_name in input_signal_list:
        input_format = input_signals[input_name].precision
        input_var = Variable(
            "v_" + input_name,
            precision=input_format,
            var_type=Variable.Local)
        if input_format is ML_StdLogic:
            input_statement.add(FCT_Read(input_line, input_var))
        else:
            input_statement.add(FCT_HexaRead_gen(input_format)(input_line, input_var))
        input_statement.add(ReferenceAssign(input_signals[input_name], input_var))

    output_signal_list = [sname for sname in output_signals.keys()]
    output_statement = Statement()
    for output_name in output_signal_list:
        output_format = output_signals[output_name].precision
        output_var = Variable(
            "v_" + output_name,
            precision=output_format,
            var_type=Variable.Local)
        if output_format is ML_StdLogic:
            output_statement.add(FCT_Read(input_line, output_var))
        else:
            output_statement.add(FCT_HexaRead_gen(output_format)(input_line, output_var))

        output_signal = output_signals[output_name]
        #value_msg = get_output_value_msg(output_signal, output_value)
        test_pass_cond, check_statement = get_output_check_statement(output_signal, output_name, output_var)

        input_msg = multi_Concatenation(*tuple(sum([[" %s=" % input_tag, signal_str_conversion(input_signals[input_tag], input_signals[input_tag].precision)] for input_tag in input_signal_list], [])))

        output_statement.add(check_statement)
        assert_statement = Assert(
            test_pass_cond,
            multi_Concatenation(
                "unexpected value for inputs ",
                input_msg,
                " expecting :",
                signal_str_conversion(output_var, output_format),
                " got :",
                signal_str_conversion(output_signal, output_format),
               precision = ML_String
            ),
            severity=Assert.Failure
        )
        output_statement.add(assert_statement)

    self_component = self.implementation.get_component_object()
    self_instance = self_component(io_map = io_map, tag = "tested_entity")
    test_statement = Statement()

    DATA_FILE_NAME = test_fname

    with open(DATA_FILE_NAME, "w") as data_file:
        # dumping column tags
        data_file.write("# " + " ".join(input_signal_list + output_signal_list) + "\n")

        def get_raw_cst_string(cst_format, cst_value):
            size = int((cst_format.get_bit_size() + 3) / 4)
            return ("{:x}").format(cst_format.get_base_format().get_integer_coding(cst_value)).zfill(size)

        for input_values, output_values in tc_list:
            # TODO; generate test data file
            cst_list = []
            for input_name in input_signal_list:
                input_value = input_values[input_name]
                input_format = input_signals[input_name].get_precision()
                cst_list.append(get_raw_cst_string(input_format, input_value))

            for output_name in output_signal_list:
                output_value = output_values[output_name]
                output_format = output_signals[output_name].get_precision()
                cst_list.append(get_raw_cst_string(output_format, output_value))
            # dumping line into file
            data_file.write(" ".join(cst_list) + "\n")

    input_stream = Variable("data_file", precision=HDL_FILE, var_type=Variable.Local)
    file_status = Variable("file_status", precision=HDL_OPEN_FILE_STATUS, var_type=Variable.Local)
    FCT_EndFile = FunctionObject("endfile", [HDL_FILE], ML_Bool, FunctionOperator("endfile", arity=1)) 
    FCT_OpenFile = FunctionObject(
        "FILE_OPEN", [HDL_OPEN_FILE_STATUS, HDL_FILE, ML_String], ML_Void,
        FunctionOperator(
            "FILE_OPEN",
            arg_map={0: FO_Arg(0), 1: FO_Arg(1), 2: FO_Arg(2), 3: "READ_MODE"},
            void_function=True))
    FCT_ReadLine =  FunctionObject(
        "readline", [HDL_FILE, HDL_LINE], ML_Void,
        FunctionOperator("readline", void_function=True, arity=2))

    reset_statement = self.get_reset_statement(io_map, time_step)
    OPEN_OK = Constant("OPEN_OK", precision=HDL_OPEN_FILE_STATUS)

    testbench = CodeEntity("testbench")
    test_process = Process(
        reset_statement,
        FCT_OpenFile(file_status, input_stream, DATA_FILE_NAME),
        ConditionBlock(
            Comparison(file_status, OPEN_OK, specifier=Comparison.NotEqual),
          Assert(
            Constant(0, precision=ML_Bool),
            " \"failed to open file {}\"".format(DATA_FILE_NAME),
            severity=Assert.Failure
          )
        ),
        # consume legend line
        FCT_ReadLine(input_stream, input_line),
        WhileLoop(
            LogicalNot(FCT_EndFile(input_stream)),
            Statement(
                FCT_ReadLine(input_stream, input_line),
                input_statement,
                Wait(time_step * (self.stage_num + 2)),
                output_statement,
            ),
        ),
      # end of test
      Assert(
        Constant(0, precision = ML_Bool),
        " \"end of test, no error encountered \"",
        severity = Assert.Warning
      ),
      # infinite end loop
        WhileLoop(
            Constant(1, precision=ML_Bool),
            Statement(
                Wait(time_step * (self.stage_num + 2)),
            )
        )
    )

    testbench_scheme = Statement(
      self_instance,
      test_process
    )

    if self.pipelined:
        half_time_step = time_step / 2
        assert (half_time_step * 2) == time_step
        # adding clock process for pipelined bench
        clk_process = Process(
            Statement(
                ReferenceAssign(
                    io_map["clk"],
                    Constant(1, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
                ReferenceAssign(
                    io_map["clk"],
                    Constant(0, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
            )
        )
        testbench_scheme.push(clk_process)

    testbench.add_process(testbench_scheme)

    return [testbench]
示例#11
0
def generate_pipeline_stage(entity,
                            reset=False,
                            recirculate=False,
                            one_process_per_stage=True):
    """ Process a entity to generate pipeline stages required """
    retiming_map = {}
    retime_map = RetimeMap()
    output_assign_list = entity.implementation.get_output_assign()
    for output in output_assign_list:
        Log.report(Log.Verbose, "generating pipeline from output {} ", output)
        retime_op(output, retime_map)
    for recirculate_stage in entity.recirculate_signal_map:
        recirculate_ctrl = entity.recirculate_signal_map[recirculate_stage]
        Log.report(Log.Verbose,
                   "generating pipeline from recirculation control signal {}",
                   recirculate_ctrl)
        retime_op(recirculate_ctrl, retime_map)

    process_statement = Statement()

    # adding stage forward process
    clk = entity.get_clk_input()
    clock_statement = Statement()
    # handle towards the first clock Process (in generation order)
    # which must be the one whose pre_statement is filled with
    # signal required to be generated outside the processes
    first_process = False
    for stage_id in sorted(retime_map.stage_forward.keys()):
        stage_statement = Statement(*tuple(
            assign for assign in retime_map.stage_forward[stage_id]))

        if reset:
            reset_statement = Statement()
            for assign in retime_map.stage_forward[stage_id]:
                target = assign.get_input(0)
                reset_value = Constant(0, precision=target.get_precision())
                reset_statement.push(ReferenceAssign(target, reset_value))

            if recirculate:
                # inserting recirculation condition
                recirculate_signal = entity.get_recirculate_signal(stage_id)
                stage_statement = ConditionBlock(
                    Comparison(
                        recirculate_signal,
                        Constant(0,
                                 precision=recirculate_signal.get_precision()),
                        specifier=Comparison.Equal,
                        precision=ML_Bool), stage_statement)

            stage_statement = ConditionBlock(
                Comparison(entity.reset_signal,
                           Constant(1, precision=ML_StdLogic),
                           specifier=Comparison.Equal,
                           precision=ML_Bool), reset_statement,
                stage_statement)

        # To meet simulation / synthesis tools, we build
        # a single if clock predicate block per stage
        clock_block = ConditionBlock(
            LogicalAnd(Event(clk, precision=ML_Bool),
                       Comparison(clk,
                                  Constant(1, precision=ML_StdLogic),
                                  specifier=Comparison.Equal,
                                  precision=ML_Bool),
                       precision=ML_Bool), stage_statement)

        if one_process_per_stage:
            clock_process = Process(clock_block, sensibility_list=[clk])
            entity.implementation.add_process(clock_process)
            first_process = first_process or clock_process
        else:
            clock_statement.add(clock_block)
    if one_process_per_stage:
        pass
    else:
        process_statement.add(clock_statement)
        pipeline_process = Process(process_statement, sensibility_list=[clk])
        entity.implementation.add_process(pipeline_process)
        first_process = pipeline_process
    # statement that gather signals which must be pre-computed
    for op in retime_map.pre_statement:
        first_process.add_to_pre_statement(op)
    stage_num = len(retime_map.stage_forward.keys())
    #print "there are %d pipeline stages" % (stage_num)
    return stage_num
示例#12
0
    def generate_scalar_scheme(self, vx, vy):
        # fixing inputs' node tag
        vx.set_attributes(tag="x")
        vy.set_attributes(tag="y")

        int_precision = self.precision.get_integer_format()

        # assuming x = m.2^e (m in [1, 2[)
        #          n, positive or null integers
        #
        # pow(x, n) = x^(y)
        #             = exp(y * log(x))
        #             = 2^(y * log2(x))
        #             = 2^(y * (log2(m) + e))
        #
        e = ExponentExtraction(vx, tag="e", precision=int_precision)
        m = MantissaExtraction(vx, tag="m", precision=self.precision)

        # approximation log2(m)

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision = self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision = self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed, language=None,
            table_getter= lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x) # /sollya.log(self.basis)



        ml_log_args = ML_GenericLog.get_default_args(precision=self.precision, basis=2)
        ml_log = ML_GenericLog(ml_log_args)
        log_table, log_table_tho, table_index_range = ml_log.generate_log_table(log_f, inv_approx_table)
        log_approx = ml_log.generate_reduced_log_split(Abs(m, precision=self.precision), log_f, inv_approx_table, log_table)

        log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision), log_approx)
        log_approx.set_attributes(tag="log_approx", debug=debug_multi)
        r = Multiplication(log_approx, vy, tag="r", debug=debug_multi)


        # 2^(y * (log2(m) + e)) = 2^(y * log2(m)) * 2^(y * e)
        #
        # log_approx = log2(Abs(m))
        # r = y * log_approx ~ y * log2(m)
        #
        # NOTES: manage cases where e is negative and
        # (y * log2(m)) AND (y * e) could cancel out
        # if e positive, whichever the sign of y (y * log2(m)) and (y * e) CANNOT
        # be of opposite signs

        # log2(m) in [0, 1[ so cancellation can occur only if e == -1
        # we split 2^x in 2^x = 2^t0 * 2^t1
        # if e < 0: t0 = y * (log2(m) + e), t1=0
        # else:     t0 = y * log2(m), t1 = y * e

        t_cond = e < 0

        # e_y ~ e * y
        e_f = Conversion(e, precision=self.precision)
        #t0 = Select(t_cond, (e_f + log_approx) * vy, Multiplication(e_f, vy), tag="t0")
        #NearestInteger(t0, precision=self.precision, tag="t0_int")

        EY = NearestInteger(e_f * vy, tag="EY", precision=self.precision)
        LY = NearestInteger(log_approx * vy, tag="LY", precision=self.precision)
        t0_int = Select(t_cond, EY + LY, EY, tag="t0_int")
        t0_frac = Select(t_cond, FMA(e_f, vy, -EY) + FMA(log_approx, vy, -LY) ,EY - t0_int, tag="t0_frac")
        #t0_frac.set_attributes(tag="t0_frac")

        ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision)
        ml_exp2 = ML_Exp2(ml_exp2_args)

        exp2_t0_frac = ml_exp2.generate_scalar_scheme(t0_frac, inline_select=True)
        exp2_t0_frac.set_attributes(tag="exp2_t0_frac", debug=debug_multi)

        exp2_t0_int = ExponentInsertion(Conversion(t0_int, precision=int_precision), precision=self.precision, tag="exp2_t0_int")

        t1 = Select(t_cond, Constant(0, precision=self.precision), r)
        exp2_t1 = ml_exp2.generate_scalar_scheme(t1, inline_select=True)
        exp2_t1.set_attributes(tag="exp2_t1", debug=debug_multi)

        result_sign = Constant(1.0, precision=self.precision) # Select(n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1)

        y_int = NearestInteger(vy, precision=self.precision)
        y_is_integer = Equal(y_int, vy)
        y_is_even = LogicalOr(
            # if y is a number (exc. inf) greater than 2**mantissa_size * 2,
            # then it is an integer multiple of 2 => even
            Abs(vy) >= 2**(self.precision.get_mantissa_size()+1),
            LogicalAnd(
                y_is_integer and Abs(vy) < 2**(self.precision.get_mantissa_size()+1),
                # we want to limit the modulo computation to an integer input
                Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 0)
            )
        )
        y_is_odd = LogicalAnd(
            LogicalAnd(
                Abs(vy) < 2**(self.precision.get_mantissa_size()+1),
                y_is_integer
            ),
            Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 1)
        )


        # special cases management
        special_case_results = Statement(
            # x is sNaN OR y is sNaN
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsSignalingNaN), Test(vy, specifier=Test.IsSignalingNaN)),
                Return(FP_QNaN(self.precision))
            ),
            # pow(x, ±0) is 1 if x is not a signaling NaN
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Return(Constant(1.0, precision=self.precision))
            ),
            # pow(±0, y) is ±∞ and signals the divideByZero exception for y an odd integer <0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy < 0)),
                Return(Select(Test(vx, specifier=Test.IsPositiveZero), FP_PlusInfty(self.precision), FP_MinusInfty(self.precision))),
            ),
            # pow(±0, −∞) is +∞ with no exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_MinusInfty(self.precision)),
            ),
            # pow(±0, +∞) is +0 with no exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is ±0 for finite y>0 an odd integer
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy > 0)),
                Return(vx),
            ),
            # pow(−1, ±∞) is 1 with no exception
            ConditionBlock(
                LogicalAnd(Equal(vx, -1), Test(vy, specifier=Test.IsInfty)),
                Return(Constant(1.0, precision=self.precision)),
            ),
            # pow(+1, y) is 1 for any y (even a quiet NaN)
            ConditionBlock(
                vx == 1,
                Return(Constant(1.0, precision=self.precision)),
            ),
            # pow(x, +∞) is +0 for −1<x<1
            ConditionBlock(
                LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(x, +∞) is +∞ for x<−1 or for 1<x (including ±∞)
            ConditionBlock(
                LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(x, −∞) is +∞ for −1<x<1
            ConditionBlock(
                LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(x, −∞) is +0 for x<−1 or for 1<x (including ±∞)
            ConditionBlock(
                LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(+∞, y) is +0 for a number y < 0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy < 0),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(+∞, y) is +∞ for a number y > 0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy > 0),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(−∞, y) is −0 for finite y < 0 an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy < 0)),
                Return(FP_MinusZero(self.precision)),
            ),
            # pow(−∞, y) is −∞ for finite y > 0 an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy > 0)),
                Return(FP_MinusInfty(self.precision)),
            ),
            # pow(−∞, y) is +0 for finite y < 0 and not an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy < 0)),
                Return(FP_PlusZero(self.precision)),
            ),
            # pow(−∞, y) is +∞ for finite y > 0 and not an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy > 0)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is +∞ and signals the divideByZero exception for finite y<0 and not an odd integer
            # TODO: signal divideByZero exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy < 0)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is +0 for finite y>0 and not an odd integer
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy > 0)),
                Return(FP_PlusZero(self.precision)),
            ),
        )

        # manage n=1 separately to avoid catastrophic propagation of errors
        # between log2 and exp2 to eventually compute the identity function
        # test-case #3
        result = Statement(
            special_case_results,
            # fallback default cases
            Return(result_sign * exp2_t1 * exp2_t0_int * exp2_t0_frac))
        return result
示例#13
0
    def generate_scheme(self):
        # We wish to compute vx / vy
        vx = self.implementation.add_input_variable(
            "x", self.precision, interval=self.input_intervals[0])
        vy = self.implementation.add_input_variable(
            "y", self.precision, interval=self.input_intervals[1])

        # maximum exponent magnitude (to avoid overflow/ underflow during
        # intermediary computations
        int_prec = self.precision.get_integer_format()
        max_exp_mag = Constant(self.precision.get_emax() - 1,
                               precision=int_prec)

        exact_ex = ExponentExtraction(vx,
                                      tag="exact_ex",
                                      precision=int_prec,
                                      debug=debug_multi)
        exact_ey = ExponentExtraction(vy,
                                      tag="exact_ey",
                                      precision=int_prec,
                                      debug=debug_multi)

        ex = Max(Min(exact_ex, max_exp_mag, precision=int_prec),
                 -max_exp_mag,
                 tag="ex",
                 precision=int_prec)
        ey = Max(Min(exact_ey, max_exp_mag, precision=int_prec),
                 -max_exp_mag,
                 tag="ey",
                 precision=int_prec)

        Attributes.set_default_rounding_mode(ML_RoundToNearest)
        Attributes.set_default_silent(True)

        # computing the inverse square root
        init_approx = None

        scaling_factor_x = ExponentInsertion(-ex,
                                             tag="sfx_ei",
                                             precision=self.precision,
                                             debug=debug_multi)
        scaling_factor_y = ExponentInsertion(-ey,
                                             tag="sfy_ei",
                                             precision=self.precision,
                                             debug=debug_multi)

        def test_interval_out_of_bound_risk(x_range, y_range):
            """ Try to determine from x and y's interval if there is a risk
                of underflow or overflow """
            div_range = abs(x_range / y_range)
            underflow_risk = sollya.inf(div_range) < S2**(
                self.precision.get_emin_normal() + 2)
            overflow_risk = sollya.sup(div_range) > S2**(
                self.precision.get_emax() - 2)
            return underflow_risk or overflow_risk

        out_of_bound_risk = (self.input_intervals[0] is None
                             or self.input_intervals[1] is None
                             ) or test_interval_out_of_bound_risk(
                                 self.input_intervals[0],
                                 self.input_intervals[1])
        Log.report(Log.Debug,
                   "out_of_bound_risk: {}".format(out_of_bound_risk))

        # scaled version of vx and vy, to avoid overflow and underflow
        if out_of_bound_risk:
            scaled_vx = vx * scaling_factor_x
            scaled_vy = vy * scaling_factor_y
            scaled_interval = MetaIntervalList(
                [MetaInterval(Interval(-2, -1)),
                 MetaInterval(Interval(1, 2))])
            scaled_vx.set_attributes(tag="scaled_vx",
                                     debug=debug_multi,
                                     interval=scaled_interval)
            scaled_vy.set_attributes(tag="scaled_vy",
                                     debug=debug_multi,
                                     interval=scaled_interval)
            seed_interval = 1 / scaled_interval
            print("seed_interval=1/{}={}".format(scaled_interval,
                                                 seed_interval))
        else:
            scaled_vx = vx
            scaled_vy = vy
            seed_interval = 1 / scaled_vy.get_interval()

        # We need a first approximation to 1 / scaled_vy
        dummy_seed = ReciprocalSeed(EmptyOperand(precision=self.precision),
                                    precision=self.precision)

        if self.processor.is_supported_operation(dummy_seed, self.language):
            init_approx = ReciprocalSeed(scaled_vy,
                                         precision=self.precision,
                                         tag="init_approx",
                                         debug=debug_multi)

        else:
            # generate tabulated version of seed
            raise NotImplementedError

        current_approx_std = init_approx
        # correctly-rounded inverse computation
        num_iteration = self.num_iter

        Attributes.unset_default_rounding_mode()
        Attributes.unset_default_silent()

        # check if inputs are zeros
        x_zero = Test(vx,
                      specifier=Test.IsZero,
                      likely=False,
                      precision=ML_Bool)
        y_zero = Test(vy,
                      specifier=Test.IsZero,
                      likely=False,
                      precision=ML_Bool)

        comp_sign = Test(vx,
                         vy,
                         specifier=Test.CompSign,
                         tag="comp_sign",
                         debug=debug_multi)

        # check if divisor is NaN
        y_nan = Test(vy, specifier=Test.IsNaN, likely=False, precision=ML_Bool)

        # check if inputs are signaling NaNs
        x_snan = Test(vx,
                      specifier=Test.IsSignalingNaN,
                      likely=False,
                      precision=ML_Bool)
        y_snan = Test(vy,
                      specifier=Test.IsSignalingNaN,
                      likely=False,
                      precision=ML_Bool)

        # check if inputs are infinities
        x_inf = Test(vx,
                     specifier=Test.IsInfty,
                     likely=False,
                     tag="x_inf",
                     precision=ML_Bool)
        y_inf = Test(vy,
                     specifier=Test.IsInfty,
                     likely=False,
                     tag="y_inf",
                     debug=debug_multi,
                     precision=ML_Bool)

        scheme = None
        gappa_vx, gappa_vy = None, None

        # initial reciprocal approximation of 1.0 / scaled_vy
        inv_iteration_list, recp_approx = compute_reduced_reciprocal(
            init_approx, scaled_vy, self.num_iter)

        recp_approx.set_attributes(tag="recp_approx", debug=debug_multi)

        # approximation of scaled_vx / scaled_vy
        yerr_last, reduced_div_approx, div_iteration_list = compute_reduced_division(
            scaled_vx, scaled_vy, recp_approx)

        eval_error_range, div_eval_error_range = self.solve_eval_error(
            init_approx, recp_approx, reduced_div_approx, scaled_vx, scaled_vy,
            inv_iteration_list, div_iteration_list, S2**-7, seed_interval)
        eval_error = sup(abs(eval_error_range))
        recp_interval = 1 / scaled_vy.get_interval() + eval_error_range
        recp_approx.set_interval(recp_interval)

        div_interval = scaled_vx.get_interval() / scaled_vy.get_interval(
        ) + div_eval_error_range
        reduced_div_approx.set_interval(div_interval)
        reduced_div_approx.set_tag("reduced_div_approx")

        if out_of_bound_risk:
            unscaled_result = scaling_div_result(reduced_div_approx, ex,
                                                 scaling_factor_y,
                                                 self.precision)

            subnormal_result = subnormalize_result(recp_approx,
                                                   reduced_div_approx, ex, ey,
                                                   yerr_last, self.precision)
        else:
            unscaled_result = reduced_div_approx
            subnormal_result = reduced_div_approx

        x_inf_or_nan = Test(vx, specifier=Test.IsInfOrNaN, likely=False)
        y_inf_or_nan = Test(vy,
                            specifier=Test.IsInfOrNaN,
                            likely=False,
                            tag="y_inf_or_nan",
                            debug=debug_multi)

        # generate IEEE exception raising only of libm-compliant
        # mode is enabled
        enable_raise = self.libm_compliant

        # managing special cases
        # x inf and y inf
        pre_scheme = ConditionBlock(
            x_inf_or_nan,
            ConditionBlock(
                x_inf,
                ConditionBlock(
                    y_inf_or_nan,
                    Statement(
                        # signaling NaNs raise invalid operation flags
                        ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                        if enable_raise else Statement(),
                        Return(FP_QNaN(self.precision)),
                    ),
                    ConditionBlock(comp_sign,
                                   Return(FP_MinusInfty(self.precision)),
                                   Return(FP_PlusInfty(self.precision)))),
                Statement(
                    ConditionBlock(x_snan, Raise(ML_FPE_Invalid))
                    if enable_raise else Statement(),
                    Return(FP_QNaN(self.precision)))),
            ConditionBlock(
                x_zero,
                ConditionBlock(
                    LogicalOr(y_zero, y_nan, precision=ML_Bool),
                    Statement(
                        ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                        if enable_raise else Statement(),
                        Return(FP_QNaN(self.precision))), Return(vx)),
                ConditionBlock(
                    y_inf_or_nan,
                    ConditionBlock(
                        y_inf,
                        Return(
                            Select(comp_sign, FP_MinusZero(self.precision),
                                   FP_PlusZero(self.precision))),
                        Statement(
                            ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                            if enable_raise else Statement(),
                            Return(FP_QNaN(self.precision)))),
                    ConditionBlock(
                        y_zero,
                        Statement(
                            Raise(ML_FPE_DivideByZero)
                            if enable_raise else Statement(),
                            ConditionBlock(
                                comp_sign,
                                Return(FP_MinusInfty(self.precision)),
                                Return(FP_PlusInfty(self.precision)))),
                        # managing numerical value result cases
                        Statement(
                            recp_approx,
                            reduced_div_approx,
                            ConditionBlock(
                                Test(unscaled_result,
                                     specifier=Test.IsSubnormal,
                                     likely=False),
                                # result is subnormal
                                Statement(
                                    # inexact flag should have been raised when computing yerr_last
                                    # ConditionBlock(
                                    #    Comparison(
                                    #        yerr_last, 0,
                                    #        specifier=Comparison.NotEqual, likely=True),
                                    #    Statement(Raise(ML_FPE_Inexact, ML_FPE_Underflow))
                                    #),
                                    Return(subnormal_result), ),
                                # result is normal
                                Statement(
                                    # inexact flag should have been raised when computing yerr_last
                                    #ConditionBlock(
                                    #    Comparison(
                                    #        yerr_last, 0,
                                    #        specifier=Comparison.NotEqual, likely=True),
                                    #    Raise(ML_FPE_Inexact)
                                    #),
                                    Return(unscaled_result))),
                        )))))
        # managing rounding mode save and restore
        # to ensure intermediary computations are performed in round-to-nearest
        # clearing exception before final computation

        #rnd_mode = GetRndMode()
        #scheme = Statement(
        #    rnd_mode,
        #    SetRndMode(ML_RoundToNearest),
        #    yerr_last,
        #    SetRndMode(rnd_mode),
        #    unscaled_result,
        #    ClearException(),
        #    pre_scheme
        #)

        scheme = pre_scheme

        return scheme
示例#14
0
    def generate_scalar_scheme(self, vx, n):
        # fixing inputs' node tag
        vx.set_attributes(tag="x")
        n.set_attributes(tag="n")

        int_precision = self.precision.get_integer_format()

        # assuming x = m.2^e (m in [1, 2[)
        #          n, positive or null integers
        #
        # rootn(x, n) = x^(1/n)
        #             = exp(1/n * log(x))
        #             = 2^(1/n * log2(x))
        #             = 2^(1/n * (log2(m) + e))
        #

        # approximation log2(m)

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x)  # /sollya.log(self.basis)

        use_reciprocal = False

        # non-scaled vx used to compute vx^1
        unmodified_vx = vx

        is_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="is_subnormal")
        exp_correction_factor = self.precision.get_mantissa_size()
        mantissa_factor = Constant(2**exp_correction_factor,
                                   tag="mantissa_factor")
        vx = Select(is_subnormal, vx * mantissa_factor, vx, tag="corrected_vx")

        m = MantissaExtraction(vx, tag="m", precision=self.precision)
        e = ExponentExtraction(vx, tag="e", precision=int_precision)
        e = Select(is_subnormal,
                   e - exp_correction_factor,
                   e,
                   tag="corrected_e")

        ml_log_args = ML_GenericLog.get_default_args(precision=self.precision,
                                                     basis=2)
        ml_log = ML_GenericLog(ml_log_args)
        log_table, log_table_tho, table_index_range = ml_log.generate_log_table(
            log_f, inv_approx_table)
        log_approx = ml_log.generate_reduced_log_split(
            Abs(m, precision=self.precision), log_f, inv_approx_table,
            log_table)
        # floating-point version of n
        n_f = Conversion(n, precision=self.precision, tag="n_f")
        inv_n = Division(Constant(1, precision=self.precision), n_f)

        log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision),
                            log_approx)
        log_approx.set_attributes(tag="log_approx", debug=debug_multi)
        if use_reciprocal:
            r = Multiplication(log_approx, inv_n, tag="r", debug=debug_multi)
        else:
            r = Division(log_approx, n_f, tag="r", debug=debug_multi)

        # e_n ~ e / n
        e_f = Conversion(e, precision=self.precision, tag="e_f")
        if use_reciprocal:
            e_n = Multiplication(e_f, inv_n, tag="e_n")
        else:
            e_n = Division(e_f, n_f, tag="e_n")
        error_e_n = FMA(e_n, -n_f, e_f, tag="error_e_n")
        e_n_int = NearestInteger(e_n, precision=self.precision, tag="e_n_int")
        pre_e_n_frac = e_n - e_n_int
        pre_e_n_frac.set_attributes(tag="pre_e_n_frac")
        e_n_frac = pre_e_n_frac + error_e_n * inv_n
        e_n_frac.set_attributes(tag="e_n_frac")

        ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision)
        ml_exp2 = ML_Exp2(ml_exp2_args)
        exp2_r = ml_exp2.generate_scalar_scheme(r, inline_select=True)
        exp2_r.set_attributes(tag="exp2_r", debug=debug_multi)

        exp2_e_n_frac = ml_exp2.generate_scalar_scheme(e_n_frac,
                                                       inline_select=True)
        exp2_e_n_frac.set_attributes(tag="exp2_e_n_frac", debug=debug_multi)

        exp2_e_n_int = ExponentInsertion(Conversion(e_n_int,
                                                    precision=int_precision),
                                         precision=self.precision,
                                         tag="exp2_e_n_int")

        n_is_even = Equal(Modulo(n, 2), 0, tag="n_is_even", debug=debug_multi)
        n_is_odd = LogicalNot(n_is_even, tag="n_is_odd")
        result_sign = Select(
            n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1)

        # managing n == -1
        if self.expand_div:
            ml_division_args = ML_Division.get_default_args(
                precision=self.precision, input_formats=[self.precision] * 2)
            ml_division = ML_Division(ml_division_args)
            self.division_implementation = ml_division.implementation
            self.division_implementation.set_scheme(
                ml_division.generate_scheme())
            ml_division_fct = self.division_implementation.get_function_object(
            )
        else:
            ml_division_fct = Division

        # manage n=1 separately to avoid catastrophic propagation of errors
        # between log2 and exp2 to eventually compute the identity function
        # test-case #3
        result = ConditionBlock(
            LogicalOr(LogicalOr(Test(vx, specifier=Test.IsNaN), Equal(n, 0)),
                      LogicalAnd(n_is_even, vx < 0)),
            Return(FP_QNaN(self.precision)),
            Statement(
                ConditionBlock(
                    Equal(n, -1, tag="n_is_mone"),
                    #Return(Division(Constant(1, precision=self.precision), unmodified_vx, tag="div_res", precision=self.precision)),
                    Return(
                        ml_division_fct(Constant(1, precision=self.precision),
                                        unmodified_vx,
                                        tag="div_res",
                                        precision=self.precision)),
                ),
                ConditionBlock(
                    # rootn( ±inf, n) is +∞ for even n< 0.
                    Test(vx, specifier=Test.IsInfty),
                    Statement(
                        ConditionBlock(
                            n < 0,
                            #LogicalAnd(n_is_odd, n < 0),
                            Return(
                                Select(Test(vx,
                                            specifier=Test.IsPositiveInfty),
                                       Constant(FP_PlusZero(self.precision),
                                                precision=self.precision),
                                       Constant(FP_MinusZero(self.precision),
                                                precision=self.precision),
                                       precision=self.precision)),
                            Return(vx),
                        ), ),
                ),
                ConditionBlock(
                    # rootn(±0, n) is ±∞ for odd n < 0.
                    LogicalAnd(LogicalAnd(n_is_odd, n < 0),
                               Equal(vx, 0),
                               tag="n_is_odd_and_neg"),
                    Return(
                        Select(Test(vx, specifier=Test.IsPositiveZero),
                               Constant(FP_PlusInfty(self.precision),
                                        precision=self.precision),
                               Constant(FP_MinusInfty(self.precision),
                                        precision=self.precision),
                               precision=self.precision)),
                ),
                ConditionBlock(
                    # rootn( ±0, n) is +∞ for even n< 0.
                    LogicalAnd(LogicalAnd(n_is_even, n < 0), Equal(vx, 0)),
                    Return(FP_PlusInfty(self.precision))),
                ConditionBlock(
                    # rootn(±0, n) is +0 for even n > 0.
                    LogicalAnd(n_is_even, Equal(vx, 0)),
                    Return(vx)),
                ConditionBlock(
                    Equal(n, 1), Return(unmodified_vx),
                    Return(result_sign * exp2_r * exp2_e_n_int *
                           exp2_e_n_frac))))
        return result
示例#15
0
    def generate_array_check_loop(self, input_tables, output_array,
                                  table_size_offset_array, array_offset,
                                  array_len, test_id):
        # internal array iterator index
        vj = Variable("j", precision=ML_UInt32, var_type=Variable.Local)

        printf_input_function = self.get_printf_input_function()

        printf_error_template = "printf(\"max %s error is %s \\n\", %s)" % (
            self.function_name,
            self.precision.get_display_format().format_string,
            self.precision.get_display_format().pre_process_fct("{0}"))
        printf_error_op = TemplateOperatorFormat(printf_error_template,
                                                 arity=1,
                                                 void_function=True,
                                                 require_header=["stdio.h"])

        printf_error_function = FunctionObject("printf", [self.precision],
                                               ML_Void, printf_error_op)

        printf_max_op = FunctionOperator(
            "printf",
            arg_map={
                0:
                "\"max %s error is reached at input number %s \\n \"" %
                (self.function_name, "%d"),
                1:
                FO_Arg(0)
            },
            void_function=True,
            require_header=["stdio.h"])
        printf_max_function = FunctionObject("printf", [self.precision],
                                             ML_Void, printf_max_op)

        NUM_INPUT_ARRAY = len(input_tables)

        # generate the expected table for the whole multi-array
        expected_table = self.generate_expected_table(input_tables,
                                                      table_size_offset_array)

        # inputs for the (vj)-th entry of the sub-arrat
        local_inputs = tuple(
            TableLoad(input_tables[in_id], array_offset + vj)
            for in_id in range(NUM_INPUT_ARRAY))
        # expected values for the (vj)-th entry of the sub-arrat
        expected_values = [
            TableLoad(expected_table, array_offset + vj, i)
            for i in range(self.accuracy.get_num_output_value())
        ]
        # local result for the (vj)-th entry of the sub-arrat
        local_result = TableLoad(output_array, array_offset + vj)

        if self.break_error:
            return_statement_break = Statement(
                printf_input_function(*((vj, ) + local_inputs +
                                        (local_result, ))),
                self.accuracy.get_output_print_call(self.function_name,
                                                    output_values))
        else:
            return_statement_break = Statement(
                printf_input_function(*((vj, ) + local_inputs +
                                        (local_result, ))),
                self.accuracy.get_output_print_call(self.function_name,
                                                    expected_values),
                Return(Constant(1, precision=ML_Int32)))

        # loop implementation to check sub-array array_offset
        # results validity
        check_array_loop = Loop(
            ReferenceAssign(vj, 0), vj < array_len,
            Statement(
                ConditionBlock(
                    self.accuracy.get_output_check_test(
                        local_result, expected_values),
                    return_statement_break),
                ReferenceAssign(vj, vj + 1),
            ))
        return check_array_loop
示例#16
0
    def generate_scheme(self):
        int_precision = self.precision.get_integer_format()
        # We wish to compute vx / vy
        vx = self.implementation.add_input_variable("x", self.precision, interval=self.input_intervals[0])
        vy = self.implementation.add_input_variable("y", self.precision, interval=self.input_intervals[1])
        if self.mode is FULL_MODE:
            quo = self.implementation.add_input_variable("quo", ML_Pointer_Format(int_precision))

        i = Variable("i", precision=int_precision, var_type=Variable.Local)
        q = Variable("q", precision=int_precision, var_type=Variable.Local)

        CI = lambda v: Constant(v, precision=int_precision)
        CF = lambda v: Constant(v, precision=self.precision)

        vx_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="vx_subnormal")
        vy_subnormal = Test(vy, specifier=Test.IsSubnormal, tag="vy_subnormal")

        DELTA_EXP = self.precision.get_mantissa_size()
        scale_factor = Constant(2.0**DELTA_EXP, precision=self.precision)
        inv_scale_factor = Constant(2.0**-DELTA_EXP, precision=self.precision)

        normalized_vx = Select(vx_subnormal, vx * scale_factor, vx, tag="scaled_vx")
        normalized_vy = Select(vy_subnormal, vy * scale_factor, vy, tag="scaled_vy")

        real_ex = ExponentExtraction(vx, tag="real_ex", precision=int_precision)
        real_ey = ExponentExtraction(vy, tag="real_ey", precision=int_precision)

        # if real_e<x/y> is +1023 then it may Overflow in -real_ex for ExponentInsertion
        # which only supports downto -1022 before falling into subnormal numbers (which are
        # not supported by ExponentInsertion)
        real_ex_h0 = real_ex / 2
        real_ex_h1 = real_ex - real_ex_h0

        real_ey_h0 = real_ey / 2
        real_ey_h1 = real_ey - real_ey_h0

        EI = lambda v: ExponentInsertion(v, precision=self.precision)

        mx = Abs((vx * EI(-real_ex_h0)) * EI(-real_ex_h1), tag="mx")
        my = Abs((vy * EI(-real_ey_h0)) * EI(-real_ey_h1), tag="pre_my")

        # scale_ey is used to regain the unscaling of mx in the first loop
        # if real_ey >= real_ex, the first loop is never executed
        # so a different scaling is required
        mx_unscaling = Select(real_ey < real_ex, real_ey, real_ex)
        ey_half0 = (mx_unscaling) / 2
        ey_half1 = (mx_unscaling) - ey_half0

        scale_ey_half0 = ExponentInsertion(ey_half0, precision=self.precision, tag="scale_ey_half0")
        scale_ey_half1 = ExponentInsertion(ey_half1, precision=self.precision, tag="scale_ey_half1")

        # if only vy is subnormal we want to normalize it
        #normal_cond = LogicalAnd(vy_subnormal, LogicalNot(vx_subnormal))
        normal_cond = vy_subnormal #LogicalAnd(vy_subnormal, LogicalNot(vx_subnormal))
        my = Select(normal_cond, Abs(MantissaExtraction(vy * scale_factor)), my, tag="my")


        # vx / vy = vx * 2^-ex * 2^(ex-ey) / (vy * 2^-ey)
        # vx % vy

        post_mx = Variable("post_mx", precision=self.precision, var_type=Variable.Local)

        # scaling for half comparison
        VY_SCALING = Select(vy_subnormal, 1.0, 0.5, precision=self.precision)
        VX_SCALING = Select(vy_subnormal, 2.0, 1.0, precision=self.precision)

        def LogicalXor(a, b):
            return LogicalOr(LogicalAnd(a, LogicalNot(b)), LogicalAnd(LogicalNot(a), b))

        rem_sign = Select(vx < 0, CF(-1), CF(1), precision=self.precision, tag="rem_sign")
        quo_sign = Select(LogicalXor(vx <0, vy < 0), CI(-1), CI(1), precision=int_precision, tag="quo_sign")

        loop_watchdog = Variable("loop_watchdog", precision=ML_Int32, var_type=Variable.Local)

        loop = Statement(
            real_ex, real_ey, mx, my, loop_watchdog,
            ReferenceAssign(loop_watchdog, 5000),
            ReferenceAssign(q, CI(0)),
            Loop(
                ReferenceAssign(i, CI(0)), i < (real_ex - real_ey),
                Statement(
                    ReferenceAssign(i, i+CI(1)),
                    ReferenceAssign(q, ((q << 1) + Select(mx >= my, CI(1), CI(0))).modify_attributes(tag="step1_q")),
                    ReferenceAssign(mx, (CF(2) * (mx - Select(mx >= my, my, CF(0)))).modify_attributes(tag="step1_mx")),
                    # loop watchdog
                    ReferenceAssign(loop_watchdog, loop_watchdog - 1),
                    ConditionBlock(loop_watchdog < 0, Return(-1)),
                ),
            ),
            # unscaling remainder
            ReferenceAssign(mx, ((mx * scale_ey_half0) * scale_ey_half1).modify_attributes(tag="scaled_rem")),
            ReferenceAssign(my, ((my * scale_ey_half0) * scale_ey_half1).modify_attributes(tag="scaled_rem_my")),
            Loop(
                Statement(), (my > Abs(vy)),
                Statement(
                    ReferenceAssign(q, ((q << 1) + Select(mx >= Abs(my), CI(1), CI(0))).modify_attributes(tag="step2_q")),
                    ReferenceAssign(mx, (mx - Select(mx >= Abs(my), Abs(my), CF(0))).modify_attributes(tag="step2_mx")),
                    ReferenceAssign(my, (my * 0.5).modify_attributes(tag="step2_my")),
                    # loop watchdog
                    ReferenceAssign(loop_watchdog, loop_watchdog - 1),
                    ConditionBlock(loop_watchdog < 0, Return(-1)),
                ),
            ),
            ReferenceAssign(q, q << 1),
            Loop(
                ReferenceAssign(i, CI(0)), mx > Abs(vy),
                Statement(
                    ReferenceAssign(q, (q + Select(mx > Abs(vy), CI(1), CI(0))).modify_attributes(tag="step3_q")),
                    ReferenceAssign(mx, (mx - Select(mx > Abs(vy), Abs(vy), CF(0))).modify_attributes(tag="step3_mx")),
                    # loop watchdog
                    ReferenceAssign(loop_watchdog, loop_watchdog - 1),
                    ConditionBlock(loop_watchdog < 0, Return(-1)),
                ),
            ),
            ReferenceAssign(q, q + Select(mx >= Abs(vy), CI(1), CI(0))),
            ReferenceAssign(mx, (mx - Select(mx >= Abs(vy), Abs(vy), CF(0))).modify_attributes(tag="pre_half_mx")),
            ConditionBlock(
                # actual comparison is mx > | abs(vy * 0.5) | to avoid rounding effect when
                # vy is subnormal we mulitply both side by 2.0**60
                ((mx * VX_SCALING) > Abs(vy * VY_SCALING)).modify_attributes(tag="half_test"),
                Statement(
                    ReferenceAssign(q, q + CI(1)),
                    ReferenceAssign(mx, (mx - Abs(vy)))
                )
            ),
            ConditionBlock(
                # if the remainder is exactly half the dividend
                # we need to make sure the quotient is even
                LogicalAnd(
                    Equal(mx * VX_SCALING, Abs(vy * VY_SCALING)),
                    Equal(Modulo(q, CI(2)), CI(1)),
                ),
                Statement(
                    ReferenceAssign(q, q + CI(1)),
                    ReferenceAssign(mx, (mx - Abs(vy)))
                )
            ),
            ReferenceAssign(mx, rem_sign * mx),
            ReferenceAssign(q,
                Modulo(TypeCast(q, precision=self.precision.get_unsigned_integer_format()), Constant(2**self.quotient_size, precision=self.precision.get_unsigned_integer_format()), tag="mod_q")
            ),
            ReferenceAssign(q, quo_sign * q),
        )

        # NOTES: Warning QuotientReturn must always preceeds RemainderReturn
        if self.mode is QUOTIENT_MODE:
            #
            QuotientReturn = Return
            RemainderReturn = lambda _: Statement()
        elif self.mode is REMAINDER_MODE:
            QuotientReturn = lambda _: Statement()
            RemainderReturn = Return
        elif self.mode is FULL_MODE:
            QuotientReturn = lambda v: ReferenceAssign(Dereference(quo, precision=int_precision), v) 
            RemainderReturn = Return
        else:
            raise NotImplemented

        # quotient invalid value
        QUO_INVALID_VALUE = 0

        mod_scheme = Statement(
            # x or y is NaN, a NaN is returned
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsNaN), Test(vy, specifier=Test.IsNaN)),
                Statement(
                    QuotientReturn(QUO_INVALID_VALUE),
                    RemainderReturn(FP_QNaN(self.precision))
                ),
            ),
            #
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Statement(
                    QuotientReturn(QUO_INVALID_VALUE),
                    RemainderReturn(FP_QNaN(self.precision))
                ),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsZero),
                Statement(
                    QuotientReturn(0),
                    RemainderReturn(vx)
                ),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsInfty),
                Statement(
                    QuotientReturn(QUO_INVALID_VALUE),
                    RemainderReturn(FP_QNaN(self.precision))
                )
            ),
            ConditionBlock(
                Test(vy, specifier=Test.IsInfty),
                Statement(
                    QuotientReturn(0),
                    RemainderReturn(vx),
                )
            ),
            ConditionBlock(
                Abs(vx) < Abs(vy * 0.5),
                Statement(
                    QuotientReturn(0),
                    RemainderReturn(vx),
                )
            ),
            ConditionBlock(
                Equal(vx, vy),
                Statement(
                    QuotientReturn(1),
                    # 0 with the same sign as x
                    RemainderReturn(vx - vx),
                ),
            ),
            ConditionBlock(
                Equal(vx, -vy),
                Statement(
                    # quotient is -1
                    QuotientReturn(-1),
                    # 0 with the same sign as x
                    RemainderReturn(vx - vx),
                ),
            ),
            loop,
            QuotientReturn(q),
            RemainderReturn(mx),
        )

        quo_scheme = Statement(
            # x or y is NaN, a NaN is returned
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsNaN), Test(vy, specifier=Test.IsNaN)),
                Return(QUO_INVALID_VALUE),
            ),
            #
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Return(QUO_INVALID_VALUE),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsZero),
                Return(0),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsInfty),
                Return(QUO_INVALID_VALUE),
            ),
            ConditionBlock(
                Test(vy, specifier=Test.IsInfty),
                Return(QUO_INVALID_VALUE),
            ),
            ConditionBlock(
                Abs(vx) < Abs(vy * 0.5),
                Return(0),
            ),
            ConditionBlock(
                Equal(vx, vy),
                Return(1),
            ),
            ConditionBlock(
                Equal(vx, -vy),
                Return(-1),
            ),
            loop,
            Return(q),

        )

        return mod_scheme
示例#17
0
def generate_pipeline_stage(entity, reset=False, recirculate=False, one_process_per_stage=True, synchronous_reset=True, negate_reset=False):
    """ Process a entity to generate pipeline stages required to implement
        pipeline structure described by node's stage attributes.

        :param entity: input entity to pipeline
        :type entity: ML_EntityBasis
        :param reset: indicate if a reset must be generated for pipeline registers
        :type reset: bool
        :param recirculate: trigger the integration of a recirculation signal to the stage
            flopping condition
        :type recirculate: bool
        :param one_process_per_stage:forces the generation of a separate process for each
               pipeline stage (else a unique process is generated for all the stages
        :type one_process_per_stage: bool
        :param synchronous_reset: triggers the generation of a clocked reset
        :type synchronous_reset: bool
        :param negate_reset: if set indicates the reset is triggered when reset signal is 0
                            (else 1)
        :type negate_reset: bool
    """
    retiming_map = {}
    retime_map = RetimeMap()
    output_assign_list = entity.implementation.get_output_assign()
    for output in output_assign_list:
        Log.report(Log.Verbose, "generating pipeline from output {} ", output)
        retime_op(output, retime_map)
    for recirculate_stage in entity.recirculate_signal_map:
        recirculate_ctrl = entity.recirculate_signal_map[recirculate_stage]
        Log.report(Log.Verbose, "generating pipeline from recirculation control signal {}", recirculate_ctrl)
        retime_op(recirculate_ctrl, retime_map)

    process_statement = Statement()

    # adding stage forward process
    clk = entity.get_clk_input()
    clock_statement = Statement()
    global_reset_statement = Statement()


    Log.report(Log.Info, "design has {} flip-flop(s).", retime_map.register_count)

    # handle towards the first clock Process (in generation order)
    # which must be the one whose pre_statement is filled with
    # signal required to be generated outside the processes
    first_process = False
    for stage_id in sorted(retime_map.stage_forward.keys()):
        stage_statement = Statement(
            *tuple(assign for assign in retime_map.stage_forward[stage_id]))

        if reset:
            reset_statement = Statement()
            for assign in retime_map.stage_forward[stage_id]:
                target = assign.get_input(0)
                reset_value = Constant(0, precision=target.get_precision())
                reset_statement.push(ReferenceAssign(target, reset_value))

            if recirculate:
                # inserting recirculation condition
                recirculate_signal = entity.get_recirculate_signal(stage_id)
                stage_statement = ConditionBlock(
                    Comparison(
                        recirculate_signal,
                        Constant(0, precision=recirculate_signal.get_precision()),
                        specifier=Comparison.Equal,
                        precision=ML_Bool
                    ),
                    stage_statement
                )

            if synchronous_reset:
                # build a compound statement with reset and flops statement
                stage_statement = ConditionBlock(
                    Comparison(
                        entity.reset_signal,
                        Constant(0 if negate_reset else 1, precision=ML_StdLogic),
                        specifier=Comparison.Equal, precision=ML_Bool
                    ),
                    reset_statement,
                    stage_statement
                )
            else:
                # for asynchronous reset, reset is in a non-clocked statement
                # and will be added at the end of stage to the same process than
                # register clocking
                global_reset_statement.add(reset_statement)

        # To meet simulation / synthesis tools, we build
        # a single if clock predicate block per stage
        clock_block = ConditionBlock(
            LogicalAnd(
                Event(clk, precision=ML_Bool),
                Comparison(
                    clk,
                    Constant(1, precision=ML_StdLogic),
                    specifier=Comparison.Equal,
                    precision=ML_Bool
                ),
                precision=ML_Bool
            ),
            stage_statement
        )

        if one_process_per_stage:
            if reset and not synchronous_reset:
                clock_block = ConditionBlock(
                    Comparison(
                        entity.reset_signal,
                        Constant(0 if negate_reset else 1, precision=ML_StdLogic),
                        specifier=Comparison.Equal, precision=ML_Bool
                    ),
                    reset_statement,
                    clock_block
                )
                clock_process = Process(clock_block, sensibility_list=[clk, entity.reset_signal])

            else:
                # no reset, or synchronous reset (already appended to clock_block)
                clock_process = Process(clock_block, sensibility_list=[clk])
            entity.implementation.add_process(clock_process)

            first_process = first_process or clock_process
        else:
            clock_statement.add(clock_block)
    if one_process_per_stage:
        # reset and clock processed where generated at each stage loop
        pass
    else:
        process_statement.add(clock_statement)
        if synchronous_reset:
            pipeline_process = Process(process_statement, sensibility_list=[clk])
        else:
            process_statement.add(global_reset_statement)
            pipeline_process = Process(process_statement, sensibility_list=[clk, entity.reset_signal])
        entity.implementation.add_process(pipeline_process)
        first_process = pipeline_process
    # statement that gather signals which must be pre-computed
    for op in retime_map.pre_statement:
        first_process.add_to_pre_statement(op)
    stage_num = len(retime_map.stage_forward.keys())
    Log.report(Log.Info, "there are {} pipeline stage(s)", stage_num)
    return stage_num
示例#18
0
    def generate_auto_test(self,
                           test_num=10,
                           test_range=Interval(-1.0, 1.0),
                           debug=False,
                           time_step=10):
        """ time_step: duration of a stage (in ns) """
        # instanciating tested component
        # map of input_tag -> input_signal and output_tag -> output_signal
        io_map = {}
        # map of input_tag -> input_signal, excludind commodity signals
        # (e.g. clock and reset)
        input_signals = {}
        # map of output_tag -> output_signal
        output_signals = {}
        # excluding clock and reset signals from argument list
        # reduced_arg_list = [input_port for input_port in self.implementation.get_arg_list() if not input_port.get_tag() in ["clk", "reset"]]
        reduced_arg_list = self.implementation.get_arg_list()
        for input_port in reduced_arg_list:
            input_tag = input_port.get_tag()
            input_signal = Signal(input_tag + "_i",
                                  precision=input_port.get_precision(),
                                  var_type=Signal.Local)
            io_map[input_tag] = input_signal
            if not input_tag in ["clk", "reset"]:
                input_signals[input_tag] = input_signal
        for output_port in self.implementation.get_output_port():
            output_tag = output_port.get_tag()
            output_signal = Signal(output_tag + "_o",
                                   precision=output_port.get_precision(),
                                   var_type=Signal.Local)
            io_map[output_tag] = output_signal
            output_signals[output_tag] = output_signal

        # building list of test cases
        tc_list = []

        self_component = self.implementation.get_component_object()
        self_instance = self_component(io_map=io_map, tag="tested_entity")
        test_statement = Statement()

        # initializing random test case generator
        self.init_test_generator()

        # Appending standard test cases if required
        if self.auto_test_std:
            tc_list += self.standard_test_cases

        for i in range(test_num):
            input_values = self.generate_test_case(input_signals, io_map, i,
                                                   test_range)
            tc_list.append((input_values, None))

        def compute_results(tc):
            """ update test case with output values if required """
            input_values, output_values = tc
            if output_values is None:
                return input_values, self.numeric_emulate(input_values)
            else:
                return tc

        # filling output values
        tc_list = [compute_results(tc) for tc in tc_list]

        for input_values, output_values in tc_list:
            input_msg = ""

            # Adding input setting
            for input_tag in input_values:
                input_signal = io_map[input_tag]
                # FIXME: correct value generation depending on signal precision
                input_value = input_values[input_tag]
                test_statement.add(
                    ReferenceAssign(
                        input_signal,
                        Constant(input_value,
                                 precision=input_signal.get_precision())))
                value_msg = input_signal.get_precision().get_cst(
                    input_value, language=VHDL_Code).replace('"', "'")
                value_msg += " / " + hex(input_signal.get_precision(
                ).get_base_format().get_integer_coding(input_value))
                input_msg += " {}={} ".format(input_tag, value_msg)
            test_statement.add(Wait(time_step * self.stage_num))
            # Adding output value comparison
            for output_tag in output_signals:
                output_signal = output_signals[output_tag]
                output_value = Constant(
                    output_values[output_tag],
                    precision=output_signal.get_precision())
                output_precision = output_signal.get_precision()
                expected_dec = output_precision.get_cst(
                    output_values[output_tag],
                    language=VHDL_Code).replace('"', "'")
                expected_hex = " / " + hex(
                    output_precision.get_base_format().get_integer_coding(
                        output_values[output_tag]))
                value_msg = "{} / {}".format(expected_dec, expected_hex)

                test_pass_cond = Comparison(output_signal,
                                            output_value,
                                            specifier=Comparison.Equal,
                                            precision=ML_Bool)

                test_statement.add(
                    ConditionBlock(
                        LogicalNot(test_pass_cond, precision=ML_Bool),
                        Report(
                            Concatenation(
                                " result for {}: ".format(output_tag),
                                Conversion(TypeCast(
                                    output_signal,
                                    precision=ML_StdLogicVectorFormat(
                                        output_signal.get_precision(
                                        ).get_bit_size())),
                                           precision=ML_String),
                                precision=ML_String))))
                test_statement.add(
                    Assert(
                        test_pass_cond,
                        "\"unexpected value for inputs {input_msg}, output {output_tag}, expecting {value_msg}, got: \""
                        .format(input_msg=input_msg,
                                output_tag=output_tag,
                                value_msg=value_msg),
                        severity=Assert.Failure))

        testbench = CodeEntity("testbench")
        test_process = Process(
            test_statement,
            # end of test
            Assert(Constant(0, precision=ML_Bool),
                   " \"end of test, no error encountered \"",
                   severity=Assert.Failure))

        testbench_scheme = Statement(self_instance, test_process)

        if self.pipelined:
            half_time_step = time_step / 2
            assert (half_time_step * 2) == time_step
            # adding clock process for pipelined bench
            clk_process = Process(
                Statement(
                    ReferenceAssign(io_map["clk"],
                                    Constant(1, precision=ML_StdLogic)),
                    Wait(half_time_step),
                    ReferenceAssign(io_map["clk"],
                                    Constant(0, precision=ML_StdLogic)),
                    Wait(half_time_step),
                ))
            testbench_scheme.push(clk_process)

        testbench.add_process(testbench_scheme)

        return [testbench]
示例#19
0
    def generate_scheme(self):
        # declaring target and instantiating optimization engine

        vx = self.implementation.add_input_variable("x", self.precision)
        vx.set_attributes(precision=self.precision,
                          tag="vx",
                          debug=debug_multi)
        Log.set_dump_stdout(True)

        Log.report(Log.Info,
                   "\033[33;1m Generating implementation scheme \033[0m")
        if self.debug_flag:
            Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m")

        C0 = Constant(0, precision=self.precision)

        C0_plus = Constant(FP_PlusZero(self.precision))
        C0_minus = Constant(FP_MinusZero(self.precision))

        def local_test(specifier, tag):
            """ Local wrapper to generate Test operations """
            return Test(vx,
                        specifier=specifier,
                        likely=False,
                        debug=debug_multi,
                        tag="is_%s" % tag,
                        precision=ML_Bool)

        test_NaN = local_test(Test.IsNaN, "is_NaN")
        test_inf = local_test(Test.IsInfty, "is_Inf")
        test_NaN_or_Inf = local_test(Test.IsInfOrNaN, "is_Inf_Or_Nan")

        test_negative = Comparison(vx,
                                   C0,
                                   specifier=Comparison.Less,
                                   debug=debug_multi,
                                   tag="is_Negative",
                                   precision=ML_Bool,
                                   likely=False)
        test_NaN_or_Neg = LogicalOr(test_NaN, test_negative, precision=ML_Bool)

        test_std = LogicalNot(LogicalOr(test_NaN_or_Inf,
                                        test_negative,
                                        precision=ML_Bool,
                                        likely=False),
                              precision=ML_Bool,
                              likely=True)

        test_zero = Comparison(vx,
                               C0,
                               specifier=Comparison.Equal,
                               likely=False,
                               debug=debug_multi,
                               tag="Is_Zero",
                               precision=ML_Bool)

        return_NaN_or_neg = Statement(Return(FP_QNaN(self.precision)))
        return_inf = Statement(Return(FP_PlusInfty(self.precision)))

        return_PosZero = Return(C0_plus)
        return_NegZero = Return(C0_minus)

        NR_init = ReciprocalSquareRootSeed(vx,
                                           precision=self.precision,
                                           tag="sqrt_seed",
                                           debug=debug_multi)

        result = compute_sqrt(vx,
                              NR_init,
                              int(self.num_iter),
                              precision=self.precision)

        return_non_std = ConditionBlock(
            test_NaN_or_Neg, return_NaN_or_neg,
            ConditionBlock(
                test_inf, return_inf,
                ConditionBlock(test_zero, return_PosZero, return_NegZero)))
        return_std = Return(result)

        scheme = ConditionBlock(test_std, return_std, return_non_std)
        return scheme