def generate_scheme(self): # declaring function input variable vx = self.implementation.add_input_variable("x", self.precision) vy = self.implementation.add_input_variable("y", self.precision) Cst0 = Constant(5, precision=self.precision) Cst1 = Constant(7, precision=self.precision) comp = Comparison(vx, vy, specifier=Comparison.Greater, precision=ML_Bool, tag="comp") comp_eq = Comparison(vx, vy, specifier=Comparison.Equal, precision=ML_Bool, tag="comp_eq") scheme = Statement( ConditionBlock( comp, Return(vy, precision=self.precision), ConditionBlock( comp_eq, Return(vx + vy * Cst0 - Cst1, precision=self.precision))), ConditionBlock(comp_eq, Return(Cst1 * vy, precision=self.precision)), Return(vx * vy, precision=self.precision)) return scheme
def get_output_check_statement(output_signal, output_tag, output_value): """ Generate output value check statement """ test_pass_cond = Comparison( output_signal, output_value, specifier=Comparison.Equal, precision=ML_Bool ) check_statement = ConditionBlock( LogicalNot( test_pass_cond, precision = ML_Bool ), Report( Concatenation( " result for {}: ".format(output_tag), Conversion( output_signal if output_signal.get_precision() is ML_StdLogic else TypeCast( output_signal, precision=ML_StdLogicVectorFormat( output_signal.get_precision().get_bit_size() ) ), precision = ML_String ), precision = ML_String ) ) ) return test_pass_cond, check_statement
def test_ref_assign(self): """ test behavior of StaticVectorizer on predicated ReferenceAssign """ va = Variable("a") vb = Variable("b") vc = Variable("c") scheme = Statement( ReferenceAssign(va, Constant(3)), ConditionBlock( (va > vb).modify_attributes(likely=True), Statement(ReferenceAssign(vb, va), ReferenceAssign(va, Constant(11)), Return(va)), ), ReferenceAssign(va, Constant(7)), Return(vb)) vectorized_path = StaticVectorizer().extract_vectorizable_path( scheme, fallback_policy) linearized_most_likely_path = instanciate_variable( vectorized_path.linearized_optree, vectorized_path.variable_mapping) test_result = (isinstance(linearized_most_likely_path, Constant) and linearized_most_likely_path.get_value() == 11) if not test_result: print("test UT_StaticVectorizer failure") print("scheme: {}".format(scheme.get_str())) print("linearized_most_likely_path: {}".format( linearized_most_likely_path)) self.assertTrue(test_result)
def generate_tensor_check_loop(self, tensor_descriptors, input_tables, output_tables): # unpack tensor descriptors tuple (input_tensor_descriptor_list, output_tensor_descriptor_list) = tensor_descriptors # internal array iterator index vj = Variable("j", precision=ML_UInt32, var_type=Variable.Local) printf_error_detail_function = self.get_printf_error_detail_fct( output_tensor_descriptor_list[0]) NUM_INPUT_ARRAY = len(input_tables) # generate the expected table for the whole multi-array expected_tables = self.generate_expected_table(tensor_descriptors, input_tables) # global statement to list all checks check_statement = Statement() # implement check for each output tensor for out_id, out_td in enumerate(output_tensor_descriptor_list): # expected values for the (vj)-th entry of the sub-array expected_values = [ TableLoad(expected_tables[out_id], vj, i) for i in range(self.accuracy.get_num_output_value()) ] # local result for the (vj)-th entry of the sub-array local_result = TableLoad(output_tables[out_id], vj) array_len = out_td.get_bounding_size() if self.break_error: return_statement_break = Statement( printf_error_detail_function(*((vj, ) + (local_result, ))), self.accuracy.get_output_print_call( self.function_name, output_values)) else: return_statement_break = Statement( printf_error_detail_function(*((vj, ) + (local_result, ))), self.accuracy.get_output_print_call( self.function_name, expected_values), Return(Constant(1, precision=ML_Int32))) check_array_loop = Loop( ReferenceAssign(vj, 0), vj < array_len, Statement( ConditionBlock( self.accuracy.get_output_check_test( local_result, expected_values), return_statement_break), ReferenceAssign(vj, vj + 1), )) check_statement.add(check_array_loop) return check_statement
def generate_scheme(self): # declaring input variable vx = self.implementation.add_input_variable("x", self.precision) vx2 = vx * vx scheme = ConditionBlock( vx > 0, Return(vx - 0.33 * vx2 * vx + (2 / 15.0) * vx * vx2 * vx2), Return(FP_QNaN(self.precision))) return scheme
def generate_scalar_scheme(self, vx, vy): div = Division(vx, vy, precision=self.precision) div_if = Trunc(div, precision=self.precision) rem = Variable("rem", var_type=Variable.Local, precision=self.precision) qi = Variable("qi", var_type=Variable.Local, precision=self.precision) qi_bound = Constant(S2**self.precision.get_mantissa_size()) init_rem = FusedMultiplyAdd(-div_if, vy, vx) # factorizing 1 / vy to save time # NOTES: it makes rem / vy approximate # shared_rcp = Division(1, vy, precision=self.precision) iterative_fmod = Loop( Statement( ReferenceAssign(rem, init_rem), ReferenceAssign(qi, div_if), ), Abs(qi) > qi_bound, Statement( ReferenceAssign( qi, #Trunc(shared_rcp * rem, precision=self.precision) Trunc(rem / vy, precision=self.precision)), ReferenceAssign(rem, FMA(-qi, vy, rem)))) scheme = Statement( rem, # shared_rcp, iterative_fmod, ConditionBlock( # if rem's sign and vx sign mismatch (rem * vx < 0.0).modify_attributes(tag="update_cond", debug=debug_multi), Return(rem + vy), Return(rem), )) return scheme
def generate_scheme(self): """ main scheme generation """ input_precision = self.precision output_precision = self.precision # declaring main input variable x_interval = Interval(-10.3, 10.7) var_x = self.implementation.add_input_variable("x", input_precision, interval=x_interval) y_interval = Interval(-17.9, 17.2) var_y = self.implementation.add_input_variable("y", input_precision, interval=y_interval) z_interval = Interval(-70.3, -57.7) var_z = self.implementation.add_input_variable("z", input_precision, interval=z_interval) min_yz = Min(var_z, var_y) cst0 = Constant(42.5, tag="cst0", precision=self.precision) cst1 = Constant(2.5, tag="cst1", precision=self.precision) cst2 = Constant(12.5, tag="cst2", precision=self.precision) new_cst = cst0 + cst1 * cst2 result = min_yz + new_cst scheme = ConditionBlock( LogicalAnd( LogicalOr(cst0 > cst1, LogicalNot(cst1 > cst0)), var_x > var_y, ), Return(result), Return(cst2)) return scheme
def generate_pipeline_stage(entity): """ Process a entity to generate pipeline stages required """ retiming_map = {} retime_map = RetimeMap() output_assign_list = entity.implementation.get_output_assign() for output in output_assign_list: Log.report( Log.Verbose, "generating pipeline from output %s " % (output.get_str(depth=1))) retime_op(output, retime_map) process_statement = Statement() # adding stage forward process clk = entity.get_clk_input() clock_statement = Statement() for stage_id in sorted(retime_map.stage_forward.keys()): stage_statement = Statement(*tuple( assign for assign in retime_map.stage_forward[stage_id])) clock_statement.add(stage_statement) # To meet simulation / synthesis tools, we build # a single if clock predicate block which contains all # the stage register allocation clock_block = ConditionBlock( LogicalAnd(Event(clk, precision=ML_Bool), Comparison(clk, Constant(1, precision=ML_StdLogic), specifier=Comparison.Equal, precision=ML_Bool), precision=ML_Bool), clock_statement) process_statement.add(clock_block) pipeline_process = Process(process_statement, sensibility_list=[clk]) for op in retime_map.pre_statement: pipeline_process.add_to_pre_statement(op) entity.implementation.add_process(pipeline_process) stage_num = len(retime_map.stage_forward.keys()) #print "there are %d pipeline stages" % (stage_num) return stage_num
def generate_scheme(self): # declaring target and instantiating optimization engine vx = self.implementation.add_input_variable("x", self.precision) Log.set_dump_stdout(True) Log.report(Log.Info, "\033[33;1m generating implementation scheme \033[0m") if self.debug_flag: Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m") # local overloading of RaiseReturn operation def ExpRaiseReturn(*args, **kwords): kwords["arg_value"] = vx kwords["function_name"] = self.function_name if self.libm_compliant: return RaiseReturn(*args, precision=self.precision, **kwords) else: return Return(kwords["return_value"], precision=self.precision) test_nan_or_inf = Test(vx, specifier=Test.IsInfOrNaN, likely=False, debug=debug_multi, tag="nan_or_inf") test_nan = Test(vx, specifier=Test.IsNaN, debug=debug_multi, tag="is_nan_test") test_positive = Comparison(vx, 0, specifier=Comparison.GreaterOrEqual, debug=debug_multi, tag="inf_sign") test_signaling_nan = Test(vx, specifier=Test.IsSignalingNaN, debug=debug_multi, tag="is_signaling_nan") return_snan = Statement( ExpRaiseReturn(ML_FPE_Invalid, return_value=FP_QNaN(self.precision))) # return in case of infinity input infty_return = Statement( ConditionBlock( test_positive, Return(FP_PlusInfty(self.precision), precision=self.precision), Return(FP_PlusZero(self.precision), precision=self.precision))) # return in case of specific value input (NaN or inf) specific_return = ConditionBlock( test_nan, ConditionBlock( test_signaling_nan, return_snan, Return(FP_QNaN(self.precision), precision=self.precision)), infty_return) # return in case of standard (non-special) input # exclusion of early overflow and underflow cases precision_emax = self.precision.get_emax() precision_max_value = S2 * S2**precision_emax exp_overflow_bound = sollya.ceil(log(precision_max_value)) early_overflow_test = Comparison(vx, exp_overflow_bound, likely=False, specifier=Comparison.Greater) early_overflow_return = Statement( ClearException() if self.libm_compliant else Statement(), ExpRaiseReturn(ML_FPE_Inexact, ML_FPE_Overflow, return_value=FP_PlusInfty(self.precision))) precision_emin = self.precision.get_emin_subnormal() precision_min_value = S2**precision_emin exp_underflow_bound = floor(log(precision_min_value)) early_underflow_test = Comparison(vx, exp_underflow_bound, likely=False, specifier=Comparison.Less) early_underflow_return = Statement( ClearException() if self.libm_compliant else Statement(), ExpRaiseReturn(ML_FPE_Inexact, ML_FPE_Underflow, return_value=FP_PlusZero(self.precision))) # constant computation invlog2 = self.precision.round_sollya_object(1 / log(2), sollya.RN) interval_vx = Interval(exp_underflow_bound, exp_overflow_bound) interval_fk = interval_vx * invlog2 interval_k = Interval(floor(inf(interval_fk)), sollya.ceil(sup(interval_fk))) log2_hi_precision = self.precision.get_field_size() - ( sollya.ceil(log2(sup(abs(interval_k)))) + 2) Log.report(Log.Info, "log2_hi_precision: %d" % log2_hi_precision) invlog2_cst = Constant(invlog2, precision=self.precision) log2_hi = round(log(2), log2_hi_precision, sollya.RN) log2_lo = self.precision.round_sollya_object( log(2) - log2_hi, sollya.RN) # argument reduction unround_k = vx * invlog2 unround_k.set_attributes(tag="unround_k", debug=debug_multi) k = NearestInteger(unround_k, precision=self.precision, debug=debug_multi) ik = NearestInteger(unround_k, precision=self.precision.get_integer_format(), debug=debug_multi, tag="ik") ik.set_tag("ik") k.set_tag("k") exact_pre_mul = (k * log2_hi) exact_pre_mul.set_attributes(exact=True) exact_hi_part = vx - exact_pre_mul exact_hi_part.set_attributes(exact=True, tag="exact_hi", debug=debug_multi, prevent_optimization=True) exact_lo_part = -k * log2_lo exact_lo_part.set_attributes(tag="exact_lo", debug=debug_multi, prevent_optimization=True) r = exact_hi_part + exact_lo_part r.set_tag("r") r.set_attributes(debug=debug_multi) approx_interval = Interval(-log(2) / 2, log(2) / 2) approx_interval_half = approx_interval / 2 approx_interval_split = [ Interval(-log(2) / 2, inf(approx_interval_half)), approx_interval_half, Interval(sup(approx_interval_half), log(2) / 2) ] # TODO: should be computed automatically exact_hi_interval = approx_interval exact_lo_interval = -interval_k * log2_lo opt_r = self.optimise_scheme(r, copy={}) tag_map = {} self.opt_engine.register_nodes_by_tag(opt_r, tag_map) cg_eval_error_copy_map = { vx: Variable("x", precision=self.precision, interval=interval_vx), tag_map["k"]: Variable("k", interval=interval_k, precision=self.precision) } #try: if is_gappa_installed(): eval_error = self.gappa_engine.get_eval_error_v2( self.opt_engine, opt_r, cg_eval_error_copy_map, gappa_filename="red_arg.g") else: eval_error = 0.0 Log.report(Log.Warning, "gappa is not installed in this environnement") Log.report(Log.Info, "eval error: %s" % eval_error) local_ulp = sup(ulp(sollya.exp(approx_interval), self.precision)) # FIXME refactor error_goal from accuracy Log.report(Log.Info, "accuracy: %s" % self.accuracy) if isinstance(self.accuracy, ML_Faithful): error_goal = local_ulp elif isinstance(self.accuracy, ML_CorrectlyRounded): error_goal = S2**-1 * local_ulp elif isinstance(self.accuracy, ML_DegradedAccuracyAbsolute): error_goal = self.accuracy.goal elif isinstance(self.accuracy, ML_DegradedAccuracyRelative): error_goal = self.accuracy.goal else: Log.report(Log.Error, "unknown accuracy: %s" % self.accuracy) # error_goal = local_ulp #S2**-(self.precision.get_field_size()+1) error_goal_approx = S2**-1 * error_goal Log.report(Log.Info, "\033[33;1m building mathematical polynomial \033[0m\n") poly_degree = max( sup( guessdegree( expm1(sollya.x) / sollya.x, approx_interval, error_goal_approx)) - 1, 2) init_poly_degree = poly_degree error_function = lambda p, f, ai, mod, t: dirtyinfnorm(f - p, ai) polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_estrin_scheme #polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_horner_scheme while 1: Log.report(Log.Info, "attempting poly degree: %d" % poly_degree) precision_list = [1] + [self.precision] * (poly_degree) poly_object, poly_approx_error = Polynomial.build_from_approximation_with_error( expm1(sollya.x), poly_degree, precision_list, approx_interval, sollya.absolute, error_function=error_function) Log.report(Log.Info, "polynomial: %s " % poly_object) sub_poly = poly_object.sub_poly(start_index=2) Log.report(Log.Info, "polynomial: %s " % sub_poly) Log.report(Log.Info, "poly approx error: %s" % poly_approx_error) Log.report( Log.Info, "\033[33;1m generating polynomial evaluation scheme \033[0m") pre_poly = polynomial_scheme_builder( poly_object, r, unified_precision=self.precision) pre_poly.set_attributes(tag="pre_poly", debug=debug_multi) pre_sub_poly = polynomial_scheme_builder( sub_poly, r, unified_precision=self.precision) pre_sub_poly.set_attributes(tag="pre_sub_poly", debug=debug_multi) poly = 1 + (exact_hi_part + (exact_lo_part + pre_sub_poly)) poly.set_tag("poly") # optimizing poly before evaluation error computation #opt_poly = self.opt_engine.optimization_process(poly, self.precision, fuse_fma = fuse_fma) #opt_sub_poly = self.opt_engine.optimization_process(pre_sub_poly, self.precision, fuse_fma = fuse_fma) opt_poly = self.optimise_scheme(poly) opt_sub_poly = self.optimise_scheme(pre_sub_poly) # evaluating error of the polynomial approximation r_gappa_var = Variable("r", precision=self.precision, interval=approx_interval) exact_hi_gappa_var = Variable("exact_hi", precision=self.precision, interval=exact_hi_interval) exact_lo_gappa_var = Variable("exact_lo", precision=self.precision, interval=exact_lo_interval) vx_gappa_var = Variable("x", precision=self.precision, interval=interval_vx) k_gappa_var = Variable("k", interval=interval_k, precision=self.precision) #print "exact_hi interval: ", exact_hi_interval sub_poly_error_copy_map = { #r.get_handle().get_node(): r_gappa_var, #vx.get_handle().get_node(): vx_gappa_var, exact_hi_part.get_handle().get_node(): exact_hi_gappa_var, exact_lo_part.get_handle().get_node(): exact_lo_gappa_var, #k.get_handle().get_node(): k_gappa_var, } poly_error_copy_map = { exact_hi_part.get_handle().get_node(): exact_hi_gappa_var, exact_lo_part.get_handle().get_node(): exact_lo_gappa_var, } if is_gappa_installed(): sub_poly_eval_error = -1.0 sub_poly_eval_error = self.gappa_engine.get_eval_error_v2( self.opt_engine, opt_sub_poly, sub_poly_error_copy_map, gappa_filename="%s_gappa_sub_poly.g" % self.function_name) dichotomy_map = [ { exact_hi_part.get_handle().get_node(): approx_interval_split[0], }, { exact_hi_part.get_handle().get_node(): approx_interval_split[1], }, { exact_hi_part.get_handle().get_node(): approx_interval_split[2], }, ] poly_eval_error_dico = self.gappa_engine.get_eval_error_v3( self.opt_engine, opt_poly, poly_error_copy_map, gappa_filename="gappa_poly.g", dichotomy=dichotomy_map) poly_eval_error = max( [sup(abs(err)) for err in poly_eval_error_dico]) else: poly_eval_error = 0.0 sub_poly_eval_error = 0.0 Log.report(Log.Warning, "gappa is not installed in this environnement") Log.report(Log.Info, "stopping autonomous degree research") # incrementing polynomial degree to counteract initial decrementation effect poly_degree += 1 break Log.report(Log.Info, "poly evaluation error: %s" % poly_eval_error) Log.report(Log.Info, "sub poly evaluation error: %s" % sub_poly_eval_error) global_poly_error = None global_rel_poly_error = None for case_index in range(3): poly_error = poly_approx_error + poly_eval_error_dico[ case_index] rel_poly_error = sup( abs(poly_error / sollya.exp(approx_interval_split[case_index]))) if global_rel_poly_error == None or rel_poly_error > global_rel_poly_error: global_rel_poly_error = rel_poly_error global_poly_error = poly_error flag = error_goal > global_rel_poly_error if flag: break else: poly_degree += 1 late_overflow_test = Comparison(ik, self.precision.get_emax(), specifier=Comparison.Greater, likely=False, debug=debug_multi, tag="late_overflow_test") overflow_exp_offset = (self.precision.get_emax() - self.precision.get_field_size() / 2) diff_k = Subtraction( ik, Constant(overflow_exp_offset, precision=self.precision.get_integer_format()), precision=self.precision.get_integer_format(), debug=debug_multi, tag="diff_k", ) late_overflow_result = (ExponentInsertion( diff_k, precision=self.precision) * poly) * ExponentInsertion( overflow_exp_offset, precision=self.precision) late_overflow_result.set_attributes(silent=False, tag="late_overflow_result", debug=debug_multi, precision=self.precision) late_overflow_return = ConditionBlock( Test(late_overflow_result, specifier=Test.IsInfty, likely=False), ExpRaiseReturn(ML_FPE_Overflow, return_value=FP_PlusInfty(self.precision)), Return(late_overflow_result, precision=self.precision)) late_underflow_test = Comparison(k, self.precision.get_emin_normal(), specifier=Comparison.LessOrEqual, likely=False) underflow_exp_offset = 2 * self.precision.get_field_size() corrected_exp = Addition( ik, Constant(underflow_exp_offset, precision=self.precision.get_integer_format()), precision=self.precision.get_integer_format(), tag="corrected_exp") late_underflow_result = ( ExponentInsertion(corrected_exp, precision=self.precision) * poly) * ExponentInsertion(-underflow_exp_offset, precision=self.precision) late_underflow_result.set_attributes(debug=debug_multi, tag="late_underflow_result", silent=False) test_subnormal = Test(late_underflow_result, specifier=Test.IsSubnormal) late_underflow_return = Statement( ConditionBlock( test_subnormal, ExpRaiseReturn(ML_FPE_Underflow, return_value=late_underflow_result)), Return(late_underflow_result, precision=self.precision)) twok = ExponentInsertion(ik, tag="exp_ik", debug=debug_multi, precision=self.precision) #std_result = twok * ((1 + exact_hi_part * pre_poly) + exact_lo_part * pre_poly) std_result = twok * poly std_result.set_attributes(tag="std_result", debug=debug_multi) result_scheme = ConditionBlock( late_overflow_test, late_overflow_return, ConditionBlock(late_underflow_test, late_underflow_return, Return(std_result, precision=self.precision))) std_return = ConditionBlock( early_overflow_test, early_overflow_return, ConditionBlock(early_underflow_test, early_underflow_return, result_scheme)) # main scheme Log.report(Log.Info, "\033[33;1m MDL scheme \033[0m") scheme = ConditionBlock( test_nan_or_inf, Statement(ClearException() if self.libm_compliant else Statement(), specific_return), std_return) return scheme
def generate_datafile_testbench(self, tc_list, io_map, input_signals, output_signals, time_step, test_fname="test.input"): """ Generate testbench with input and output data externalized in a data file """ # textio function to read hexadecimal text def FCT_HexaRead_gen(input_format): legalized_input_format = input_format FCT_HexaRead = FunctionObject("hread", [HDL_LINE, legalized_input_format], ML_Void, FunctionOperator("hread", void_function=True, arity=2)) return FCT_HexaRead # textio function to read binary text FCT_Read = FunctionObject("read", [HDL_LINE, ML_StdLogic], ML_Void, FunctionOperator("read", void_function=True, arity=2)) input_line = Variable("input_line", precision=HDL_LINE, var_type=Variable.Local) # building ordered list of input and output signal names input_signal_list = [sname for sname in input_signals.keys()] input_statement = Statement() for input_name in input_signal_list: input_format = input_signals[input_name].precision input_var = Variable( "v_" + input_name, precision=input_format, var_type=Variable.Local) if input_format is ML_StdLogic: input_statement.add(FCT_Read(input_line, input_var)) else: input_statement.add(FCT_HexaRead_gen(input_format)(input_line, input_var)) input_statement.add(ReferenceAssign(input_signals[input_name], input_var)) output_signal_list = [sname for sname in output_signals.keys()] output_statement = Statement() for output_name in output_signal_list: output_format = output_signals[output_name].precision output_var = Variable( "v_" + output_name, precision=output_format, var_type=Variable.Local) if output_format is ML_StdLogic: output_statement.add(FCT_Read(input_line, output_var)) else: output_statement.add(FCT_HexaRead_gen(output_format)(input_line, output_var)) output_signal = output_signals[output_name] #value_msg = get_output_value_msg(output_signal, output_value) test_pass_cond, check_statement = get_output_check_statement(output_signal, output_name, output_var) input_msg = multi_Concatenation(*tuple(sum([[" %s=" % input_tag, signal_str_conversion(input_signals[input_tag], input_signals[input_tag].precision)] for input_tag in input_signal_list], []))) output_statement.add(check_statement) assert_statement = Assert( test_pass_cond, multi_Concatenation( "unexpected value for inputs ", input_msg, " expecting :", signal_str_conversion(output_var, output_format), " got :", signal_str_conversion(output_signal, output_format), precision = ML_String ), severity=Assert.Failure ) output_statement.add(assert_statement) self_component = self.implementation.get_component_object() self_instance = self_component(io_map = io_map, tag = "tested_entity") test_statement = Statement() DATA_FILE_NAME = test_fname with open(DATA_FILE_NAME, "w") as data_file: # dumping column tags data_file.write("# " + " ".join(input_signal_list + output_signal_list) + "\n") def get_raw_cst_string(cst_format, cst_value): size = int((cst_format.get_bit_size() + 3) / 4) return ("{:x}").format(cst_format.get_base_format().get_integer_coding(cst_value)).zfill(size) for input_values, output_values in tc_list: # TODO; generate test data file cst_list = [] for input_name in input_signal_list: input_value = input_values[input_name] input_format = input_signals[input_name].get_precision() cst_list.append(get_raw_cst_string(input_format, input_value)) for output_name in output_signal_list: output_value = output_values[output_name] output_format = output_signals[output_name].get_precision() cst_list.append(get_raw_cst_string(output_format, output_value)) # dumping line into file data_file.write(" ".join(cst_list) + "\n") input_stream = Variable("data_file", precision=HDL_FILE, var_type=Variable.Local) file_status = Variable("file_status", precision=HDL_OPEN_FILE_STATUS, var_type=Variable.Local) FCT_EndFile = FunctionObject("endfile", [HDL_FILE], ML_Bool, FunctionOperator("endfile", arity=1)) FCT_OpenFile = FunctionObject( "FILE_OPEN", [HDL_OPEN_FILE_STATUS, HDL_FILE, ML_String], ML_Void, FunctionOperator( "FILE_OPEN", arg_map={0: FO_Arg(0), 1: FO_Arg(1), 2: FO_Arg(2), 3: "READ_MODE"}, void_function=True)) FCT_ReadLine = FunctionObject( "readline", [HDL_FILE, HDL_LINE], ML_Void, FunctionOperator("readline", void_function=True, arity=2)) reset_statement = self.get_reset_statement(io_map, time_step) OPEN_OK = Constant("OPEN_OK", precision=HDL_OPEN_FILE_STATUS) testbench = CodeEntity("testbench") test_process = Process( reset_statement, FCT_OpenFile(file_status, input_stream, DATA_FILE_NAME), ConditionBlock( Comparison(file_status, OPEN_OK, specifier=Comparison.NotEqual), Assert( Constant(0, precision=ML_Bool), " \"failed to open file {}\"".format(DATA_FILE_NAME), severity=Assert.Failure ) ), # consume legend line FCT_ReadLine(input_stream, input_line), WhileLoop( LogicalNot(FCT_EndFile(input_stream)), Statement( FCT_ReadLine(input_stream, input_line), input_statement, Wait(time_step * (self.stage_num + 2)), output_statement, ), ), # end of test Assert( Constant(0, precision = ML_Bool), " \"end of test, no error encountered \"", severity = Assert.Warning ), # infinite end loop WhileLoop( Constant(1, precision=ML_Bool), Statement( Wait(time_step * (self.stage_num + 2)), ) ) ) testbench_scheme = Statement( self_instance, test_process ) if self.pipelined: half_time_step = time_step / 2 assert (half_time_step * 2) == time_step # adding clock process for pipelined bench clk_process = Process( Statement( ReferenceAssign( io_map["clk"], Constant(1, precision = ML_StdLogic) ), Wait(half_time_step), ReferenceAssign( io_map["clk"], Constant(0, precision = ML_StdLogic) ), Wait(half_time_step), ) ) testbench_scheme.push(clk_process) testbench.add_process(testbench_scheme) return [testbench]
def generate_pipeline_stage(entity, reset=False, recirculate=False, one_process_per_stage=True): """ Process a entity to generate pipeline stages required """ retiming_map = {} retime_map = RetimeMap() output_assign_list = entity.implementation.get_output_assign() for output in output_assign_list: Log.report(Log.Verbose, "generating pipeline from output {} ", output) retime_op(output, retime_map) for recirculate_stage in entity.recirculate_signal_map: recirculate_ctrl = entity.recirculate_signal_map[recirculate_stage] Log.report(Log.Verbose, "generating pipeline from recirculation control signal {}", recirculate_ctrl) retime_op(recirculate_ctrl, retime_map) process_statement = Statement() # adding stage forward process clk = entity.get_clk_input() clock_statement = Statement() # handle towards the first clock Process (in generation order) # which must be the one whose pre_statement is filled with # signal required to be generated outside the processes first_process = False for stage_id in sorted(retime_map.stage_forward.keys()): stage_statement = Statement(*tuple( assign for assign in retime_map.stage_forward[stage_id])) if reset: reset_statement = Statement() for assign in retime_map.stage_forward[stage_id]: target = assign.get_input(0) reset_value = Constant(0, precision=target.get_precision()) reset_statement.push(ReferenceAssign(target, reset_value)) if recirculate: # inserting recirculation condition recirculate_signal = entity.get_recirculate_signal(stage_id) stage_statement = ConditionBlock( Comparison( recirculate_signal, Constant(0, precision=recirculate_signal.get_precision()), specifier=Comparison.Equal, precision=ML_Bool), stage_statement) stage_statement = ConditionBlock( Comparison(entity.reset_signal, Constant(1, precision=ML_StdLogic), specifier=Comparison.Equal, precision=ML_Bool), reset_statement, stage_statement) # To meet simulation / synthesis tools, we build # a single if clock predicate block per stage clock_block = ConditionBlock( LogicalAnd(Event(clk, precision=ML_Bool), Comparison(clk, Constant(1, precision=ML_StdLogic), specifier=Comparison.Equal, precision=ML_Bool), precision=ML_Bool), stage_statement) if one_process_per_stage: clock_process = Process(clock_block, sensibility_list=[clk]) entity.implementation.add_process(clock_process) first_process = first_process or clock_process else: clock_statement.add(clock_block) if one_process_per_stage: pass else: process_statement.add(clock_statement) pipeline_process = Process(process_statement, sensibility_list=[clk]) entity.implementation.add_process(pipeline_process) first_process = pipeline_process # statement that gather signals which must be pre-computed for op in retime_map.pre_statement: first_process.add_to_pre_statement(op) stage_num = len(retime_map.stage_forward.keys()) #print "there are %d pipeline stages" % (stage_num) return stage_num
def generate_scalar_scheme(self, vx, vy): # fixing inputs' node tag vx.set_attributes(tag="x") vy.set_attributes(tag="y") int_precision = self.precision.get_integer_format() # assuming x = m.2^e (m in [1, 2[) # n, positive or null integers # # pow(x, n) = x^(y) # = exp(y * log(x)) # = 2^(y * log2(x)) # = 2^(y * (log2(m) + e)) # e = ExponentExtraction(vx, tag="e", precision=int_precision) m = MantissaExtraction(vx, tag="m", precision=self.precision) # approximation log2(m) # retrieving processor inverse approximation table dummy_var = Variable("dummy", precision = self.precision) dummy_div_seed = ReciprocalSeed(dummy_var, precision = self.precision) inv_approx_table = self.processor.get_recursive_implementation( dummy_div_seed, language=None, table_getter= lambda self: self.approx_table_map) log_f = sollya.log(sollya.x) # /sollya.log(self.basis) ml_log_args = ML_GenericLog.get_default_args(precision=self.precision, basis=2) ml_log = ML_GenericLog(ml_log_args) log_table, log_table_tho, table_index_range = ml_log.generate_log_table(log_f, inv_approx_table) log_approx = ml_log.generate_reduced_log_split(Abs(m, precision=self.precision), log_f, inv_approx_table, log_table) log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision), log_approx) log_approx.set_attributes(tag="log_approx", debug=debug_multi) r = Multiplication(log_approx, vy, tag="r", debug=debug_multi) # 2^(y * (log2(m) + e)) = 2^(y * log2(m)) * 2^(y * e) # # log_approx = log2(Abs(m)) # r = y * log_approx ~ y * log2(m) # # NOTES: manage cases where e is negative and # (y * log2(m)) AND (y * e) could cancel out # if e positive, whichever the sign of y (y * log2(m)) and (y * e) CANNOT # be of opposite signs # log2(m) in [0, 1[ so cancellation can occur only if e == -1 # we split 2^x in 2^x = 2^t0 * 2^t1 # if e < 0: t0 = y * (log2(m) + e), t1=0 # else: t0 = y * log2(m), t1 = y * e t_cond = e < 0 # e_y ~ e * y e_f = Conversion(e, precision=self.precision) #t0 = Select(t_cond, (e_f + log_approx) * vy, Multiplication(e_f, vy), tag="t0") #NearestInteger(t0, precision=self.precision, tag="t0_int") EY = NearestInteger(e_f * vy, tag="EY", precision=self.precision) LY = NearestInteger(log_approx * vy, tag="LY", precision=self.precision) t0_int = Select(t_cond, EY + LY, EY, tag="t0_int") t0_frac = Select(t_cond, FMA(e_f, vy, -EY) + FMA(log_approx, vy, -LY) ,EY - t0_int, tag="t0_frac") #t0_frac.set_attributes(tag="t0_frac") ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision) ml_exp2 = ML_Exp2(ml_exp2_args) exp2_t0_frac = ml_exp2.generate_scalar_scheme(t0_frac, inline_select=True) exp2_t0_frac.set_attributes(tag="exp2_t0_frac", debug=debug_multi) exp2_t0_int = ExponentInsertion(Conversion(t0_int, precision=int_precision), precision=self.precision, tag="exp2_t0_int") t1 = Select(t_cond, Constant(0, precision=self.precision), r) exp2_t1 = ml_exp2.generate_scalar_scheme(t1, inline_select=True) exp2_t1.set_attributes(tag="exp2_t1", debug=debug_multi) result_sign = Constant(1.0, precision=self.precision) # Select(n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1) y_int = NearestInteger(vy, precision=self.precision) y_is_integer = Equal(y_int, vy) y_is_even = LogicalOr( # if y is a number (exc. inf) greater than 2**mantissa_size * 2, # then it is an integer multiple of 2 => even Abs(vy) >= 2**(self.precision.get_mantissa_size()+1), LogicalAnd( y_is_integer and Abs(vy) < 2**(self.precision.get_mantissa_size()+1), # we want to limit the modulo computation to an integer input Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 0) ) ) y_is_odd = LogicalAnd( LogicalAnd( Abs(vy) < 2**(self.precision.get_mantissa_size()+1), y_is_integer ), Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 1) ) # special cases management special_case_results = Statement( # x is sNaN OR y is sNaN ConditionBlock( LogicalOr(Test(vx, specifier=Test.IsSignalingNaN), Test(vy, specifier=Test.IsSignalingNaN)), Return(FP_QNaN(self.precision)) ), # pow(x, ±0) is 1 if x is not a signaling NaN ConditionBlock( Test(vy, specifier=Test.IsZero), Return(Constant(1.0, precision=self.precision)) ), # pow(±0, y) is ±∞ and signals the divideByZero exception for y an odd integer <0 ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy < 0)), Return(Select(Test(vx, specifier=Test.IsPositiveZero), FP_PlusInfty(self.precision), FP_MinusInfty(self.precision))), ), # pow(±0, −∞) is +∞ with no exception ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsNegativeInfty)), Return(FP_MinusInfty(self.precision)), ), # pow(±0, +∞) is +0 with no exception ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsPositiveInfty)), Return(FP_PlusInfty(self.precision)), ), # pow(±0, y) is ±0 for finite y>0 an odd integer ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy > 0)), Return(vx), ), # pow(−1, ±∞) is 1 with no exception ConditionBlock( LogicalAnd(Equal(vx, -1), Test(vy, specifier=Test.IsInfty)), Return(Constant(1.0, precision=self.precision)), ), # pow(+1, y) is 1 for any y (even a quiet NaN) ConditionBlock( vx == 1, Return(Constant(1.0, precision=self.precision)), ), # pow(x, +∞) is +0 for −1<x<1 ConditionBlock( LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsPositiveInfty)), Return(FP_PlusZero(self.precision)) ), # pow(x, +∞) is +∞ for x<−1 or for 1<x (including ±∞) ConditionBlock( LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsPositiveInfty)), Return(FP_PlusInfty(self.precision)) ), # pow(x, −∞) is +∞ for −1<x<1 ConditionBlock( LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsNegativeInfty)), Return(FP_PlusInfty(self.precision)) ), # pow(x, −∞) is +0 for x<−1 or for 1<x (including ±∞) ConditionBlock( LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsNegativeInfty)), Return(FP_PlusZero(self.precision)) ), # pow(+∞, y) is +0 for a number y < 0 ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy < 0), Return(FP_PlusZero(self.precision)) ), # pow(+∞, y) is +∞ for a number y > 0 ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy > 0), Return(FP_PlusInfty(self.precision)) ), # pow(−∞, y) is −0 for finite y < 0 an odd integer # TODO: check y is finite ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy < 0)), Return(FP_MinusZero(self.precision)), ), # pow(−∞, y) is −∞ for finite y > 0 an odd integer # TODO: check y is finite ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy > 0)), Return(FP_MinusInfty(self.precision)), ), # pow(−∞, y) is +0 for finite y < 0 and not an odd integer # TODO: check y is finite ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy < 0)), Return(FP_PlusZero(self.precision)), ), # pow(−∞, y) is +∞ for finite y > 0 and not an odd integer # TODO: check y is finite ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy > 0)), Return(FP_PlusInfty(self.precision)), ), # pow(±0, y) is +∞ and signals the divideByZero exception for finite y<0 and not an odd integer # TODO: signal divideByZero exception ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy < 0)), Return(FP_PlusInfty(self.precision)), ), # pow(±0, y) is +0 for finite y>0 and not an odd integer ConditionBlock( LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy > 0)), Return(FP_PlusZero(self.precision)), ), ) # manage n=1 separately to avoid catastrophic propagation of errors # between log2 and exp2 to eventually compute the identity function # test-case #3 result = Statement( special_case_results, # fallback default cases Return(result_sign * exp2_t1 * exp2_t0_int * exp2_t0_frac)) return result
def generate_scheme(self): # We wish to compute vx / vy vx = self.implementation.add_input_variable( "x", self.precision, interval=self.input_intervals[0]) vy = self.implementation.add_input_variable( "y", self.precision, interval=self.input_intervals[1]) # maximum exponent magnitude (to avoid overflow/ underflow during # intermediary computations int_prec = self.precision.get_integer_format() max_exp_mag = Constant(self.precision.get_emax() - 1, precision=int_prec) exact_ex = ExponentExtraction(vx, tag="exact_ex", precision=int_prec, debug=debug_multi) exact_ey = ExponentExtraction(vy, tag="exact_ey", precision=int_prec, debug=debug_multi) ex = Max(Min(exact_ex, max_exp_mag, precision=int_prec), -max_exp_mag, tag="ex", precision=int_prec) ey = Max(Min(exact_ey, max_exp_mag, precision=int_prec), -max_exp_mag, tag="ey", precision=int_prec) Attributes.set_default_rounding_mode(ML_RoundToNearest) Attributes.set_default_silent(True) # computing the inverse square root init_approx = None scaling_factor_x = ExponentInsertion(-ex, tag="sfx_ei", precision=self.precision, debug=debug_multi) scaling_factor_y = ExponentInsertion(-ey, tag="sfy_ei", precision=self.precision, debug=debug_multi) def test_interval_out_of_bound_risk(x_range, y_range): """ Try to determine from x and y's interval if there is a risk of underflow or overflow """ div_range = abs(x_range / y_range) underflow_risk = sollya.inf(div_range) < S2**( self.precision.get_emin_normal() + 2) overflow_risk = sollya.sup(div_range) > S2**( self.precision.get_emax() - 2) return underflow_risk or overflow_risk out_of_bound_risk = (self.input_intervals[0] is None or self.input_intervals[1] is None ) or test_interval_out_of_bound_risk( self.input_intervals[0], self.input_intervals[1]) Log.report(Log.Debug, "out_of_bound_risk: {}".format(out_of_bound_risk)) # scaled version of vx and vy, to avoid overflow and underflow if out_of_bound_risk: scaled_vx = vx * scaling_factor_x scaled_vy = vy * scaling_factor_y scaled_interval = MetaIntervalList( [MetaInterval(Interval(-2, -1)), MetaInterval(Interval(1, 2))]) scaled_vx.set_attributes(tag="scaled_vx", debug=debug_multi, interval=scaled_interval) scaled_vy.set_attributes(tag="scaled_vy", debug=debug_multi, interval=scaled_interval) seed_interval = 1 / scaled_interval print("seed_interval=1/{}={}".format(scaled_interval, seed_interval)) else: scaled_vx = vx scaled_vy = vy seed_interval = 1 / scaled_vy.get_interval() # We need a first approximation to 1 / scaled_vy dummy_seed = ReciprocalSeed(EmptyOperand(precision=self.precision), precision=self.precision) if self.processor.is_supported_operation(dummy_seed, self.language): init_approx = ReciprocalSeed(scaled_vy, precision=self.precision, tag="init_approx", debug=debug_multi) else: # generate tabulated version of seed raise NotImplementedError current_approx_std = init_approx # correctly-rounded inverse computation num_iteration = self.num_iter Attributes.unset_default_rounding_mode() Attributes.unset_default_silent() # check if inputs are zeros x_zero = Test(vx, specifier=Test.IsZero, likely=False, precision=ML_Bool) y_zero = Test(vy, specifier=Test.IsZero, likely=False, precision=ML_Bool) comp_sign = Test(vx, vy, specifier=Test.CompSign, tag="comp_sign", debug=debug_multi) # check if divisor is NaN y_nan = Test(vy, specifier=Test.IsNaN, likely=False, precision=ML_Bool) # check if inputs are signaling NaNs x_snan = Test(vx, specifier=Test.IsSignalingNaN, likely=False, precision=ML_Bool) y_snan = Test(vy, specifier=Test.IsSignalingNaN, likely=False, precision=ML_Bool) # check if inputs are infinities x_inf = Test(vx, specifier=Test.IsInfty, likely=False, tag="x_inf", precision=ML_Bool) y_inf = Test(vy, specifier=Test.IsInfty, likely=False, tag="y_inf", debug=debug_multi, precision=ML_Bool) scheme = None gappa_vx, gappa_vy = None, None # initial reciprocal approximation of 1.0 / scaled_vy inv_iteration_list, recp_approx = compute_reduced_reciprocal( init_approx, scaled_vy, self.num_iter) recp_approx.set_attributes(tag="recp_approx", debug=debug_multi) # approximation of scaled_vx / scaled_vy yerr_last, reduced_div_approx, div_iteration_list = compute_reduced_division( scaled_vx, scaled_vy, recp_approx) eval_error_range, div_eval_error_range = self.solve_eval_error( init_approx, recp_approx, reduced_div_approx, scaled_vx, scaled_vy, inv_iteration_list, div_iteration_list, S2**-7, seed_interval) eval_error = sup(abs(eval_error_range)) recp_interval = 1 / scaled_vy.get_interval() + eval_error_range recp_approx.set_interval(recp_interval) div_interval = scaled_vx.get_interval() / scaled_vy.get_interval( ) + div_eval_error_range reduced_div_approx.set_interval(div_interval) reduced_div_approx.set_tag("reduced_div_approx") if out_of_bound_risk: unscaled_result = scaling_div_result(reduced_div_approx, ex, scaling_factor_y, self.precision) subnormal_result = subnormalize_result(recp_approx, reduced_div_approx, ex, ey, yerr_last, self.precision) else: unscaled_result = reduced_div_approx subnormal_result = reduced_div_approx x_inf_or_nan = Test(vx, specifier=Test.IsInfOrNaN, likely=False) y_inf_or_nan = Test(vy, specifier=Test.IsInfOrNaN, likely=False, tag="y_inf_or_nan", debug=debug_multi) # generate IEEE exception raising only of libm-compliant # mode is enabled enable_raise = self.libm_compliant # managing special cases # x inf and y inf pre_scheme = ConditionBlock( x_inf_or_nan, ConditionBlock( x_inf, ConditionBlock( y_inf_or_nan, Statement( # signaling NaNs raise invalid operation flags ConditionBlock(y_snan, Raise(ML_FPE_Invalid)) if enable_raise else Statement(), Return(FP_QNaN(self.precision)), ), ConditionBlock(comp_sign, Return(FP_MinusInfty(self.precision)), Return(FP_PlusInfty(self.precision)))), Statement( ConditionBlock(x_snan, Raise(ML_FPE_Invalid)) if enable_raise else Statement(), Return(FP_QNaN(self.precision)))), ConditionBlock( x_zero, ConditionBlock( LogicalOr(y_zero, y_nan, precision=ML_Bool), Statement( ConditionBlock(y_snan, Raise(ML_FPE_Invalid)) if enable_raise else Statement(), Return(FP_QNaN(self.precision))), Return(vx)), ConditionBlock( y_inf_or_nan, ConditionBlock( y_inf, Return( Select(comp_sign, FP_MinusZero(self.precision), FP_PlusZero(self.precision))), Statement( ConditionBlock(y_snan, Raise(ML_FPE_Invalid)) if enable_raise else Statement(), Return(FP_QNaN(self.precision)))), ConditionBlock( y_zero, Statement( Raise(ML_FPE_DivideByZero) if enable_raise else Statement(), ConditionBlock( comp_sign, Return(FP_MinusInfty(self.precision)), Return(FP_PlusInfty(self.precision)))), # managing numerical value result cases Statement( recp_approx, reduced_div_approx, ConditionBlock( Test(unscaled_result, specifier=Test.IsSubnormal, likely=False), # result is subnormal Statement( # inexact flag should have been raised when computing yerr_last # ConditionBlock( # Comparison( # yerr_last, 0, # specifier=Comparison.NotEqual, likely=True), # Statement(Raise(ML_FPE_Inexact, ML_FPE_Underflow)) #), Return(subnormal_result), ), # result is normal Statement( # inexact flag should have been raised when computing yerr_last #ConditionBlock( # Comparison( # yerr_last, 0, # specifier=Comparison.NotEqual, likely=True), # Raise(ML_FPE_Inexact) #), Return(unscaled_result))), ))))) # managing rounding mode save and restore # to ensure intermediary computations are performed in round-to-nearest # clearing exception before final computation #rnd_mode = GetRndMode() #scheme = Statement( # rnd_mode, # SetRndMode(ML_RoundToNearest), # yerr_last, # SetRndMode(rnd_mode), # unscaled_result, # ClearException(), # pre_scheme #) scheme = pre_scheme return scheme
def generate_scalar_scheme(self, vx, n): # fixing inputs' node tag vx.set_attributes(tag="x") n.set_attributes(tag="n") int_precision = self.precision.get_integer_format() # assuming x = m.2^e (m in [1, 2[) # n, positive or null integers # # rootn(x, n) = x^(1/n) # = exp(1/n * log(x)) # = 2^(1/n * log2(x)) # = 2^(1/n * (log2(m) + e)) # # approximation log2(m) # retrieving processor inverse approximation table dummy_var = Variable("dummy", precision=self.precision) dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision) inv_approx_table = self.processor.get_recursive_implementation( dummy_div_seed, language=None, table_getter=lambda self: self.approx_table_map) log_f = sollya.log(sollya.x) # /sollya.log(self.basis) use_reciprocal = False # non-scaled vx used to compute vx^1 unmodified_vx = vx is_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="is_subnormal") exp_correction_factor = self.precision.get_mantissa_size() mantissa_factor = Constant(2**exp_correction_factor, tag="mantissa_factor") vx = Select(is_subnormal, vx * mantissa_factor, vx, tag="corrected_vx") m = MantissaExtraction(vx, tag="m", precision=self.precision) e = ExponentExtraction(vx, tag="e", precision=int_precision) e = Select(is_subnormal, e - exp_correction_factor, e, tag="corrected_e") ml_log_args = ML_GenericLog.get_default_args(precision=self.precision, basis=2) ml_log = ML_GenericLog(ml_log_args) log_table, log_table_tho, table_index_range = ml_log.generate_log_table( log_f, inv_approx_table) log_approx = ml_log.generate_reduced_log_split( Abs(m, precision=self.precision), log_f, inv_approx_table, log_table) # floating-point version of n n_f = Conversion(n, precision=self.precision, tag="n_f") inv_n = Division(Constant(1, precision=self.precision), n_f) log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision), log_approx) log_approx.set_attributes(tag="log_approx", debug=debug_multi) if use_reciprocal: r = Multiplication(log_approx, inv_n, tag="r", debug=debug_multi) else: r = Division(log_approx, n_f, tag="r", debug=debug_multi) # e_n ~ e / n e_f = Conversion(e, precision=self.precision, tag="e_f") if use_reciprocal: e_n = Multiplication(e_f, inv_n, tag="e_n") else: e_n = Division(e_f, n_f, tag="e_n") error_e_n = FMA(e_n, -n_f, e_f, tag="error_e_n") e_n_int = NearestInteger(e_n, precision=self.precision, tag="e_n_int") pre_e_n_frac = e_n - e_n_int pre_e_n_frac.set_attributes(tag="pre_e_n_frac") e_n_frac = pre_e_n_frac + error_e_n * inv_n e_n_frac.set_attributes(tag="e_n_frac") ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision) ml_exp2 = ML_Exp2(ml_exp2_args) exp2_r = ml_exp2.generate_scalar_scheme(r, inline_select=True) exp2_r.set_attributes(tag="exp2_r", debug=debug_multi) exp2_e_n_frac = ml_exp2.generate_scalar_scheme(e_n_frac, inline_select=True) exp2_e_n_frac.set_attributes(tag="exp2_e_n_frac", debug=debug_multi) exp2_e_n_int = ExponentInsertion(Conversion(e_n_int, precision=int_precision), precision=self.precision, tag="exp2_e_n_int") n_is_even = Equal(Modulo(n, 2), 0, tag="n_is_even", debug=debug_multi) n_is_odd = LogicalNot(n_is_even, tag="n_is_odd") result_sign = Select( n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1) # managing n == -1 if self.expand_div: ml_division_args = ML_Division.get_default_args( precision=self.precision, input_formats=[self.precision] * 2) ml_division = ML_Division(ml_division_args) self.division_implementation = ml_division.implementation self.division_implementation.set_scheme( ml_division.generate_scheme()) ml_division_fct = self.division_implementation.get_function_object( ) else: ml_division_fct = Division # manage n=1 separately to avoid catastrophic propagation of errors # between log2 and exp2 to eventually compute the identity function # test-case #3 result = ConditionBlock( LogicalOr(LogicalOr(Test(vx, specifier=Test.IsNaN), Equal(n, 0)), LogicalAnd(n_is_even, vx < 0)), Return(FP_QNaN(self.precision)), Statement( ConditionBlock( Equal(n, -1, tag="n_is_mone"), #Return(Division(Constant(1, precision=self.precision), unmodified_vx, tag="div_res", precision=self.precision)), Return( ml_division_fct(Constant(1, precision=self.precision), unmodified_vx, tag="div_res", precision=self.precision)), ), ConditionBlock( # rootn( ±inf, n) is +∞ for even n< 0. Test(vx, specifier=Test.IsInfty), Statement( ConditionBlock( n < 0, #LogicalAnd(n_is_odd, n < 0), Return( Select(Test(vx, specifier=Test.IsPositiveInfty), Constant(FP_PlusZero(self.precision), precision=self.precision), Constant(FP_MinusZero(self.precision), precision=self.precision), precision=self.precision)), Return(vx), ), ), ), ConditionBlock( # rootn(±0, n) is ±∞ for odd n < 0. LogicalAnd(LogicalAnd(n_is_odd, n < 0), Equal(vx, 0), tag="n_is_odd_and_neg"), Return( Select(Test(vx, specifier=Test.IsPositiveZero), Constant(FP_PlusInfty(self.precision), precision=self.precision), Constant(FP_MinusInfty(self.precision), precision=self.precision), precision=self.precision)), ), ConditionBlock( # rootn( ±0, n) is +∞ for even n< 0. LogicalAnd(LogicalAnd(n_is_even, n < 0), Equal(vx, 0)), Return(FP_PlusInfty(self.precision))), ConditionBlock( # rootn(±0, n) is +0 for even n > 0. LogicalAnd(n_is_even, Equal(vx, 0)), Return(vx)), ConditionBlock( Equal(n, 1), Return(unmodified_vx), Return(result_sign * exp2_r * exp2_e_n_int * exp2_e_n_frac)))) return result
def generate_array_check_loop(self, input_tables, output_array, table_size_offset_array, array_offset, array_len, test_id): # internal array iterator index vj = Variable("j", precision=ML_UInt32, var_type=Variable.Local) printf_input_function = self.get_printf_input_function() printf_error_template = "printf(\"max %s error is %s \\n\", %s)" % ( self.function_name, self.precision.get_display_format().format_string, self.precision.get_display_format().pre_process_fct("{0}")) printf_error_op = TemplateOperatorFormat(printf_error_template, arity=1, void_function=True, require_header=["stdio.h"]) printf_error_function = FunctionObject("printf", [self.precision], ML_Void, printf_error_op) printf_max_op = FunctionOperator( "printf", arg_map={ 0: "\"max %s error is reached at input number %s \\n \"" % (self.function_name, "%d"), 1: FO_Arg(0) }, void_function=True, require_header=["stdio.h"]) printf_max_function = FunctionObject("printf", [self.precision], ML_Void, printf_max_op) NUM_INPUT_ARRAY = len(input_tables) # generate the expected table for the whole multi-array expected_table = self.generate_expected_table(input_tables, table_size_offset_array) # inputs for the (vj)-th entry of the sub-arrat local_inputs = tuple( TableLoad(input_tables[in_id], array_offset + vj) for in_id in range(NUM_INPUT_ARRAY)) # expected values for the (vj)-th entry of the sub-arrat expected_values = [ TableLoad(expected_table, array_offset + vj, i) for i in range(self.accuracy.get_num_output_value()) ] # local result for the (vj)-th entry of the sub-arrat local_result = TableLoad(output_array, array_offset + vj) if self.break_error: return_statement_break = Statement( printf_input_function(*((vj, ) + local_inputs + (local_result, ))), self.accuracy.get_output_print_call(self.function_name, output_values)) else: return_statement_break = Statement( printf_input_function(*((vj, ) + local_inputs + (local_result, ))), self.accuracy.get_output_print_call(self.function_name, expected_values), Return(Constant(1, precision=ML_Int32))) # loop implementation to check sub-array array_offset # results validity check_array_loop = Loop( ReferenceAssign(vj, 0), vj < array_len, Statement( ConditionBlock( self.accuracy.get_output_check_test( local_result, expected_values), return_statement_break), ReferenceAssign(vj, vj + 1), )) return check_array_loop
def generate_scheme(self): int_precision = self.precision.get_integer_format() # We wish to compute vx / vy vx = self.implementation.add_input_variable("x", self.precision, interval=self.input_intervals[0]) vy = self.implementation.add_input_variable("y", self.precision, interval=self.input_intervals[1]) if self.mode is FULL_MODE: quo = self.implementation.add_input_variable("quo", ML_Pointer_Format(int_precision)) i = Variable("i", precision=int_precision, var_type=Variable.Local) q = Variable("q", precision=int_precision, var_type=Variable.Local) CI = lambda v: Constant(v, precision=int_precision) CF = lambda v: Constant(v, precision=self.precision) vx_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="vx_subnormal") vy_subnormal = Test(vy, specifier=Test.IsSubnormal, tag="vy_subnormal") DELTA_EXP = self.precision.get_mantissa_size() scale_factor = Constant(2.0**DELTA_EXP, precision=self.precision) inv_scale_factor = Constant(2.0**-DELTA_EXP, precision=self.precision) normalized_vx = Select(vx_subnormal, vx * scale_factor, vx, tag="scaled_vx") normalized_vy = Select(vy_subnormal, vy * scale_factor, vy, tag="scaled_vy") real_ex = ExponentExtraction(vx, tag="real_ex", precision=int_precision) real_ey = ExponentExtraction(vy, tag="real_ey", precision=int_precision) # if real_e<x/y> is +1023 then it may Overflow in -real_ex for ExponentInsertion # which only supports downto -1022 before falling into subnormal numbers (which are # not supported by ExponentInsertion) real_ex_h0 = real_ex / 2 real_ex_h1 = real_ex - real_ex_h0 real_ey_h0 = real_ey / 2 real_ey_h1 = real_ey - real_ey_h0 EI = lambda v: ExponentInsertion(v, precision=self.precision) mx = Abs((vx * EI(-real_ex_h0)) * EI(-real_ex_h1), tag="mx") my = Abs((vy * EI(-real_ey_h0)) * EI(-real_ey_h1), tag="pre_my") # scale_ey is used to regain the unscaling of mx in the first loop # if real_ey >= real_ex, the first loop is never executed # so a different scaling is required mx_unscaling = Select(real_ey < real_ex, real_ey, real_ex) ey_half0 = (mx_unscaling) / 2 ey_half1 = (mx_unscaling) - ey_half0 scale_ey_half0 = ExponentInsertion(ey_half0, precision=self.precision, tag="scale_ey_half0") scale_ey_half1 = ExponentInsertion(ey_half1, precision=self.precision, tag="scale_ey_half1") # if only vy is subnormal we want to normalize it #normal_cond = LogicalAnd(vy_subnormal, LogicalNot(vx_subnormal)) normal_cond = vy_subnormal #LogicalAnd(vy_subnormal, LogicalNot(vx_subnormal)) my = Select(normal_cond, Abs(MantissaExtraction(vy * scale_factor)), my, tag="my") # vx / vy = vx * 2^-ex * 2^(ex-ey) / (vy * 2^-ey) # vx % vy post_mx = Variable("post_mx", precision=self.precision, var_type=Variable.Local) # scaling for half comparison VY_SCALING = Select(vy_subnormal, 1.0, 0.5, precision=self.precision) VX_SCALING = Select(vy_subnormal, 2.0, 1.0, precision=self.precision) def LogicalXor(a, b): return LogicalOr(LogicalAnd(a, LogicalNot(b)), LogicalAnd(LogicalNot(a), b)) rem_sign = Select(vx < 0, CF(-1), CF(1), precision=self.precision, tag="rem_sign") quo_sign = Select(LogicalXor(vx <0, vy < 0), CI(-1), CI(1), precision=int_precision, tag="quo_sign") loop_watchdog = Variable("loop_watchdog", precision=ML_Int32, var_type=Variable.Local) loop = Statement( real_ex, real_ey, mx, my, loop_watchdog, ReferenceAssign(loop_watchdog, 5000), ReferenceAssign(q, CI(0)), Loop( ReferenceAssign(i, CI(0)), i < (real_ex - real_ey), Statement( ReferenceAssign(i, i+CI(1)), ReferenceAssign(q, ((q << 1) + Select(mx >= my, CI(1), CI(0))).modify_attributes(tag="step1_q")), ReferenceAssign(mx, (CF(2) * (mx - Select(mx >= my, my, CF(0)))).modify_attributes(tag="step1_mx")), # loop watchdog ReferenceAssign(loop_watchdog, loop_watchdog - 1), ConditionBlock(loop_watchdog < 0, Return(-1)), ), ), # unscaling remainder ReferenceAssign(mx, ((mx * scale_ey_half0) * scale_ey_half1).modify_attributes(tag="scaled_rem")), ReferenceAssign(my, ((my * scale_ey_half0) * scale_ey_half1).modify_attributes(tag="scaled_rem_my")), Loop( Statement(), (my > Abs(vy)), Statement( ReferenceAssign(q, ((q << 1) + Select(mx >= Abs(my), CI(1), CI(0))).modify_attributes(tag="step2_q")), ReferenceAssign(mx, (mx - Select(mx >= Abs(my), Abs(my), CF(0))).modify_attributes(tag="step2_mx")), ReferenceAssign(my, (my * 0.5).modify_attributes(tag="step2_my")), # loop watchdog ReferenceAssign(loop_watchdog, loop_watchdog - 1), ConditionBlock(loop_watchdog < 0, Return(-1)), ), ), ReferenceAssign(q, q << 1), Loop( ReferenceAssign(i, CI(0)), mx > Abs(vy), Statement( ReferenceAssign(q, (q + Select(mx > Abs(vy), CI(1), CI(0))).modify_attributes(tag="step3_q")), ReferenceAssign(mx, (mx - Select(mx > Abs(vy), Abs(vy), CF(0))).modify_attributes(tag="step3_mx")), # loop watchdog ReferenceAssign(loop_watchdog, loop_watchdog - 1), ConditionBlock(loop_watchdog < 0, Return(-1)), ), ), ReferenceAssign(q, q + Select(mx >= Abs(vy), CI(1), CI(0))), ReferenceAssign(mx, (mx - Select(mx >= Abs(vy), Abs(vy), CF(0))).modify_attributes(tag="pre_half_mx")), ConditionBlock( # actual comparison is mx > | abs(vy * 0.5) | to avoid rounding effect when # vy is subnormal we mulitply both side by 2.0**60 ((mx * VX_SCALING) > Abs(vy * VY_SCALING)).modify_attributes(tag="half_test"), Statement( ReferenceAssign(q, q + CI(1)), ReferenceAssign(mx, (mx - Abs(vy))) ) ), ConditionBlock( # if the remainder is exactly half the dividend # we need to make sure the quotient is even LogicalAnd( Equal(mx * VX_SCALING, Abs(vy * VY_SCALING)), Equal(Modulo(q, CI(2)), CI(1)), ), Statement( ReferenceAssign(q, q + CI(1)), ReferenceAssign(mx, (mx - Abs(vy))) ) ), ReferenceAssign(mx, rem_sign * mx), ReferenceAssign(q, Modulo(TypeCast(q, precision=self.precision.get_unsigned_integer_format()), Constant(2**self.quotient_size, precision=self.precision.get_unsigned_integer_format()), tag="mod_q") ), ReferenceAssign(q, quo_sign * q), ) # NOTES: Warning QuotientReturn must always preceeds RemainderReturn if self.mode is QUOTIENT_MODE: # QuotientReturn = Return RemainderReturn = lambda _: Statement() elif self.mode is REMAINDER_MODE: QuotientReturn = lambda _: Statement() RemainderReturn = Return elif self.mode is FULL_MODE: QuotientReturn = lambda v: ReferenceAssign(Dereference(quo, precision=int_precision), v) RemainderReturn = Return else: raise NotImplemented # quotient invalid value QUO_INVALID_VALUE = 0 mod_scheme = Statement( # x or y is NaN, a NaN is returned ConditionBlock( LogicalOr(Test(vx, specifier=Test.IsNaN), Test(vy, specifier=Test.IsNaN)), Statement( QuotientReturn(QUO_INVALID_VALUE), RemainderReturn(FP_QNaN(self.precision)) ), ), # ConditionBlock( Test(vy, specifier=Test.IsZero), Statement( QuotientReturn(QUO_INVALID_VALUE), RemainderReturn(FP_QNaN(self.precision)) ), ), ConditionBlock( Test(vx, specifier=Test.IsZero), Statement( QuotientReturn(0), RemainderReturn(vx) ), ), ConditionBlock( Test(vx, specifier=Test.IsInfty), Statement( QuotientReturn(QUO_INVALID_VALUE), RemainderReturn(FP_QNaN(self.precision)) ) ), ConditionBlock( Test(vy, specifier=Test.IsInfty), Statement( QuotientReturn(0), RemainderReturn(vx), ) ), ConditionBlock( Abs(vx) < Abs(vy * 0.5), Statement( QuotientReturn(0), RemainderReturn(vx), ) ), ConditionBlock( Equal(vx, vy), Statement( QuotientReturn(1), # 0 with the same sign as x RemainderReturn(vx - vx), ), ), ConditionBlock( Equal(vx, -vy), Statement( # quotient is -1 QuotientReturn(-1), # 0 with the same sign as x RemainderReturn(vx - vx), ), ), loop, QuotientReturn(q), RemainderReturn(mx), ) quo_scheme = Statement( # x or y is NaN, a NaN is returned ConditionBlock( LogicalOr(Test(vx, specifier=Test.IsNaN), Test(vy, specifier=Test.IsNaN)), Return(QUO_INVALID_VALUE), ), # ConditionBlock( Test(vy, specifier=Test.IsZero), Return(QUO_INVALID_VALUE), ), ConditionBlock( Test(vx, specifier=Test.IsZero), Return(0), ), ConditionBlock( Test(vx, specifier=Test.IsInfty), Return(QUO_INVALID_VALUE), ), ConditionBlock( Test(vy, specifier=Test.IsInfty), Return(QUO_INVALID_VALUE), ), ConditionBlock( Abs(vx) < Abs(vy * 0.5), Return(0), ), ConditionBlock( Equal(vx, vy), Return(1), ), ConditionBlock( Equal(vx, -vy), Return(-1), ), loop, Return(q), ) return mod_scheme
def generate_pipeline_stage(entity, reset=False, recirculate=False, one_process_per_stage=True, synchronous_reset=True, negate_reset=False): """ Process a entity to generate pipeline stages required to implement pipeline structure described by node's stage attributes. :param entity: input entity to pipeline :type entity: ML_EntityBasis :param reset: indicate if a reset must be generated for pipeline registers :type reset: bool :param recirculate: trigger the integration of a recirculation signal to the stage flopping condition :type recirculate: bool :param one_process_per_stage:forces the generation of a separate process for each pipeline stage (else a unique process is generated for all the stages :type one_process_per_stage: bool :param synchronous_reset: triggers the generation of a clocked reset :type synchronous_reset: bool :param negate_reset: if set indicates the reset is triggered when reset signal is 0 (else 1) :type negate_reset: bool """ retiming_map = {} retime_map = RetimeMap() output_assign_list = entity.implementation.get_output_assign() for output in output_assign_list: Log.report(Log.Verbose, "generating pipeline from output {} ", output) retime_op(output, retime_map) for recirculate_stage in entity.recirculate_signal_map: recirculate_ctrl = entity.recirculate_signal_map[recirculate_stage] Log.report(Log.Verbose, "generating pipeline from recirculation control signal {}", recirculate_ctrl) retime_op(recirculate_ctrl, retime_map) process_statement = Statement() # adding stage forward process clk = entity.get_clk_input() clock_statement = Statement() global_reset_statement = Statement() Log.report(Log.Info, "design has {} flip-flop(s).", retime_map.register_count) # handle towards the first clock Process (in generation order) # which must be the one whose pre_statement is filled with # signal required to be generated outside the processes first_process = False for stage_id in sorted(retime_map.stage_forward.keys()): stage_statement = Statement( *tuple(assign for assign in retime_map.stage_forward[stage_id])) if reset: reset_statement = Statement() for assign in retime_map.stage_forward[stage_id]: target = assign.get_input(0) reset_value = Constant(0, precision=target.get_precision()) reset_statement.push(ReferenceAssign(target, reset_value)) if recirculate: # inserting recirculation condition recirculate_signal = entity.get_recirculate_signal(stage_id) stage_statement = ConditionBlock( Comparison( recirculate_signal, Constant(0, precision=recirculate_signal.get_precision()), specifier=Comparison.Equal, precision=ML_Bool ), stage_statement ) if synchronous_reset: # build a compound statement with reset and flops statement stage_statement = ConditionBlock( Comparison( entity.reset_signal, Constant(0 if negate_reset else 1, precision=ML_StdLogic), specifier=Comparison.Equal, precision=ML_Bool ), reset_statement, stage_statement ) else: # for asynchronous reset, reset is in a non-clocked statement # and will be added at the end of stage to the same process than # register clocking global_reset_statement.add(reset_statement) # To meet simulation / synthesis tools, we build # a single if clock predicate block per stage clock_block = ConditionBlock( LogicalAnd( Event(clk, precision=ML_Bool), Comparison( clk, Constant(1, precision=ML_StdLogic), specifier=Comparison.Equal, precision=ML_Bool ), precision=ML_Bool ), stage_statement ) if one_process_per_stage: if reset and not synchronous_reset: clock_block = ConditionBlock( Comparison( entity.reset_signal, Constant(0 if negate_reset else 1, precision=ML_StdLogic), specifier=Comparison.Equal, precision=ML_Bool ), reset_statement, clock_block ) clock_process = Process(clock_block, sensibility_list=[clk, entity.reset_signal]) else: # no reset, or synchronous reset (already appended to clock_block) clock_process = Process(clock_block, sensibility_list=[clk]) entity.implementation.add_process(clock_process) first_process = first_process or clock_process else: clock_statement.add(clock_block) if one_process_per_stage: # reset and clock processed where generated at each stage loop pass else: process_statement.add(clock_statement) if synchronous_reset: pipeline_process = Process(process_statement, sensibility_list=[clk]) else: process_statement.add(global_reset_statement) pipeline_process = Process(process_statement, sensibility_list=[clk, entity.reset_signal]) entity.implementation.add_process(pipeline_process) first_process = pipeline_process # statement that gather signals which must be pre-computed for op in retime_map.pre_statement: first_process.add_to_pre_statement(op) stage_num = len(retime_map.stage_forward.keys()) Log.report(Log.Info, "there are {} pipeline stage(s)", stage_num) return stage_num
def generate_auto_test(self, test_num=10, test_range=Interval(-1.0, 1.0), debug=False, time_step=10): """ time_step: duration of a stage (in ns) """ # instanciating tested component # map of input_tag -> input_signal and output_tag -> output_signal io_map = {} # map of input_tag -> input_signal, excludind commodity signals # (e.g. clock and reset) input_signals = {} # map of output_tag -> output_signal output_signals = {} # excluding clock and reset signals from argument list # reduced_arg_list = [input_port for input_port in self.implementation.get_arg_list() if not input_port.get_tag() in ["clk", "reset"]] reduced_arg_list = self.implementation.get_arg_list() for input_port in reduced_arg_list: input_tag = input_port.get_tag() input_signal = Signal(input_tag + "_i", precision=input_port.get_precision(), var_type=Signal.Local) io_map[input_tag] = input_signal if not input_tag in ["clk", "reset"]: input_signals[input_tag] = input_signal for output_port in self.implementation.get_output_port(): output_tag = output_port.get_tag() output_signal = Signal(output_tag + "_o", precision=output_port.get_precision(), var_type=Signal.Local) io_map[output_tag] = output_signal output_signals[output_tag] = output_signal # building list of test cases tc_list = [] self_component = self.implementation.get_component_object() self_instance = self_component(io_map=io_map, tag="tested_entity") test_statement = Statement() # initializing random test case generator self.init_test_generator() # Appending standard test cases if required if self.auto_test_std: tc_list += self.standard_test_cases for i in range(test_num): input_values = self.generate_test_case(input_signals, io_map, i, test_range) tc_list.append((input_values, None)) def compute_results(tc): """ update test case with output values if required """ input_values, output_values = tc if output_values is None: return input_values, self.numeric_emulate(input_values) else: return tc # filling output values tc_list = [compute_results(tc) for tc in tc_list] for input_values, output_values in tc_list: input_msg = "" # Adding input setting for input_tag in input_values: input_signal = io_map[input_tag] # FIXME: correct value generation depending on signal precision input_value = input_values[input_tag] test_statement.add( ReferenceAssign( input_signal, Constant(input_value, precision=input_signal.get_precision()))) value_msg = input_signal.get_precision().get_cst( input_value, language=VHDL_Code).replace('"', "'") value_msg += " / " + hex(input_signal.get_precision( ).get_base_format().get_integer_coding(input_value)) input_msg += " {}={} ".format(input_tag, value_msg) test_statement.add(Wait(time_step * self.stage_num)) # Adding output value comparison for output_tag in output_signals: output_signal = output_signals[output_tag] output_value = Constant( output_values[output_tag], precision=output_signal.get_precision()) output_precision = output_signal.get_precision() expected_dec = output_precision.get_cst( output_values[output_tag], language=VHDL_Code).replace('"', "'") expected_hex = " / " + hex( output_precision.get_base_format().get_integer_coding( output_values[output_tag])) value_msg = "{} / {}".format(expected_dec, expected_hex) test_pass_cond = Comparison(output_signal, output_value, specifier=Comparison.Equal, precision=ML_Bool) test_statement.add( ConditionBlock( LogicalNot(test_pass_cond, precision=ML_Bool), Report( Concatenation( " result for {}: ".format(output_tag), Conversion(TypeCast( output_signal, precision=ML_StdLogicVectorFormat( output_signal.get_precision( ).get_bit_size())), precision=ML_String), precision=ML_String)))) test_statement.add( Assert( test_pass_cond, "\"unexpected value for inputs {input_msg}, output {output_tag}, expecting {value_msg}, got: \"" .format(input_msg=input_msg, output_tag=output_tag, value_msg=value_msg), severity=Assert.Failure)) testbench = CodeEntity("testbench") test_process = Process( test_statement, # end of test Assert(Constant(0, precision=ML_Bool), " \"end of test, no error encountered \"", severity=Assert.Failure)) testbench_scheme = Statement(self_instance, test_process) if self.pipelined: half_time_step = time_step / 2 assert (half_time_step * 2) == time_step # adding clock process for pipelined bench clk_process = Process( Statement( ReferenceAssign(io_map["clk"], Constant(1, precision=ML_StdLogic)), Wait(half_time_step), ReferenceAssign(io_map["clk"], Constant(0, precision=ML_StdLogic)), Wait(half_time_step), )) testbench_scheme.push(clk_process) testbench.add_process(testbench_scheme) return [testbench]
def generate_scheme(self): # declaring target and instantiating optimization engine vx = self.implementation.add_input_variable("x", self.precision) vx.set_attributes(precision=self.precision, tag="vx", debug=debug_multi) Log.set_dump_stdout(True) Log.report(Log.Info, "\033[33;1m Generating implementation scheme \033[0m") if self.debug_flag: Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m") C0 = Constant(0, precision=self.precision) C0_plus = Constant(FP_PlusZero(self.precision)) C0_minus = Constant(FP_MinusZero(self.precision)) def local_test(specifier, tag): """ Local wrapper to generate Test operations """ return Test(vx, specifier=specifier, likely=False, debug=debug_multi, tag="is_%s" % tag, precision=ML_Bool) test_NaN = local_test(Test.IsNaN, "is_NaN") test_inf = local_test(Test.IsInfty, "is_Inf") test_NaN_or_Inf = local_test(Test.IsInfOrNaN, "is_Inf_Or_Nan") test_negative = Comparison(vx, C0, specifier=Comparison.Less, debug=debug_multi, tag="is_Negative", precision=ML_Bool, likely=False) test_NaN_or_Neg = LogicalOr(test_NaN, test_negative, precision=ML_Bool) test_std = LogicalNot(LogicalOr(test_NaN_or_Inf, test_negative, precision=ML_Bool, likely=False), precision=ML_Bool, likely=True) test_zero = Comparison(vx, C0, specifier=Comparison.Equal, likely=False, debug=debug_multi, tag="Is_Zero", precision=ML_Bool) return_NaN_or_neg = Statement(Return(FP_QNaN(self.precision))) return_inf = Statement(Return(FP_PlusInfty(self.precision))) return_PosZero = Return(C0_plus) return_NegZero = Return(C0_minus) NR_init = ReciprocalSquareRootSeed(vx, precision=self.precision, tag="sqrt_seed", debug=debug_multi) result = compute_sqrt(vx, NR_init, int(self.num_iter), precision=self.precision) return_non_std = ConditionBlock( test_NaN_or_Neg, return_NaN_or_neg, ConditionBlock( test_inf, return_inf, ConditionBlock(test_zero, return_PosZero, return_NegZero))) return_std = Return(result) scheme = ConditionBlock(test_std, return_std, return_non_std) return scheme