def __init__(self, arg_template, precision=ML_Binary32, abs_accuracy=S2**-24, libm_compliant=True, debug_flag=False, fuse_fma=True, fast_path_extract=True, target=FixedPointBackend(), output_file="ut_static_vectorization.c", function_name="ut_static_vectorization"): # precision argument extraction precision = ArgDefault.select_value( [arg_template.precision, precision]) io_precisions = [precision] * 2 # initializing base class ML_FunctionBasis.__init__(self, base_name="ut_static_vectorization", function_name=function_name, output_file=output_file, io_precisions=io_precisions, abs_accuracy=None, libm_compliant=libm_compliant, processor=target, fuse_fma=fuse_fma, fast_path_extract=fast_path_extract, debug_flag=debug_flag, arg_template=arg_template) self.precision = precision
def __init__(self, precision=ML_Binary32, abs_accuracy=S2**-24, libm_compliant=True, debug_flag=False, fuse_fma=True, fast_path_extract=True, target=FixedPointBackend(), output_file="ut_call_externalization.c", function_name="ut_call_externalization"): io_precisions = [precision] * 2 # initializing base class ML_FunctionBasis.__init__(self, base_name="ut_call_externalization", function_name=function_name, output_file=output_file, io_precisions=io_precisions, abs_accuracy=None, libm_compliant=libm_compliant, processor=target, fuse_fma=fuse_fma, fast_path_extract=fast_path_extract, debug_flag=debug_flag) self.precision = precision
def __init__(self, precision=ML_Binary32, abs_accuracy=S2**-24, libm_compliant=True, debug_flag=False, fuse_fma=True, fast_path_extract=True, target=FixedPointBackend(), output_file="ut_opencl_code.c", function_name="ut_opencl_code", vector_size=2, language=C_Code): io_precisions = [precision] * 2 # initializing base class ML_FunctionBasis.__init__(self, base_name="ut_opencl_code", function_name=function_name, output_file=output_file, io_precisions=io_precisions, abs_accuracy=None, libm_compliant=libm_compliant, processor=target, fuse_fma=fuse_fma, fast_path_extract=fast_path_extract, debug_flag=debug_flag, vector_size=vector_size, language=language) self.precision = precision
def get_default_args(**kw): """ Return a structure containing the arguments for ML_SinCos, builtin from a default argument mapping overloaded with @p kw """ default_args_sincos = { "output_file": "my_sincos.c", "function_name": "new_fastsincos", "precision": ML_Binary32, "accuracy": ML_Faithful, "target": FixedPointBackend.get_target_instance(), "cos_output": True, } default_args_sincos.update(kw) return DefaultArgTemplate(**default_args_sincos)
def get_default_args(**kw): """ Return a structure containing the arguments for current class, builtin from a default argument mapping overloaded with @p kw """ default_args = { "output_file": "ut_vector_code.c", "function_name": "ut_vector_code", "precision": ML_Binary32, "target": FixedPointBackend(), "fast_path_extract": True, "fuse_fma": True, "libm_compliant": True } default_args.update(kw) return DefaultArgTemplate(**default_args)
def get_default_args(**kw): """ generate default argument structure for BipartiteApprox """ default_dict = { "target": FixedPointBackend(), "output_file": "my_bipartite_approx.c", "entity_name": "my_bipartie_approx", "language": C_Code, "function": lambda x: 1.0 / x, "interval": Interval(1, 2), "pipelined": False, "precision": fixed_point(1, 15, signed=False), "disable_sub_testing": False, "disable_sv_testing": False, "alpha": 6, "beta": 5, "gamma": 5, "guard_bits": 3, "passes": ["start:size_datapath"], } default_dict.update(kw) return DefaultArgTemplate(**default_dict)