def test_ppo_pendulum(self):
        """Test PPO with Pendulum environment."""
        deterministic.set_seed(0)

        rollouts_per_task = 5
        max_path_length = 100

        task_sampler = SetTaskSampler(lambda: MetaRLEnv(
            normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

        meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                       max_path_length=max_path_length,
                                       n_test_tasks=1,
                                       n_test_rollouts=10)

        runner = LocalRunner(snapshot_config)
        algo = MAMLVPG(env=self.env,
                       policy=self.policy,
                       value_function=self.value_function,
                       max_path_length=max_path_length,
                       meta_batch_size=5,
                       discount=0.99,
                       gae_lambda=1.,
                       inner_lr=0.1,
                       num_grad_updates=1,
                       meta_evaluator=meta_evaluator)

        runner.setup(algo, self.env)
        last_avg_ret = runner.train(n_epochs=10,
                                    batch_size=rollouts_per_task *
                                    max_path_length)

        assert last_avg_ret > -5
def trpois_inverted_pendulum(ctxt=None, seed=1):
    """Train TRPO on InvertedPendulum-v2 with importance sampling.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo,
                     env,
                     sampler_cls=ISSampler,
                     sampler_args=dict(n_backtrack=1))
        runner.train(n_epochs=200, batch_size=4000)
def trpo_cartpole(ctxt=None, seed=1):
    """Train TRPO with CartPole-v1 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(env_name='CartPole-v1')

        policy = CategoricalMLPPolicy(name='policy',
                                      env_spec=env.spec,
                                      hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo, env)
        runner.train(n_epochs=100, batch_size=4000)
def trpo_cartpole_recurrent(ctxt, seed, n_epochs, batch_size, plot):
    """Train TRPO with a recurrent policy on CartPole.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        n_epochs (int): Number of epochs for training.
        seed (int): Used to seed the random number generator to produce
            determinism.
        batch_size (int): Batch size used for training.
        plot (bool): Whether to plot or not.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = MetaRLEnv(env_name='CartPole-v1')

        policy = CategoricalLSTMPolicy(name='policy', env_spec=env.spec)

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    max_kl_step=0.01,
                    optimizer=ConjugateGradientOptimizer,
                    optimizer_args=dict(hvp_approach=FiniteDifferenceHvp(
                        base_eps=1e-5)))

        runner.setup(algo, env)
        runner.train(n_epochs=n_epochs, batch_size=batch_size, plot=plot)
def reps_gym_cartpole(ctxt=None, seed=1):
    """Train REPS with CartPole-v0 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = MetaRLEnv(gym.make('CartPole-v0'))

        policy = CategoricalMLPPolicy(env_spec=env.spec, hidden_sizes=[32, 32])

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = REPS(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99)

        runner.setup(algo, env)
        runner.train(n_epochs=100, batch_size=4000, plot=False)
示例#6
0
def her_metarl_tf(ctxt, env_id, seed):
    """Create metarl TensorFlow HER model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh,
        )

        exploration_policy = AddOrnsteinUhlenbeckNoise(
            env_spec=env.spec, policy=policy, sigma=hyper_parameters['sigma'])

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
        )

        replay_buffer = HERReplayBuffer(
            env_spec=env.spec,
            capacity_in_transitions=hyper_parameters['replay_buffer_size'],
            replay_k=4,
            reward_fn=env.compute_reward,
        )

        algo = DDPG(
            env_spec=env.spec,
            policy=policy,
            qf=qf,
            replay_buffer=replay_buffer,
            steps_per_epoch=hyper_parameters['steps_per_epoch'],
            policy_lr=hyper_parameters['policy_lr'],
            qf_lr=hyper_parameters['qf_lr'],
            target_update_tau=hyper_parameters['tau'],
            n_train_steps=hyper_parameters['n_train_steps'],
            discount=hyper_parameters['discount'],
            exploration_policy=exploration_policy,
            policy_optimizer=tf.compat.v1.train.AdamOptimizer,
            qf_optimizer=tf.compat.v1.train.AdamOptimizer,
            buffer_batch_size=256,
        )

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['n_rollout_steps'])
def td3_pendulum(ctxt=None, seed=1):
    """Wrap TD3 training task in the run_task function.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2'))

        policy = ContinuousMLPPolicy(env_spec=env.spec,
                                     hidden_sizes=[400, 300],
                                     hidden_nonlinearity=tf.nn.relu,
                                     output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddGaussianNoise(env.spec,
                                              policy,
                                              max_sigma=0.1,
                                              min_sigma=0.1)

        qf = ContinuousMLPQFunction(name='ContinuousMLPQFunction',
                                    env_spec=env.spec,
                                    hidden_sizes=[400, 300],
                                    action_merge_layer=0,
                                    hidden_nonlinearity=tf.nn.relu)

        qf2 = ContinuousMLPQFunction(name='ContinuousMLPQFunction2',
                                     env_spec=env.spec,
                                     hidden_sizes=[400, 300],
                                     action_merge_layer=0,
                                     hidden_nonlinearity=tf.nn.relu)

        replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

        td3 = TD3(env_spec=env.spec,
                  policy=policy,
                  policy_lr=1e-4,
                  qf_lr=1e-3,
                  qf=qf,
                  qf2=qf2,
                  replay_buffer=replay_buffer,
                  target_update_tau=1e-2,
                  steps_per_epoch=20,
                  n_train_steps=1,
                  smooth_return=False,
                  discount=0.99,
                  buffer_batch_size=100,
                  min_buffer_size=1e4,
                  exploration_policy=exploration_policy,
                  policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                  qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(td3, env)
        runner.train(n_epochs=500, batch_size=250)
示例#8
0
def test_to():
    """Test the torch function that moves modules to GPU.

        Test that the policy and qfunctions are moved to gpu if gpu is
        available.

    """
    env_names = ['CartPole-v0', 'CartPole-v1']
    task_envs = [MetaRLEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[1, 1],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    num_tasks = 2
    buffer_batch_size = 2
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=150,
                  eval_env=env,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)

    set_gpu_mode(torch.cuda.is_available())
    mtsac.to()
    device = global_device()
    for param in mtsac._qf1.parameters():
        assert param.device == device
    for param in mtsac._qf2.parameters():
        assert param.device == device
    for param in mtsac._qf2.parameters():
        assert param.device == device
    for param in mtsac._policy.parameters():
        assert param.device == device
    assert mtsac._log_alpha.device == device
示例#9
0
def run_metarl(env, seed, log_dir):
    '''
    Create metarl model and training.
    Replace the ddpg with the algorithm you want to run.
    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)

    runner = LocalRunner(snapshot_config)
    # Set up params for ddpg
    policy = TanhGaussianMLPPolicy2(env_spec=env.spec,
                                    hidden_sizes=params['policy_hidden_sizes'],
                                    hidden_nonlinearity=nn.ReLU,
                                    output_nonlinearity=None)

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=params['qf_hidden_sizes'],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=params['qf_hidden_sizes'],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = SACReplayBuffer(env_spec=env.spec,
                                    max_size=params['replay_buffer_size'])
    sampler_args = {
        'agent': policy,
        'max_path_length': 1000,
    }
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=params['gradient_steps_per_itr'],
              replay_buffer=replay_buffer,
              buffer_batch_size=params['buffer_batch_size'])

    # Set up logger since we are not using run_experiment
    tabular_log_file = osp.join(log_dir, 'progress.csv')
    tensorboard_log_dir = osp.join(log_dir)
    dowel_logger.add_output(dowel.StdOutput())
    dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
    dowel_logger.add_output(dowel.TensorBoardOutput(tensorboard_log_dir))

    runner.setup(algo=sac,
                 env=env,
                 sampler_cls=SimpleSampler,
                 sampler_args=sampler_args)

    runner.train(n_epochs=params['n_epochs'],
                 batch_size=params['gradient_steps_per_itr'])

    dowel_logger.remove_all()

    return tabular_log_file
示例#10
0
def rl2_ppo_metaworld_ml1_push(ctxt, seed, max_path_length, meta_batch_size,
                               n_epochs, episode_per_task):
    """Train PPO with ML1 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        max_path_length (int): Maximum length of a single rollout.
        meta_batch_size (int): Meta batch size.
        n_epochs (int): Total number of epochs for training.
        episode_per_task (int): Number of training episode per task.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        tasks = task_sampler.SetTaskSampler(lambda: RL2Env(
            env=mwb.ML1.get_train_tasks('push-v1')))

        env_spec = RL2Env(env=mwb.ML1.get_train_tasks('push-v1')).spec
        policy = GaussianGRUPolicy(name='policy',
                                   hidden_dim=64,
                                   env_spec=env_spec,
                                   state_include_action=False)

        baseline = LinearFeatureBaseline(env_spec=env_spec)

        algo = RL2PPO(rl2_max_path_length=max_path_length,
                      meta_batch_size=meta_batch_size,
                      task_sampler=tasks,
                      env_spec=env_spec,
                      policy=policy,
                      baseline=baseline,
                      discount=0.99,
                      gae_lambda=0.95,
                      lr_clip_range=0.2,
                      optimizer_args=dict(
                          batch_size=32,
                          max_epochs=10,
                      ),
                      stop_entropy_gradient=True,
                      entropy_method='max',
                      policy_ent_coeff=0.02,
                      center_adv=False,
                      max_path_length=max_path_length * episode_per_task)

        runner.setup(algo,
                     tasks.sample(meta_batch_size),
                     sampler_cls=LocalSampler,
                     n_workers=meta_batch_size,
                     worker_class=RL2Worker,
                     worker_args=dict(n_paths_per_trial=episode_per_task))

        runner.train(n_epochs=n_epochs,
                     batch_size=episode_per_task * max_path_length *
                     meta_batch_size)
def test_setup_no_batch_size():
    deterministic.set_seed(0)
    runner = LocalRunner(snapshot_config)
    algo = CrashingAlgo()
    algo.max_path_length = 100
    algo.policy = None
    runner.setup(algo, None, sampler_cls=LocalSampler)
    with pytest.raises(ValueError, match='batch_size'):
        runner.train(n_epochs=5)
def maml_trpo_metaworld_ml45(ctxt, seed, epochs, rollouts_per_task,
                             meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = MetaRLEnv(
        normalize(mwb.ML45.get_train_tasks(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = LinearFeatureBaseline(env_spec=env.spec)

    max_path_length = 100

    test_task_names = mwb.ML45.get_test_tasks().all_task_names
    test_tasks = [
        MetaRLEnv(
            normalize(mwb.ML45.from_task(task), expected_action_scale=10.))
        for task in test_task_names
    ]
    test_sampler = EnvPoolSampler(test_tasks)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=len(test_task_names))

    runner = LocalRunner(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
def maml_vpg_half_cheetah_dir(ctxt, seed, epochs, rollouts_per_task,
                              meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = MetaRLEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    task_sampler = SetTaskSampler(lambda: MetaRLEnv(
        normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=1,
                                   n_test_rollouts=10)

    runner = LocalRunner(ctxt)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   value_function=value_function,
                   max_path_length=max_path_length,
                   meta_batch_size=meta_batch_size,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1,
                   meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
def gaussian_gru_policy(ctxt, env_id, seed):
    """Create Gaussian GRU Policy on TF-PPO.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = GaussianGRUPolicy(
            env_spec=env.spec,
            hidden_dim=32,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    learning_rate=1e-3,
                ),
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
        )

        runner.setup(algo, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=5, batch_size=2048)
示例#15
0
def test_fixed_alpha():
    """Test if using fixed_alpha ensures that alpha is non differentiable."""
    env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2']
    task_envs = [MetaRLEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    test_envs = MultiEnvWrapper(task_envs,
                                sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    runner = LocalRunner(snapshot_config=snapshot_config)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    num_tasks = 2
    buffer_batch_size = 128
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=100,
                  max_path_length=100,
                  eval_env=test_envs,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=1,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size,
                  fixed_alpha=np.exp(0.5))
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    mtsac.to()
    assert torch.allclose(torch.Tensor([0.5] * num_tasks),
                          mtsac._log_alpha.to('cpu'))
    runner.setup(mtsac, env, sampler_cls=LocalSampler)
    runner.train(n_epochs=1, batch_size=128, plot=False)
    assert torch.allclose(torch.Tensor([0.5] * num_tasks),
                          mtsac._log_alpha.to('cpu'))
    assert not mtsac._use_automatic_entropy_tuning
def ppo_memorize_digits(ctxt=None, seed=1, batch_size=4000):
    """Train PPO on MemorizeDigits-v0 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        batch_size (int): Number of timesteps to use in each training step.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make('MemorizeDigits-v0')),
                        is_image=True)
        policy = CategoricalCNNPolicy(env_spec=env.spec,
                                      filters=(
                                                  (32, (5, 5)),
                                                  (64, (3, 3)),
                                                  (64, (2, 2)),
                                              ),
                                      strides=(4, 2, 1),
                                      padding='VALID',
                                      hidden_sizes=(256, ))  # yapf: disable

        baseline = GaussianCNNBaseline(
            env_spec=env.spec,
            regressor_args=dict(filters=(
                                            (32, (5, 5)),
                                            (64, (3, 3)),
                                            (64, (2, 2)),
                                        ),
                                strides=(4, 2, 1),
                                padding='VALID',
                                hidden_sizes=(256, ),
                                use_trust_region=True))  # yapf: disable

        algo = PPO(env_spec=env.spec,
                   policy=policy,
                   baseline=baseline,
                   max_path_length=100,
                   discount=0.99,
                   gae_lambda=0.95,
                   lr_clip_range=0.2,
                   policy_ent_coeff=0.0,
                   optimizer_args=dict(
                       batch_size=32,
                       max_epochs=10,
                       learning_rate=1e-3,
                   ),
                   flatten_input=False)

        runner.setup(algo, env)
        runner.train(n_epochs=1000, batch_size=batch_size)
示例#17
0
def tf_ppo_pendulum(ctxt=None, seed=1):
    """Train PPO with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2')))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=True,
            ),
        )

        # NOTE: make sure when setting entropy_method to 'max', set
        # center_adv to False and turn off policy gradient. See
        # tf.algos.NPO for detailed documentation.
        algo = RL2PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
            stop_entropy_gradient=True,
            entropy_method='max',
            policy_ent_coeff=0.002,
            center_adv=False,
        )

        runner.setup(algo, env)

        runner.train(n_epochs=120, batch_size=4096, plot=False)
示例#18
0
def test_deterministic_numpy():
    """Test deterministic behavior of numpy"""
    deterministic.set_seed(22)
    rand_tensor = np.random.rand(5, 5)
    deterministic_tensor = np.array(
        [[0.20846054, 0.48168106, 0.42053804, 0.859182, 0.17116155],
         [0.33886396, 0.27053283, 0.69104135, 0.22040452, 0.81195092],
         [0.01052687, 0.5612037, 0.81372619, 0.7451003, 0.18911136],
         [0.00614087, 0.77204387, 0.95783217, 0.70193788, 0.29757827],
         [0.76799274, 0.68821832, 0.38718348, 0.61520583, 0.42755524]])
    assert np.allclose(rand_tensor, deterministic_tensor)
示例#19
0
def sac_half_cheetah_batch(ctxt=None, seed=1):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(snapshot_config=ctxt)
    env = MetaRLEnv(normalize(gym.make('HalfCheetah-v2')))

    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[256, 256],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=1000,
              max_path_length=500,
              replay_buffer=replay_buffer,
              min_buffer_size=1e4,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=256,
              reward_scale=1.,
              steps_per_epoch=1)

    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    runner.setup(algo=sac, env=env, sampler_cls=LocalSampler)
    runner.train(n_epochs=1000, batch_size=1000)
示例#20
0
def test_deterministic_random():
    """Test deterministic behavior of random"""
    deterministic.set_seed(55)
    rand_array = [random.random() for _ in range(10)]
    deterministic_array = [
        0.09033985426934954, 0.9506335645634441, 0.14997105299598545,
        0.7393703706762795, 0.8412423959349363, 0.7471369518620469,
        0.30193759566924927, 0.35162393686161975, 0.7218626135761532,
        0.9656464075038401
    ]

    assert rand_array == deterministic_array
示例#21
0
def test_deterministic_pytorch():
    """Test deterministic behavior of PyTorch"""
    deterministic.set_seed(111)
    rand_tensor = torch.rand((5, 5))
    deterministic_tensor = torch.Tensor(
        [[0.715565920, 0.913992643, 0.281857729, 0.258099794, 0.631108642],
         [0.600053012, 0.931192935, 0.215290189, 0.603278518, 0.732785344],
         [0.185717106, 0.510067403, 0.754451334, 0.288391531, 0.577469587],
         [0.035843492, 0.102626860, 0.341910362, 0.439984798, 0.634111166],
         [0.622391582, 0.633447766, 0.857972443, 0.157199264, 0.785320759]])

    assert torch.all(torch.eq(rand_tensor, deterministic_tensor))
def ppo_metarl_tf(ctxt, env_id, seed):
    """Create metarl TensorFlow PPO model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = TF_GMP(
            env_spec=env.spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = TF_GMB(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(32, 32),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    learning_rate=3e-4,
                ),
            ),
        )

        algo = TF_PPO(env_spec=env.spec,
                      policy=policy,
                      baseline=baseline,
                      max_path_length=hyper_parameters['max_path_length'],
                      discount=0.99,
                      gae_lambda=0.95,
                      center_adv=True,
                      lr_clip_range=0.2,
                      optimizer_args=dict(batch_size=32,
                                          max_epochs=10,
                                          learning_rate=3e-4,
                                          verbose=True))

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['batch_size'])
示例#23
0
def run_metarl(env, seed, log_dir):
    """Create metarl PyTorch MAML model and training.

    Args:
        env (MetaRLEnv): Environment of the task.
        seed (int): Random positive integer for the trial.
        log_dir (str): Log dir path.

    Returns:
        str: Path to output csv file

    """
    deterministic.set_seed(seed)

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=hyper_parameters['hidden_sizes'],
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = MAMLTRPO(env=env,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=hyper_parameters['max_path_length'],
                    discount=hyper_parameters['discount'],
                    gae_lambda=hyper_parameters['gae_lambda'],
                    meta_batch_size=hyper_parameters['meta_batch_size'],
                    inner_lr=hyper_parameters['inner_lr'],
                    max_kl_step=hyper_parameters['max_kl'],
                    num_grad_updates=hyper_parameters['num_grad_update'])

    # Set up logger since we are not using run_experiment
    tabular_log_file = osp.join(log_dir, 'progress.csv')
    dowel_logger.add_output(dowel.StdOutput())
    dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
    dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))

    snapshot_config = SnapshotConfig(snapshot_dir=log_dir,
                                     snapshot_mode='all',
                                     snapshot_gap=1)

    runner = LocalRunner(snapshot_config=snapshot_config)
    runner.setup(algo, env, sampler_args=dict(n_envs=5))
    runner.train(n_epochs=hyper_parameters['n_epochs'],
                 batch_size=(hyper_parameters['fast_batch_size'] *
                             hyper_parameters['max_path_length']))

    dowel_logger.remove_all()

    return tabular_log_file
    def restore(self, from_dir, from_epoch='last'):
        """Restore experiment from snapshot.

        Args:
            from_dir (str): Directory of the pickle file
                to resume experiment from.
            from_epoch (str or int): The epoch to restore from.
                Can be 'first', 'last' or a number.
                Not applicable when snapshot_mode='last'.

        Returns:
            TrainArgs: Arguments for train().

        """
        saved = self._snapshotter.load(from_dir, from_epoch)

        self._setup_args = saved['setup_args']
        self._train_args = saved['train_args']
        self._stats = saved['stats']

        set_seed(self._setup_args.seed)

        self.setup(env=saved['env'],
                   algo=saved['algo'],
                   sampler_cls=self._setup_args.sampler_cls,
                   sampler_args=self._setup_args.sampler_args,
                   n_workers=saved['n_workers'],
                   worker_class=saved['worker_class'],
                   worker_args=saved['worker_args'])

        n_epochs = self._train_args.n_epochs
        last_epoch = self._stats.total_epoch
        last_itr = self._stats.total_itr
        total_env_steps = self._stats.total_env_steps
        batch_size = self._train_args.batch_size
        store_paths = self._train_args.store_paths
        pause_for_plot = self._train_args.pause_for_plot

        fmt = '{:<20} {:<15}'
        logger.log('Restore from snapshot saved in %s' %
                   self._snapshotter.snapshot_dir)
        logger.log(fmt.format('-- Train Args --', '-- Value --'))
        logger.log(fmt.format('n_epochs', n_epochs))
        logger.log(fmt.format('last_epoch', last_epoch))
        logger.log(fmt.format('batch_size', batch_size))
        logger.log(fmt.format('store_paths', store_paths))
        logger.log(fmt.format('pause_for_plot', pause_for_plot))
        logger.log(fmt.format('-- Stats --', '-- Value --'))
        logger.log(fmt.format('last_itr', last_itr))
        logger.log(fmt.format('total_env_steps', total_env_steps))

        self._train_args.start_epoch = last_epoch + 1
        return copy.copy(self._train_args)
def continuous_mlp_q_function(ctxt, env_id, seed):
    """Create Continuous MLP QFunction on TF-DDPG.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt, max_cpus=12) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            name='ContinuousMLPPolicy',
            hidden_sizes=hyper_params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddOrnsteinUhlenbeckNoise(
            env.spec, policy, sigma=hyper_params['sigma'])

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=hyper_params['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            name='ContinuousMLPQFunction')

        replay_buffer = PathBuffer(
            capacity_in_transitions=hyper_params['replay_buffer_size'])

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    steps_per_epoch=hyper_params['steps_per_epoch'],
                    policy_lr=hyper_params['policy_lr'],
                    qf_lr=hyper_params['qf_lr'],
                    target_update_tau=hyper_params['tau'],
                    n_train_steps=hyper_params['n_train_steps'],
                    discount=hyper_params['discount'],
                    min_buffer_size=int(1e4),
                    exploration_policy=exploration_policy,
                    policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                    qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(ddpg, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=hyper_params['n_epochs'],
                     batch_size=hyper_params['n_rollout_steps'])
def run_metarl(env, seed, log_dir):
    '''
    Create metarl model and training.
    Replace the ppo with the algorithm you want to run.
    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=12,
                            inter_op_parallelism_threads=12)
    sess = tf.Session(config=config)
    with LocalTFRunner(snapshot_config, sess=sess, max_cpus=12) as runner:
        env = TfEnv(normalize(env))

        policy = CategoricalLSTMPolicy(
            env_spec=env.spec,
            hidden_dim=32,
            hidden_nonlinearity=tf.nn.tanh,
        )

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                tf_optimizer_args=dict(learning_rate=1e-3),
            ),
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        dowel_logger.add_output(dowel.StdOutput())
        dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
        dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))

        runner.setup(algo, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=488, batch_size=2048)
        dowel_logger.remove_all()

        return tabular_log_file
示例#27
0
def categorical_cnn_policy(ctxt, env_id, seed):
    """Create Categorical CNN Policy on TF-PPO.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt, max_cpus=12) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = CategoricalCNNPolicy(
            env_spec=env.spec,
            conv_filters=hyper_params['conv_filters'],
            conv_strides=hyper_params['conv_strides'],
            conv_pad=hyper_params['conv_pad'],
            hidden_sizes=hyper_params['hidden_sizes'])

        baseline = GaussianCNNBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                filters=hyper_params['conv_filters'],
                strides=hyper_params['conv_strides'],
                padding=hyper_params['conv_pad'],
                hidden_sizes=hyper_params['hidden_sizes'],
                use_trust_region=hyper_params['use_trust_region']))

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
            flatten_input=False,
        )

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_params['n_epochs'],
                     batch_size=hyper_params['batch_size'])
示例#28
0
def rl2_trpo_halfcheetah(ctxt, seed, max_path_length, meta_batch_size,
                         n_epochs, episode_per_task):
    """Train TRPO with HalfCheetah environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        max_path_length (int): Maximum length of a single rollout.
        meta_batch_size (int): Meta batch size.
        n_epochs (int): Total number of epochs for training.
        episode_per_task (int): Number of training episode per task.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        tasks = task_sampler.SetTaskSampler(
            lambda: RL2Env(env=HalfCheetahVelEnv()))

        env_spec = RL2Env(env=HalfCheetahVelEnv()).spec
        policy = GaussianGRUPolicy(name='policy',
                                   hidden_dim=64,
                                   env_spec=env_spec,
                                   state_include_action=False)

        baseline = LinearFeatureBaseline(env_spec=env_spec)

        algo = RL2TRPO(rl2_max_path_length=max_path_length,
                       meta_batch_size=meta_batch_size,
                       task_sampler=tasks,
                       env_spec=env_spec,
                       policy=policy,
                       baseline=baseline,
                       max_path_length=max_path_length * episode_per_task,
                       discount=0.99,
                       max_kl_step=0.01,
                       optimizer=ConjugateGradientOptimizer,
                       optimizer_args=dict(hvp_approach=FiniteDifferenceHvp(
                           base_eps=1e-5)))

        runner.setup(algo,
                     tasks.sample(meta_batch_size),
                     sampler_cls=LocalSampler,
                     n_workers=meta_batch_size,
                     worker_class=RL2Worker,
                     worker_args=dict(n_paths_per_trial=episode_per_task))

        runner.train(n_epochs=n_epochs,
                     batch_size=episode_per_task * max_path_length *
                     meta_batch_size)
示例#29
0
def test_sac_inverted_double_pendulum():
    """Test Sac performance on inverted pendulum."""
    # pylint: disable=unexpected-keyword-arg
    env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    runner = LocalRunner(snapshot_config=snapshot_config)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=100,
              max_path_length=100,
              replay_buffer=replay_buffer,
              min_buffer_size=1e3,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=2)
    runner.setup(sac, env, sampler_cls=LocalSampler)
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    ret = runner.train(n_epochs=12, batch_size=200, plot=False)
    # check that automatic entropy tuning is used
    assert sac._use_automatic_entropy_tuning
    # assert that there was a gradient properly connected to alpha
    # this doesn't verify that the path from the temperature objective is
    # correct.
    assert not torch.allclose(torch.Tensor([1.]), sac._log_alpha.to('cpu'))
    # check that policy is learning beyond predecided threshold
    assert ret > 85
def ppo_metarl_pytorch(ctxt, env_id, seed):
    """Create metarl PyTorch PPO model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    runner = LocalRunner(ctxt)

    env = MetaRLEnv(normalize(gym.make(env_id)))

    policy = PyTorch_GMP(env.spec,
                         hidden_sizes=(32, 32),
                         hidden_nonlinearity=torch.tanh,
                         output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    policy_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)),
                                        policy,
                                        max_optimization_epochs=10,
                                        minibatch_size=64)

    vf_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)),
                                    value_function,
                                    max_optimization_epochs=10,
                                    minibatch_size=64)

    algo = PyTorch_PPO(env_spec=env.spec,
                       policy=policy,
                       value_function=value_function,
                       policy_optimizer=policy_optimizer,
                       vf_optimizer=vf_optimizer,
                       max_path_length=hyper_parameters['max_path_length'],
                       discount=0.99,
                       gae_lambda=0.95,
                       center_adv=True,
                       lr_clip_range=0.2)

    runner.setup(algo, env)
    runner.train(n_epochs=hyper_parameters['n_epochs'],
                 batch_size=hyper_parameters['batch_size'])