示例#1
0
    def test_gaussian_mlp_policy(self):
        gaussian_mlp_policy = GaussianMLPPolicy(env_spec=self.env,
                                                hidden_sizes=(1, ))
        self.sess.run(tf.compat.v1.global_variables_initializer())

        obs = self.env.observation_space.high
        assert gaussian_mlp_policy.get_action(obs)
示例#2
0
    def test_get_action(self, mock_normal, obs_dim, action_dim):
        mock_normal.return_value = 0.5
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('metarl.tf.policies.'
                         'gaussian_mlp_policy.GaussianMLPModel'),
                        new=SimpleGaussianMLPModel):
            policy = GaussianMLPPolicy(env_spec=env.spec)

        env.reset()
        obs, _, _, _ = env.step(1)

        action, prob = policy.get_action(obs)

        expected_action = np.full(action_dim, 0.75)
        expected_mean = np.full(action_dim, 0.5)
        expected_log_std = np.full(action_dim, np.log(0.5))

        assert env.action_space.contains(action)
        assert np.array_equal(action, expected_action)
        assert np.array_equal(prob['mean'], expected_mean)
        assert np.array_equal(prob['log_std'], expected_log_std)

        actions, probs = policy.get_actions([obs, obs, obs])
        for action, mean, log_std in zip(actions, probs['mean'],
                                         probs['log_std']):
            assert env.action_space.contains(action)
            assert np.array_equal(action, expected_action)
            assert np.array_equal(prob['mean'], expected_mean)
            assert np.array_equal(prob['log_std'], expected_log_std)
示例#3
0
    def test_is_pickleable(self, obs_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('metarl.tf.policies.'
                         'gaussian_mlp_policy.GaussianMLPModel'),
                        new=SimpleGaussianMLPModel):
            policy = GaussianMLPPolicy(env_spec=env.spec)

        env.reset()
        obs, _, _, _ = env.step(1)
        obs_dim = env.spec.observation_space.flat_dim

        with tf.compat.v1.variable_scope('GaussianMLPPolicy/GaussianMLPModel',
                                         reuse=True):
            return_var = tf.compat.v1.get_variable('return_var')
        # assign it to all one
        return_var.load(tf.ones_like(return_var).eval())
        output1 = self.sess.run(
            policy.model.outputs[:-1],
            feed_dict={policy.model.input: [obs.flatten()]})

        p = pickle.dumps(policy)
        with tf.compat.v1.Session(graph=tf.Graph()) as sess:
            policy_pickled = pickle.loads(p)
            output2 = sess.run(
                policy_pickled.model.outputs[:-1],
                feed_dict={policy_pickled.model.input: [obs.flatten()]})
            assert np.array_equal(output1, output2)
示例#4
0
def run_task(snapshot_config, *_):
    """Run task.

    Args:
        snapshot_config (metarl.experiment.SnapshotConfig): The snapshot
            configuration used by LocalRunner to create the snapshotter.

        _ (object): Ignored by this function.

    """
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env1 = TfEnv(normalize(PointEnv(goal=(-1., 0.))))
        env2 = TfEnv(normalize(PointEnv(goal=(1., 0.))))
        env = MultiEnvWrapper([env1, env2])

        policy = GaussianMLPPolicy(env_spec=env.spec)

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    gae_lambda=0.95,
                    lr_clip_range=0.2,
                    policy_ent_coeff=0.0)

        runner.setup(algo, env)
        runner.train(n_epochs=40, batch_size=2048, plot=False)
def trpo_swimmer(ctxt=None, seed=1, batch_size=4000):
    """Train TRPO with Swimmer-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        batch_size (int): Number of timesteps to use in each training step.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(gym.make('Swimmer-v2'))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=500,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo, env)
        runner.train(n_epochs=40, batch_size=batch_size)
示例#6
0
 def test_process_samples_continuous_non_recurrent(self):
     env = TfEnv(DummyBoxEnv())
     policy = GaussianMLPPolicy(env_spec=env.spec)
     baseline = GaussianMLPBaseline(env_spec=env.spec)
     max_path_length = 100
     with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
         algo = BatchPolopt2(env_spec=env.spec,
                             policy=policy,
                             baseline=baseline,
                             max_path_length=max_path_length,
                             flatten_input=True)
         runner.setup(algo, env, sampler_args=dict(n_envs=1))
         runner.train(n_epochs=1, batch_size=max_path_length)
         paths = runner.obtain_samples(0)
         samples = algo.process_samples(0, paths)
         # Since there is only 1 vec_env in the sampler and DummyBoxEnv
         # never terminate until it reaches max_path_length, batch size
         # must be max_path_length, i.e. 100
         assert samples['observations'].shape == (
             max_path_length, env.observation_space.flat_dim)
         assert samples['actions'].shape == (max_path_length,
                                             env.action_space.flat_dim)
         assert samples['rewards'].shape == (max_path_length, )
         assert samples['baselines'].shape == (max_path_length, )
         assert samples['returns'].shape == (max_path_length, )
         # there is only 1 path
         assert samples['lengths'].shape == (1, )
         # non-recurrent policy has empty agent info
         assert samples['agent_infos'] == {}
         # DummyBoxEnv has env_info dummy
         assert samples['env_infos']['dummy'].shape == (max_path_length, )
         assert isinstance(samples['average_return'], float)
def test_meta_evaluator_with_tf():
    set_seed(100)
    tasks = SetTaskSampler(lambda: MetaRLEnv(PointEnv()))
    max_path_length = 200
    env = MetaRLEnv(PointEnv())
    n_traj = 3
    with tempfile.TemporaryDirectory() as log_dir_name:
        ctxt = SnapshotConfig(snapshot_dir=log_dir_name,
                              snapshot_mode='none',
                              snapshot_gap=1)
        with LocalTFRunner(ctxt) as runner:
            meta_eval = MetaEvaluator(test_task_sampler=tasks,
                                      max_path_length=max_path_length,
                                      n_test_tasks=10,
                                      n_exploration_traj=n_traj)
            policy = GaussianMLPPolicy(env.spec)
            algo = MockTFAlgo(env, policy, max_path_length, n_traj, meta_eval)
            runner.setup(algo, env)
            log_file = tempfile.NamedTemporaryFile()
            csv_output = CsvOutput(log_file.name)
            logger.add_output(csv_output)
            meta_eval.evaluate(algo)
            algo_pickle = cloudpickle.dumps(algo)
        tf.compat.v1.reset_default_graph()
        with LocalTFRunner(ctxt) as runner:
            algo2 = cloudpickle.loads(algo_pickle)
            runner.setup(algo2, env)
            runner.train(10, 0)
示例#8
0
def multi_env_trpo(ctxt=None, seed=1):
    """Train TRPO on two different PointEnv instances.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env1 = MetaRLEnv(normalize(PointEnv(goal=(-1., 0.))))
        env2 = MetaRLEnv(normalize(PointEnv(goal=(1., 0.))))
        env = MultiEnvWrapper([env1, env2])

        policy = GaussianMLPPolicy(env_spec=env.spec)

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    gae_lambda=0.95,
                    lr_clip_range=0.2,
                    policy_ent_coeff=0.0)

        runner.setup(algo, env)
        runner.train(n_epochs=40, batch_size=2048, plot=False)
示例#9
0
def trpo_ml1(ctxt=None, seed=1):
    """Run task."""
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        Ml1_reach_envs = get_ML1_envs_test(env_id)
        env = MTMetaWorldWrapper(Ml1_reach_envs)

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(hidden_sizes=(64, 64), use_trust_region=False),
        )

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=150,
                    discount=0.99,
                    gae_lambda=0.97,
                    max_kl_step=0.01)

        timesteps = 6000000
        batch_size = 150 * env.num_tasks
        epochs = timesteps // batch_size

        print(f'epochs: {epochs}, batch_size: {batch_size}')

        runner.setup(algo, env, sampler_args={'n_envs': 1})
        runner.train(n_epochs=epochs, batch_size=batch_size, plot=False)
示例#10
0
    def test_dm_control_tf_policy(self):
        task = ALL_TASKS[0]

        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = TfEnv(DmControlEnv.from_suite(*task))

            policy = GaussianMLPPolicy(
                env_spec=env.spec,
                hidden_sizes=(32, 32),
            )

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = TRPO(
                env_spec=env.spec,
                policy=policy,
                baseline=baseline,
                max_path_length=5,
                discount=0.99,
                max_kl_step=0.01,
            )

            runner.setup(algo, env)
            runner.train(n_epochs=1, batch_size=10)

            env.close()
示例#11
0
def run_task(snapshot_config, *_):
    """Run the job.

    Args:
        snapshot_config (metarl.experiment.SnapshotConfig): Configuration
            values for snapshotting.
        *_ (object): Hyperparameters (unused).

    """
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env = TfEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo,
                     env,
                     sampler_cls=ISSampler,
                     sampler_args=dict(n_backtrack=1))
        runner.train(n_epochs=200, batch_size=4000)
示例#12
0
def vpgis_inverted_pendulum(ctxt=None, seed=1):
    """Train TRPO with InvertedPendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = VPG(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            max_kl_step=0.01,
        )

        runner.setup(algo,
                     env,
                     sampler_cls=ISSampler,
                     sampler_args=dict(n_backtrack=1))
        runner.train(n_epochs=40, batch_size=4000)
示例#13
0
def trpo_mt50(ctxt=None, seed=1):

    """Run task."""
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = MultiEnvWrapper(MT50_envs, env_ids, sample_strategy=round_robin_strategy)

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(64, 64))

        # baseline = LinearFeatureBaseline(env_spec=env.spec)
        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
            ),
        )

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=150,
                    discount=0.99,
                    gae_lambda=0.97,
                    max_kl_step=0.01)

        runner.setup(algo, env)
        runner.train(n_epochs=1500, batch_size=len(MT50_envs)*10*150)
示例#14
0
    def test_rl2_sampler_less_envs_than_meta_batch(self):
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            policy = GaussianMLPPolicy(env_spec=self.env.spec,
                                       hidden_sizes=[32, 32])

            baseline = LinearFeatureBaseline(env_spec=self.env.spec)

            algo = PPO(env_spec=self.env.spec,
                       policy=policy,
                       baseline=baseline,
                       max_path_length=self.max_path_length,
                       discount=0.99)
            runner.setup(algo,
                         env=self.env,
                         sampler_cls=RL2Sampler,
                         sampler_args=dict(
                             meta_batch_size=self.meta_batch_size,
                             n_envs=self.meta_batch_size // 2))
            runner._start_worker()
            assert isinstance(runner._sampler, RL2Sampler)
            assert runner._sampler._envs_per_worker == 1
            all_indices = np.arange(self.meta_batch_size)
            for i in range(self.meta_batch_size // 2):
                assert all(runner._sampler._vec_envs_indices[i] ==
                           all_indices[i * 2:i * 2 + 2])
            paths = runner._sampler.obtain_samples(0)
            assert len(paths) == self.meta_batch_size
            assert len(paths[0]['observations']) == self.max_path_length
            paths = runner._sampler.obtain_samples(
                0, self.meta_batch_size * 10 * self.max_path_length)
            assert len(paths) == self.meta_batch_size * 10
            assert len(paths[0]['observations']) == self.max_path_length
示例#15
0
def run_task(snapshot_config, *_):
    """Run task.

    Args:
        snapshot_config (metarl.experiment.SnapshotConfig): Configuration
            values for snapshotting.
        *_ (object): Hyperparameters (unused).

    """
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env = TfEnv(gym.make('Swimmer-v2'))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=500,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo,
                     env,
                     sampler_cls=RaySampler,
                     sampler_args={'seed': seed})
        runner.train(n_epochs=40, batch_size=4000)
def gaussian_mlp_policy(ctxt, env_id, seed):
    """Create Gaussian MLP Policy on TF-PPO.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    learning_rate=1e-3,
                ),
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
        )

        runner.setup(algo, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=5, batch_size=2048)
示例#17
0
def tf_ppo_pendulum(ctxt=None, seed=1):
    """Train PPO with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2')))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=True,
            ),
        )

        # NOTE: make sure when setting entropy_method to 'max', set
        # center_adv to False and turn off policy gradient. See
        # tf.algos.NPO for detailed documentation.
        algo = RL2PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
            stop_entropy_gradient=True,
            entropy_method='max',
            policy_ent_coeff=0.002,
            center_adv=False,
        )

        runner.setup(algo, env)

        runner.train(n_epochs=120, batch_size=4096, plot=False)
 def setup_method(self):
     super().setup_method()
     self.env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=tf.nn.tanh,
         output_nonlinearity=None,
     )
     self.baseline = GaussianMLPBaseline(
         env_spec=self.env.spec,
         regressor_args=dict(hidden_sizes=(32, 32)),
     )
示例#19
0
def ppo_ml1(ctxt=None, seed=1):
    """Run task."""
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        Ml1_reach_envs = get_ML1_envs_test(env_id)
        env = MTMetaWorldWrapper(Ml1_reach_envs)

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
            hidden_w_init=tf.constant_initializer(np.sqrt(2)),
            hidden_b_init=tf.constant_initializer(np.sqrt(2)),
        )

        # baseline = LinearFeatureBaseline(env_spec=env.spec)
        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
                hidden_w_init=tf.constant_initializer(np.sqrt(2)),
                hidden_b_init=tf.constant_initializer(np.sqrt(2)),
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=150,
            discount=0.99,
            gae_lambda=0.97,
            lr_clip_range=0.2,
            optimizer_args=dict(
                batch_size=30,
                max_epochs=4,
                tf_optimizer_args=dict(learning_rate=3e-4, ),
            ),
        )

        timesteps = 6000000
        batch_size = 150 * env.num_tasks
        epochs = timesteps // batch_size

        print(f'epochs: {epochs}, batch_size: {batch_size}')

        runner.setup(algo, env, sampler_args={'n_envs': 1})
        runner.train(n_epochs=epochs, batch_size=batch_size, plot=False)
示例#20
0
    def test_dist_info_sym(self, obs_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(('metarl.tf.policies.'
                         'gaussian_mlp_policy.GaussianMLPModel'),
                        new=SimpleGaussianMLPModel):
            policy = GaussianMLPPolicy(env_spec=env.spec)

        env.reset()
        obs, _, _, _ = env.step(1)

        obs_dim = env.spec.observation_space.flat_dim
        obs_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, obs_dim))

        dist1_sym = policy.dist_info_sym(obs_ph, name='p1_sym')

        # flatten output
        expected_mean = [np.full(np.prod(action_dim), 0.5)]
        expected_log_std = [np.full(np.prod(action_dim), np.log(0.5))]

        prob = self.sess.run(dist1_sym, feed_dict={obs_ph: [obs.flatten()]})

        assert np.array_equal(prob['mean'], expected_mean)
        assert np.array_equal(prob['log_std'], expected_log_std)
示例#21
0
    def test_is_pickleable(self, obs_dim, action_dim):
        env = MetaRLEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        obs_var = tf.compat.v1.placeholder(
            tf.float32,
            shape=[None, None, env.observation_space.flat_dim],
            name='obs')
        policy = GaussianMLPPolicy(env_spec=env.spec)

        policy.build(obs_var)
        obs = env.reset()

        with tf.compat.v1.variable_scope('GaussianMLPPolicy/GaussianMLPModel',
                                         reuse=True):
            bias = tf.compat.v1.get_variable(
                'dist_params/mean_network/hidden_0/bias')
        # assign it to all one
        bias.load(tf.ones_like(bias).eval())
        output1 = self.sess.run(
            [policy.distribution.loc,
             policy.distribution.stddev()],
            feed_dict={policy.model.input: [[obs.flatten()]]})

        p = pickle.dumps(policy)
        with tf.compat.v1.Session(graph=tf.Graph()) as sess:
            obs_var = tf.compat.v1.placeholder(
                tf.float32,
                shape=[None, None, env.observation_space.flat_dim],
                name='obs')
            policy_pickled = pickle.loads(p)
            policy_pickled.build(obs_var)
            output2 = sess.run(
                [
                    policy_pickled.distribution.loc,
                    policy_pickled.distribution.stddev()
                ],
                feed_dict={policy_pickled.model.input: [[obs.flatten()]]})
            assert np.array_equal(output1, output2)
示例#22
0
    def run_task(self, snapshot_config, *_):
        config = tf.ConfigProto(device_count={'GPU': 0},
                                allow_soft_placement=True,
                                intra_op_parallelism_threads=12,
                                inter_op_parallelism_threads=12)
        sess = tf.Session(config=config)
        with LocalTFRunner(snapshot_config=snapshot_config,
                           sess=sess) as runner:
            env = gym.make(self._env)
            env = TfEnv(normalize(env))
            env.reset()
            policy = GaussianMLPPolicy(
                env_spec=env.spec,
                hidden_sizes=(32, 32),
                hidden_nonlinearity=tf.nn.tanh,
                output_nonlinearity=None,
            )

            baseline = GaussianMLPBaseline(
                env_spec=env.spec,
                regressor_args=dict(
                    hidden_sizes=(64, 64),
                    use_trust_region=False,
                    optimizer=FirstOrderOptimizer,
                    optimizer_args=dict(
                        batch_size=32,
                        max_epochs=10,
                        tf_optimizer_args=dict(learning_rate=1e-3),
                    ),
                ),
            )

            algo = PPO(
                env_spec=env.spec,
                policy=policy,
                baseline=baseline,
                max_path_length=100,
                discount=0.99,
                gae_lambda=0.95,
                lr_clip_range=0.2,
                policy_ent_coeff=0.0,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    tf_optimizer_args=dict(learning_rate=1e-3),
                ),
            )
            runner.setup(algo, env, sampler_args=dict(n_envs=12))
            runner.train(n_epochs=5, batch_size=2048)
示例#23
0
def ppo_mt10_sampling(ctxt=None, seed=1):

    """Run task."""
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = MultiEnvSamplingWrapper(MT10_envs, env_ids, len(env_ids)-skip_size, sample_strategy=round_robin_strategy)

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=150,
            discount=0.99,
            gae_lambda=0.97,
            lr_clip_range=0.2,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                tf_optimizer_args=dict(
                    learning_rate=3e-4,
                ),
            ),
        )

        batch_size = (len(env_ids)-skip_size)*10*150
        epochs = (total_steps//batch_size)+10

        print ("epochs:", epochs, "batch_size:", batch_size)

        runner.setup(algo, env)
        runner.train(n_epochs=epochs, batch_size=batch_size, plot=False)
示例#24
0
def run_task(snapshot_config, *_):
    """Run task."""
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env = TfEnv(gym.make('Swimmer-v2'))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=500,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo, env)
        runner.train(n_epochs=40, batch_size=4000)
示例#25
0
def trpo_swimmer_ray_sampler(ctxt=None, seed=1):
    """tf_trpo_swimmer.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.


    """
    # Since this is an example, we are running ray in a reduced state.
    # One can comment this line out in order to run ray at full capacity
    ray.init(memory=52428800,
             object_store_memory=78643200,
             ignore_reinit_error=True,
             log_to_driver=False,
             include_webui=False)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        set_seed(seed)
        env = MetaRLEnv(gym.make('Swimmer-v2'))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=500,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo,
                     env,
                     sampler_cls=RaySampler,
                     sampler_args={'seed': seed})
        runner.train(n_epochs=40, batch_size=4000)
示例#26
0
    def test_rl2_sampler_invalid_num_of_env_again(self):
        with pytest.raises(
                ValueError,
                match='n_envs must be a multiple of meta_batch_size'):
            with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
                policy = GaussianMLPPolicy(env_spec=self.env.spec,
                                           hidden_sizes=[32, 32])

                baseline = LinearFeatureBaseline(env_spec=self.env.spec)

                algo = PPO(env_spec=self.env.spec,
                           policy=policy,
                           baseline=baseline,
                           max_path_length=self.max_path_length,
                           discount=0.99)
                runner.setup(algo,
                             env=self.env,
                             sampler_cls=RL2Sampler,
                             sampler_args=dict(
                                 meta_batch_size=self.meta_batch_size,
                                 n_envs=self.meta_batch_size + 1))
                runner._start_worker()
                runner._sampler.obtain_samples(0)
示例#27
0
def trpo_metarl_tf(ctxt, env_id, seed):
    """Create metarl Tensorflow TROI model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['hidden_sizes'],
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=hyper_parameters['max_path_length'],
                    discount=hyper_parameters['discount'],
                    gae_lambda=hyper_parameters['gae_lambda'],
                    max_kl_step=hyper_parameters['max_kl'])

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['batch_size'])
示例#28
0
    def test_tnpg_inverted_pendulum(self):
        """Test TNPG with InvertedPendulum-v2 environment."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = TfEnv(normalize(gym.make('InvertedPendulum-v2')))

            policy = GaussianMLPPolicy(name='policy',
                                       env_spec=env.spec,
                                       hidden_sizes=(32, 32))

            baseline = LinearFeatureBaseline(env_spec=env.spec)

            algo = TNPG(env_spec=env.spec,
                        policy=policy,
                        baseline=baseline,
                        max_path_length=100,
                        discount=0.99,
                        optimizer_args=dict(reg_coeff=5e-1))

            runner.setup(algo, env)

            last_avg_ret = runner.train(n_epochs=10, batch_size=10000)
            assert last_avg_ret > 15

            env.close()
示例#29
0
    def test_ppo_pendulum_continuous_baseline(self):
        """Test PPO with Pendulum environment."""
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
            policy = GaussianMLPPolicy(
                env_spec=env.spec,
                hidden_sizes=(64, 64),
                hidden_nonlinearity=tf.nn.tanh,
                output_nonlinearity=None,
            )
            baseline = ContinuousMLPBaseline(
                env_spec=env.spec,
                regressor_args=dict(hidden_sizes=(32, 32)),
            )
            algo = PPO(
                env_spec=env.spec,
                policy=policy,
                baseline=baseline,
                max_path_length=100,
                discount=0.99,
                gae_lambda=0.95,
                lr_clip_range=0.2,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                ),
                stop_entropy_gradient=True,
                entropy_method='max',
                policy_ent_coeff=0.02,
                center_adv=False,
            )
            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
            assert last_avg_ret > 100

            env.close()
示例#30
0
    def test_get_action(self, obs_dim, action_dim):
        env = MetaRLEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        obs_var = tf.compat.v1.placeholder(
            tf.float32,
            shape=[None, None, env.observation_space.flat_dim],
            name='obs')
        policy = GaussianMLPPolicy(env_spec=env.spec)

        policy.build(obs_var)
        env.reset()
        obs, _, _, _ = env.step(1)

        action, _ = policy.get_action(obs.flatten())
        assert env.action_space.contains(action)
        actions, _ = policy.get_actions(
            [obs.flatten(), obs.flatten(),
             obs.flatten()])
        for action in actions:
            assert env.action_space.contains(action)