示例#1
0
    def test_get_actions(self, batch_size, hidden_sizes):
        """Test get_actions function."""
        env_spec = MetaRLEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        act_dim = env_spec.action_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = GaussianMLPPolicy(env_spec=env_spec,
                                   hidden_sizes=hidden_sizes,
                                   init_std=init_std,
                                   hidden_nonlinearity=None,
                                   std_parameterization='exp',
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)

        dist = policy(obs)

        expected_mean = torch.full([batch_size, act_dim],
                                   obs_dim *
                                   (torch.Tensor(hidden_sizes).prod().item()))
        expected_variance = init_std**2
        action, prob = policy.get_actions(obs)

        assert np.array_equal(prob['mean'], expected_mean.numpy())
        assert dist.variance.equal(
            torch.full((batch_size, act_dim), expected_variance))
        assert action.shape == (batch_size, act_dim)
    def test_is_pickleable(self, batch_size, hidden_sizes):
        env_spec = TfEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = GaussianMLPPolicy(env_spec=env_spec,
                                   hidden_sizes=hidden_sizes,
                                   init_std=init_std,
                                   hidden_nonlinearity=None,
                                   std_parameterization='exp',
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)

        output1_action, output1_prob = policy.get_actions(obs)

        p = pickle.dumps(policy)
        policy_pickled = pickle.loads(p)
        output2_action, output2_prob = policy_pickled.get_actions(obs)

        assert np.array_equal(output1_prob['mean'], output2_prob['mean'])
        assert output1_action.shape == output2_action.shape