示例#1
0
    def create_pseudo_item(self, item: Item, *,
                           discriminator_name: str) -> Item:
        pseudo_item = self.pseudo_item_map.get(item.type_)
        if pseudo_item is not None:
            return pseudo_item

        discriminator_field = (
            "$kind",
            typeinfo.typeinfo(t.NewType(discriminator_name, str)),
            metadata_.metadata(),
        )
        pseudo_fields = [
            (
                sub_type.__name__,
                typeinfo.typeinfo(t.Optional[sub_type]),  # type:ignore
                metadata_.metadata(required=False),
            ) for sub_type in item.args
        ]

        pseudo_item = Item(
            name=item.name,
            type_=item.type_,
            fields=[discriminator_field] + pseudo_fields,
            args=[],
        )
        self.pseudo_item_map[item.type_] = pseudo_item
        # hack: temporary
        self.pseudo_item_map[_option_type(item.type_)] = dataclasses.replace(
            pseudo_item,
            name=f"*{pseudo_item.name}",
            type_=t.Optional[item.type_])
        return pseudo_item
示例#2
0
 def resolve_typeinfo(self, typ: MemberOrRef) -> typeinfo.TypeInfo:
     # TODO: support _ForwardRef
     default = self.config.typeinfo_unexpected_handler
     try:
         if hasattr(typ, "__forward_arg__"):
             raise NotImplementedError("ForwardRef is not supported yet")
         v = t.cast(t.Type[t.Any], typ)
         return typeinfo.typeinfo(v, default=default)
     except TypeError:
         return typeinfo.typeinfo(typ.__class__, default=default)
示例#3
0
    def type_string(self, typ: t.Type[t.Any]) -> str:
        """
        >>> TypeStringPrinter().type_string(str)
        'str'
        >>> TypeStringPrinter().type_string(int)
        'int'

        >>> import typing
        >>> TypeStringPrinter().type_string(typing.Optional[int])
        'int?'

        >>> TypeStringPrinter().type_string(typing.List)
        'list[Any]'
        >>> TypeStringPrinter().type_string(typing.List[str])
        'list[str]'
        >>> TypeStringPrinter().type_string(typing.List[typing.List[str]])
        'list[list[str]]'

        >>> TypeStringPrinter().type_string(typing.List[typing.Optional[str]])
        'list[str?]'
        >>> TypeStringPrinter().type_string(typing.Optional[typing.List[str]])
        'list[str]?'

        >>> TypeStringPrinter().type_string(typing.Dict[str, int])
        'dict[str, int]'
        >>> TypeStringPrinter().type_string(typing.Dict[str, typing.Set[int]])
        'dict[str, set[int]]'

        >>> class A: pass;
        >>> TypeStringPrinter().type_string(A)
        'A'
        >>> TypeStringPrinter().type_string(t.Optional[A])
        'A?'
        """
        return self._type_string(typeinfo(typ))
示例#4
0
    def resolve_schema(self, typ: t.Type[t.Any]) -> t.Dict[str, t.Any]:
        from metashape.outputs.openapi import detect
        from metashape.typeinfo import typeinfo

        if typ is _nonetype:
            return {}
        if hasattr(typ, "asdict"):
            return typ.asdict()

        info = typeinfo(typ, default=handle_unexpected_type)
        schema_type = detect.schema_type(info)
        # TODO: support dict, oneOf,anyOf,allOf
        if schema_type == "array":
            return {
                "type": "array",
                "items": self.refs[info.user_defined_type],
            }
        elif schema_type == "object":
            return self.refs[typ]
        else:
            prop = {"type": schema_type}
            if info.is_newtype:
                if hasattr(info.supertypes[0], "__name__"):
                    prop["format"] = info.supertypes[0].__name__.replace(
                        "_", "-")
            return prop
示例#5
0
def handle_unexpected_type(typ: t.Type[t.Any]) -> TypeInfo:
    from metashape.typeinfo import typeinfo

    origin = t.get_origin(typ)
    if hasattr(origin, "__emit__"):  # for Query
        return typeinfo(t.get_args(typ)[0])
    raise ValueError(f"unsupported type {typ}")
示例#6
0
def _unwrap_type(
    typ: t.Type[t.Any],
    *,
    _unwrap_origins: t.Tuple[t.Type[t.Any], ...] = (dict, list, set, tuple),
) -> t.Type[t.Any]:
    if hasattr(typ, "__origin__") and typ.__origin__ in _unwrap_origins:
        return typeinfo(typ).user_defined_type or typ
    return typ
示例#7
0
    def resolve_schema(self, typ: t.Type[t.Any]) -> t.Dict[str, t.Any]:
        from metashape.outputs.openapi import detect
        from metashape.typeinfo import typeinfo

        info = typeinfo(typ)
        schema_type = detect.schema_type(info)
        # TODO: support dict, oneOf,anyOf,allOf
        if schema_type == "array":
            return {
                "type": "array",
                "items": self.refs[info.user_defined_type],
            }
        else:
            return self.refs[typ]
示例#8
0
    def resolve_pytype_str(self,
                           typ: t.Type[t.Any],
                           *,
                           nonetype: t.Type[t.Any] = type(None)) -> Symbol:
        if typ.__module__ == "builtins":
            if typ.__name__ == "NoneType":
                return "None"
            else:
                return Symbol(typ.__name__)

        info = typeinfo(typ)
        if info.is_optional:
            return Symbol(f"t.Optional[{self.resolve_pytype_str(info.type_)}]")
        elif info.is_newtype:
            mod = self.resolve_module(info.raw)
            sym = self.m.toplevel.from_(mod).import_(info.raw.__name__)
            return sym
        raise NotImplementedError(typ)
示例#9
0
def type_string(
    typ: t.Type[t.Any], to_str: t.Optional[t.Callable[TypeInfo], str] = None
) -> str:
    """
    >>> type_string(str)
    'str'
    >>> type_string(int)
    'int'

    >>> import typing
    >>> type_string(typing.Optional[int])
    'int?'

    >>> type_string(typing.List)
    'list[Any]'
    >>> type_string(typing.List[str])
    'list[str]'
    >>> type_string(typing.List[typing.List[str]])
    'list[list[str]]'

    >>> type_string(typing.List[typing.Optional[str]])
    'list[str?]'
    >>> type_string(typing.Optional[typing.List[str]])
    'list[str]?'

    >>> type_string(typing.Dict[str, int])
    'dict[str, int]'
    >>> type_string(typing.Dict[str, typing.Set[int]])
    'dict[str, set[int]]'

    >>> class A: pass;
    >>> type_string(A)
    'A'
    >>> type_string(t.Optional[A])
    'A?'
    """
    return _type_string(typeinfo(typ), to_str=to_str or _to_str_default)
示例#10
0
 def _typeinfo_on_default(raw_type: t.Type[t.Any]) -> typeinfo.TypeInfo:
     typ, _ = _unwrap_pointer_type(raw_type)
     resolved = typeinfo.typeinfo(typ)
     self.raw_type_map[resolved] = raw_type
     return resolved
示例#11
0
def test_enum(input, want):
    from metashape.outputs.openapi.detect import enum as callFUT

    info = typeinfo.typeinfo(input)
    got = callFUT(info)
    assert got == want