isnotebook_i = isnotebook() if isnotebook_i: from tqdm.notebook import tqdm verbose = True else: from tqdm import tqdm verbose = False # # Script Inputs target_cols = ["g_o", "g_oh", ] # # Read Data # + df_eff_ox = get_df_eff_ox() df_ads = get_df_ads() df_ads = df_ads.set_index(["compenv", "slab_id", "active_site", ], drop=False) df_features = get_df_features() df_features.index = df_features.index.droplevel(level=5) df_jobs = get_df_jobs() df_slab = get_df_slab() df_jobs_data = get_df_jobs_data() df_jobs_data["rerun_from_oh"] = df_jobs_data["rerun_from_oh"].fillna(value=False) df_dft = get_df_dft()
directory = os.path.join(root_path_i, "out_data") if not os.path.exists(directory): os.makedirs(directory) path_i = os.path.join(root_path_i, "out_data/df_eff_ox.pickle") with open(path_i, "wb") as fle: pickle.dump(df_eff_ox, fle) # ######################################################### # ######################################################### with open(path_i, "rb") as fle: df_eff_ox = pickle.load(fle) # ######################################################### # + from methods import get_df_eff_ox df_eff_ox_tmp = get_df_eff_ox() df_eff_ox_tmp.head() # - # ######################################################### print(20 * "# # ") print("All done!") print("Run time:", np.round((time.time() - ti) / 60, 3), "min") print("oxid_state.ipynb") print(20 * "# # ") # ######################################################### # + active="" # # #