def augmented_lagrangian_method(initial_lagrange_multiplier,
                                initial_penalty,
                                initial_tolerance,
                                global_tolerance,
                                max_iter,
                                robot,
                                generate_initial_guess=True,
                                convergence_analysis=False):
    objective_function = generate_objective_function(robot)
    lagrange_multiplier_function = generate_lagrange_multiplier(robot)

    if generate_initial_guess is True:
        thetas = robot.generate_initial_guess()
    elif generate_initial_guess == "random":
        thetas = np.random.rand(robot.n * robot.s) * 2 * np.pi
    else:
        thetas = np.zeros(robot.n * robot.s)

    mu = initial_penalty
    tolerance = initial_tolerance
    lagrange_multiplier = initial_lagrange_multiplier

    # Saving the iterates if convergence analysis is active
    if convergence_analysis is True:
        iterates = thetas.copy().reshape((robot.n * robot.s, 1))

    print("Starting augmented lagrangian method")
    for i in range(max_iter):
        augmented_lagrangian_objective = generate_augmented_lagrangian_objective(
            robot, lagrange_multiplier, mu)
        augmented_lagrangian_objective_gradient = generate_augmented_lagrangian_objective_gradient(
            robot, lagrange_multiplier, mu)
        thetas = BFGS(thetas, augmented_lagrangian_objective,
                      augmented_lagrangian_objective_gradient, tolerance)
        lagrange_multiplier = lagrange_multiplier_function(
            thetas, lagrange_multiplier, mu)
        mu *= 1.4
        tolerance *= 0.7

        # Adding the new thetas to iterates used for convergence analysis
        if convergence_analysis is True:
            iterates = np.concatenate(
                (iterates, thetas.reshape(robot.n * robot.s, 1)), axis=1)

        current_norm = np.linalg.norm(
            augmented_lagrangian_objective_gradient(thetas))
        if current_norm < global_tolerance:
            path_figure(thetas.reshape((robot.n, robot.s), order='F'),
                        robot,
                        show=True)
            print('The objective function evaluates to:',
                  objective_function(thetas))

            print("Augmented lagrangian method successful")
            if convergence_analysis is True:
                return iterates, generate_objective_function(robot)
            else:
                return thetas

    print("Augmented lagrangian method unsuccessful")
示例#2
0
def extended_augmented_lagrangian_method(initial_lagrange_multiplier,
                                         initial_penalty,
                                         initial_tolerance,
                                         global_tolerance,
                                         max_iter,
                                         robot,
                                         barrier_penalty,
                                         generate_initial_guess=False,
                                         convergence_analysis=False):
    for i in range(robot.s):
        if not is_close_to_config_space(robot.destinations[:, i],
                                        robot.neighbor_tree, robot.lengths):
            print("Destination points not in configuration space")
            return None

    lagrange_multiplier_function = generate_extended_lagrange_multiplier(robot)

    if generate_initial_guess is True:
        thetas_slack = np.zeros(3 * robot.n * robot.s, )
        thetas_slack[:robot.n * robot.s] = robot.generate_initial_guess()
        thetas_slack[robot.n *
                     robot.s::2] = thetas_slack[:robot.n * robot.
                                                s] + robot.angular_constraint
        thetas_slack[robot.n * robot.s +
                     1::2] = robot.angular_constraint - thetas_slack[:robot.n *
                                                                     robot.s]
    elif generate_initial_guess == "random":
        thetas_slack = np.zeros(3 * robot.n * robot.s, )
        thetas_slack[:robot.n *
                     robot.s] = np.random.rand(robot.n * robot.s) * 2 * np.pi
        thetas_slack[robot.n *
                     robot.s::2] = thetas_slack[:robot.n * robot.
                                                s] + robot.angular_constraint
        thetas_slack[robot.n * robot.s +
                     1::2] = robot.angular_constraint - thetas_slack[:robot.n *
                                                                     robot.s]

    else:
        thetas_slack = np.zeros(3 * robot.n * robot.s, )

    mu = initial_penalty
    tolerance = initial_tolerance
    lagrange_multiplier = initial_lagrange_multiplier

    # Saving the iterates if convergence analysis is active
    if convergence_analysis is True:
        iterates = thetas_slack.copy().reshape((3 * robot.n * robot.s, 1))

    print("Starting augmented lagrangian method")
    for i in range(max_iter):
        augmented_lagrangian_objective = generate_extended_augmented_objective(
            robot, barrier_penalty, lagrange_multiplier, mu)
        augmented_lagrangian_objective_gradient = generate_extended_augmented_gradient(
            robot, barrier_penalty, lagrange_multiplier, mu)
        previous_thetas_slack = thetas_slack
        thetas_slack = BFGS(thetas_slack, augmented_lagrangian_objective,
                            augmented_lagrangian_objective_gradient, tolerance)

        lagrange_multiplier = lagrange_multiplier_function(
            thetas_slack, lagrange_multiplier, mu)
        mu *= 5
        tolerance *= 0.9

        # Adding the new thetas to iterates used for convergence analysis
        if convergence_analysis is True:
            iterates = np.concatenate(
                (iterates, thetas_slack.reshape(robot.n * robot.s, 1)), axis=1)

        current_norm = np.linalg.norm(
            augmented_lagrangian_objective_gradient(thetas_slack))
        if current_norm < global_tolerance or np.linalg.norm(
                previous_thetas_slack - thetas_slack) < 0.1:
            path_figure(thetas_slack[:robot.n * robot.s].reshape(
                (robot.n, robot.s), order='F'),
                        robot,
                        show=True)

            print("Augmented lagrangian method successful")
            if convergence_analysis is True:
                return iterates, generate_extended_objective_function
            else:
                return thetas_slack

    path_figure(thetas_slack[:robot.n * robot.s].reshape((robot.n, robot.s),
                                                         order='F'),
                robot,
                show=True)
    print("Augmented lagrangian method unsuccessful")