示例#1
0
def test_arrow_projection_list(wind_projection_list):
    """Test that arrows will be projected when lat/lon lists are provided."""
    lat, lon, u, v = wind_projection_list

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, lon, lat)
    stnplot.plot_arrow(u, v)
    assert stnplot.arrows
def create_ornaments(n_ornaments,color='k'):
    """create ornaments and return the artist."""
    ornaments_y=np.random.triangular(3,3.5,24.5,n_ornaments)
    bounds=get_x_bounds(ornaments_y)
    ornaments_x=np.random.rand(n_ornaments)*2*bounds-bounds
    stationplot=StationPlot(ax,ornaments_x,ornaments_y,clip_on=True,fontsize=24)
    symbols=np.array(list(wx_code_map.values()))
    wx=symbols[np.random.randint(0,102,n_ornaments)]
    return stationplot.plot_symbol('c',wx,current_weather,color=color)
示例#3
0
def test_scalar_unit_conversion_exception():
    """Test that errors are raise if unit conversion is requested on un-united data."""
    x_pos = np.array([0])
    y_pos = np.array([0])

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    with pytest.raises(ValueError):
        stnplot.plot_parameter('C', 50, plot_units='degC')
示例#4
0
def test_barb_unit_conversion_exception(u, v):
    """Test that errors are raise if unit conversion is requested on un-united data."""
    x_pos = np.array([0])
    y_pos = np.array([0])

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    with pytest.raises(ValueError):
        stnplot.plot_barb(u, v, plot_units='knots')
示例#5
0
def test_barb_unit_conversion_exception(u, v):
    """Test that errors are raise if unit conversion is requested on un-united data."""
    x_pos = np.array([0])
    y_pos = np.array([0])

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    with pytest.raises(ValueError):
        stnplot.plot_barb(u, v, plot_units='knots')
示例#6
0
def test_plot_symbol_fontsize():
    """Test changing fontsize in plotting of symbols."""
    fig = plt.figure(figsize=(3, 3))
    ax = plt.subplot(1, 1, 1)

    sp = StationPlot(ax, [0], [0], fontsize=8, spacing=32)
    sp.plot_symbol('E', [92], current_weather)
    sp.plot_symbol('W', [96], current_weather, fontsize=100)

    return fig
示例#7
0
def test_barb_projection(wind_plot, ccrs):
    """Test that barbs are properly projected (#598)."""
    u, v, x, y = wind_plot

    # Plot and check barbs (they should align with grid lines)
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.LambertConformal())
    ax.gridlines(xlocs=[-120, -105, -90, -75, -60], ylocs=np.arange(24, 55, 6))
    sp = StationPlot(ax, x, y, transform=ccrs.PlateCarree())
    sp.plot_barb(u, v)

    return fig
示例#8
0
def test_barb_projection_list():
    """Test that barbs will be projected when lat/lon lists are provided."""
    lat = [38.22, 38.18, 38.25]
    lon = [-85.76, -85.86, -85.77]
    u = [1.89778964, -3.83776523, 3.64147732] * units('m/s')
    v = [1.93480072, 1.31000184, 1.36075552] * units('m/s')

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, lon, lat)
    stnplot.plot_barb(u, v)
    assert stnplot.barbs
示例#9
0
def test_arrow_unit_conversion(barbs_units):
    """Test that arrow units can be converted at plot time (#737)."""
    x_pos, y_pos, u_wind, v_wind = barbs_units

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    stnplot.plot_arrow(u_wind, v_wind, plot_units='knots')
    ax.set_xlim(-5, 5)
    ax.set_ylim(-5, 5)

    return fig
示例#10
0
def test_arrow_projection(wind_plot):
    """Test that arrows are properly projected."""
    u, v, x, y = wind_plot

    # Plot and check barbs (they should align with grid lines)
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.LambertConformal())
    ax.gridlines(xlocs=[-135, -120, -105, -90, -75, -60, -45])
    sp = StationPlot(ax, x, y, transform=ccrs.PlateCarree())
    sp.plot_arrow(u, v)
    sp.plot_arrow(u, v)  # plot_arrow used twice to hit removal if statement

    return fig
示例#11
0
def test_symbol_pandas_timeseries():
    """Test the usage of Pandas DatetimeIndex as a valid `x` input into StationPlot."""
    pd.plotting.register_matplotlib_converters()
    rng = pd.date_range('12/1/2017', periods=5, freq='D')
    sc = [1, 2, 3, 4, 5]
    ts = pd.Series(sc, index=rng)
    fig, ax = plt.subplots()
    y = np.ones(len(ts.index))
    stationplot = StationPlot(ax, ts.index, y, fontsize=12)
    stationplot.plot_symbol('C', ts, sky_cover)
    ax.xaxis.set_major_locator(matplotlib.dates.DayLocator())
    ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%-d'))

    return fig
示例#12
0
def test_barb_no_default_unit_conversion():
    """Test that barbs units are left alone by default (#737)."""
    x_pos = np.array([0])
    y_pos = np.array([0])
    u_wind = np.array([3.63767155210412]) * units('m/s')
    v_wind = np.array([3.63767155210412]) * units('m/s')

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    stnplot.plot_barb(u_wind, v_wind)
    ax.set_xlim(-5, 5)
    ax.set_ylim(-5, 5)

    return fig
示例#13
0
def test_barb_unit_conversion():
    """Test that barbs units can be converted at plot time (#737)."""
    x_pos = np.array([0])
    y_pos = np.array([0])
    u_wind = np.array([3.63767155210412]) * units('m/s')
    v_wind = np.array([3.63767155210412]) * units('m/s')

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    stnplot.plot_barb(u_wind, v_wind, plot_units='knots')
    ax.set_xlim(-5, 5)
    ax.set_ylim(-5, 5)

    return fig
示例#14
0
def test_barb_projection():
    """Test that barbs are properly projected (#598)."""
    # Test data of all southerly winds
    v = np.full((5, 5), 10, dtype=np.float64)
    u = np.zeros_like(v)
    x, y = np.meshgrid(np.linspace(-120, -60, 5), np.linspace(25, 50, 5))

    # Plot and check barbs (they should align with grid lines)
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.LambertConformal())
    ax.gridlines(xlocs=[-135, -120, -105, -90, -75, -60, -45])
    sp = StationPlot(ax, x, y, transform=ccrs.PlateCarree())
    sp.plot_barb(u, v)

    return fig
示例#15
0
def test_barb_unit_conversion():
    """Test that barbs units can be converted at plot time (#737)."""
    x_pos = np.array([0])
    y_pos = np.array([0])
    u_wind = np.array([3.63767155210412]) * units('m/s')
    v_wind = np.array([3.63767155210412]) * units('m/s')

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    stnplot.plot_barb(u_wind, v_wind, plot_units='knots')
    ax.set_xlim(-5, 5)
    ax.set_ylim(-5, 5)

    return fig
示例#16
0
def test_barb_no_default_unit_conversion():
    """Test that barbs units are left alone by default (#737)."""
    x_pos = np.array([0])
    y_pos = np.array([0])
    u_wind = np.array([3.63767155210412]) * units('m/s')
    v_wind = np.array([3.63767155210412]) * units('m/s')

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    stnplot = StationPlot(ax, x_pos, y_pos)
    stnplot.plot_barb(u_wind, v_wind)
    ax.set_xlim(-5, 5)
    ax.set_ylim(-5, 5)

    return fig
示例#17
0
def test_barb_projection():
    """Test that barbs are properly projected (#598)."""
    # Test data of all southerly winds
    v = np.full((5, 5), 10, dtype=np.float64)
    u = np.zeros_like(v)
    x, y = np.meshgrid(np.linspace(-120, -60, 5), np.linspace(25, 50, 5))

    # Plot and check barbs (they should align with grid lines)
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.LambertConformal())
    ax.gridlines()
    sp = StationPlot(ax, x, y, transform=ccrs.PlateCarree())
    sp.plot_barb(u, v)

    return fig
示例#18
0
def test_nws_layout():
    """Test metpy's NWS layout for station plots."""
    fig = plt.figure(figsize=(3, 3))

    # testing data
    x = np.array([1])
    y = np.array([2])
    data = {'air_temperature': np.array([77]) * units.degF,
            'dew_point_temperature': np.array([71]) * units.degF,
            'air_pressure_at_sea_level': np.array([999.8]) * units('mbar'),
            'eastward_wind': np.array([15.]) * units.knots,
            'northward_wind': np.array([15.]) * units.knots, 'cloud_coverage': [7],
            'present_weather': [80], 'high_cloud_type': [1], 'medium_cloud_type': [3],
            'low_cloud_type': [2], 'visibility_in_air': np.array([5.]) * units.mile,
            'tendency_of_air_pressure': np.array([-0.3]) * units('mbar'),
            'tendency_of_air_pressure_symbol': [8]}

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=12, spacing=16)
    nws_layout.plot(sp, data)

    sp.ax.set_xlim(0, 3)
    sp.ax.set_ylim(0, 3)

    return fig
示例#19
0
def test_simple_layout():
    """Test metpy's simple layout for station plots."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])
    data = {
        'air_temperature': np.array([32., 212.]) * units.degF,
        'dew_point_temperature': np.array([28., 80.]) * units.degF,
        'air_pressure_at_sea_level': np.array([29.92, 28.00]) * units.inHg,
        'eastward_wind': np.array([2, 0]) * units.knots,
        'northward_wind': np.array([0, 5]) * units.knots,
        'cloud_coverage': [3, 8],
        'present_weather': [65, 75],
        'unused': [1, 2]
    }

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=12)
    simple_layout.plot(sp, data)

    sp.ax.set_xlim(0, 6)
    sp.ax.set_ylim(0, 6)

    return fig
示例#20
0
def test_stationlayout_api():
    """Test the StationPlot API."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])
    data = {'temp': np.array([32., 212.]) * units.degF, 'u': np.array([2, 0]) * units.knots,
            'v': np.array([0, 5]) * units.knots, 'stid': ['KDEN', 'KSHV'], 'cover': [3, 8]}

    # Set up the layout
    layout = StationPlotLayout()
    layout.add_barb('u', 'v', units='knots')
    layout.add_value('NW', 'temp', fmt='0.1f', units=units.degC, color='darkred')
    layout.add_symbol('C', 'cover', sky_cover, color='magenta')
    layout.add_text((0, 2), 'stid', color='darkgrey')
    layout.add_value('NE', 'dewpt', color='green')  # This should be ignored

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=12)
    layout.plot(sp, data)

    sp.ax.set_xlim(0, 6)
    sp.ax.set_ylim(0, 6)

    return fig
示例#21
0
def test_plot_text_fontsize():
    """Test changing fontsize in plot_text."""
    fig = plt.figure(figsize=(3, 3))
    ax = plt.subplot(1, 1, 1)

    # testing data
    x = np.array([1])
    y = np.array([2])

    # Make the plot
    sp = StationPlot(ax, x, y, fontsize=36)
    sp.plot_text('NW', ['72'], fontsize=24)
    sp.plot_text('SW', ['60'], fontsize=4)

    sp.ax.set_xlim(0, 3)
    sp.ax.set_ylim(0, 3)

    return fig
示例#22
0
def test_station_plot_locations():
    """Test that locations are properly replaced."""
    fig = plt.figure(figsize=(3, 3))

    locations = ['C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW', 'N2', 'NNE', 'ENE', 'E2',
                 'ESE', 'SSE', 'S2', 'SSW', 'WSW', 'W2', 'WNW', 'NNW']
    x_pos = np.array([0])
    y_pos = np.array([0])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x_pos, y_pos, fontsize=8, spacing=24)
    for loc in locations:
        sp.plot_text(loc, [loc])

    sp.ax.set_xlim(-2, 2)
    sp.ax.set_ylim(-2, 2)

    return fig
示例#23
0
def test_stationplot_clipping():
    """Test the that clipping can be enabled as a default parameter."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16, clip_on=True)
    sp.plot_barb([20, 0], [0, -50])
    sp.plot_text('E', ['KOKC', 'ICT'], color='blue')
    sp.plot_parameter('NW', [10.5, 15] * units.degC, color='red')
    sp.plot_symbol('S', [5, 7], high_clouds, color='green')

    sp.ax.set_xlim(1, 5)
    sp.ax.set_ylim(1.75, 4.25)

    return fig
示例#24
0
def test_station_plot_replace():
    """Test that locations are properly replaced."""
    fig = plt.figure(figsize=(3, 3))

    # testing data
    x = np.array([1])
    y = np.array([1])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16)
    sp.plot_barb([20], [0])
    sp.plot_barb([5], [0])
    sp.plot_parameter('NW', [10.5], color='red')
    sp.plot_parameter('NW', [20], color='blue')

    sp.ax.set_xlim(-3, 3)
    sp.ax.set_ylim(-3, 3)

    return fig
示例#25
0
def test_stationplot_api():
    """Test the StationPlot API."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16)
    sp.plot_barb([20, 0], [0, -50])
    sp.plot_text('E', ['KOKC', 'ICT'], color='blue')
    sp.plot_parameter('NW', [10.5, 15] * units.degC, color='red')
    sp.plot_symbol('S', [5, 7], high_clouds, color='green')

    sp.ax.set_xlim(0, 6)
    sp.ax.set_ylim(0, 6)

    return fig
示例#26
0
 def plotStations(self, obs):
     self.obs = obs
     print('setting station plot')
     self.stnPlots = StationPlot(self.axes,
                                 self.obs['longitude'],
                                 self.obs['latitude'],
                                 clip_on=True,
                                 transform=self.PlateCarree)
     print('plotting')
     self.stationLayout.plot(self.stnPlots, self.obs)
     self.canvas.draw()
     print('Done plotting')
示例#27
0
def test_stationplot_api():
    """Test the StationPlot API."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16)
    sp.plot_barb([20, 0], [0, -50])
    sp.plot_text('E', ['KOKC', 'ICT'], color='blue')
    sp.plot_parameter('NW', [10.5, 15] * units.degC, color='red')
    sp.plot_symbol('S', [5, 7], high_clouds, color='green')

    sp.ax.set_xlim(0, 6)
    sp.ax.set_ylim(0, 6)

    return fig
示例#28
0
def test_stationplot_clipping():
    """Test the that clipping can be enabled as a default parameter."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16, clip_on=True)
    sp.plot_barb([20, 0], [0, -50])
    sp.plot_text('E', ['KOKC', 'ICT'], color='blue')
    sp.plot_parameter('NW', [10.5, 15] * units.degC, color='red')
    sp.plot_symbol('S', [5, 7], high_clouds, color='green')

    sp.ax.set_xlim(1, 5)
    sp.ax.set_ylim(1.75, 4.25)

    return fig
示例#29
0
def test_station_plot_replace():
    """Test that locations are properly replaced."""
    fig = plt.figure(figsize=(3, 3))

    # testing data
    x = np.array([1])
    y = np.array([1])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16)
    sp.plot_barb([20], [0])
    sp.plot_barb([5], [0])
    sp.plot_parameter('NW', [10.5], color='red')
    sp.plot_parameter('NW', [20], color='blue')

    sp.ax.set_xlim(-3, 3)
    sp.ax.set_ylim(-3, 3)

    return fig
示例#30
0
def test_stationplot_api():
    """Test the StationPlot API."""
    fig = plt.figure(figsize=(9, 9))

    # testing data
    x = np.array([1, 5])
    y = np.array([2, 4])

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), x, y, fontsize=16)
    sp.plot_barb([20, 0], [0, -50])
    sp.plot_text("E", ["KOKC", "ICT"], color="blue")
    sp.plot_parameter("NW", [10.5, 15], color="red")
    sp.plot_symbol("S", [5, 7], high_clouds, color="green")

    sp.ax.set_xlim(0, 6)
    sp.ax.set_ylim(0, 6)

    return fig
示例#31
0
def test_plot_symbol_fontsize():
    """Test changing fontsize in plotting of symbols."""
    fig = plt.figure(figsize=(3, 3))
    ax = plt.subplot(1, 1, 1)

    sp = StationPlot(ax, [0], [0], fontsize=8, spacing=32)
    sp.plot_symbol('E', [92], current_weather)
    sp.plot_symbol('W', [96], current_weather, fontsize=100)

    return fig
示例#32
0
def test_station_layout_odd_data():
    """Test more corner cases with data passed in."""
    fig = plt.figure(figsize=(9, 9))

    # Set up test layout
    layout = StationPlotLayout()
    layout.add_barb('u', 'v')
    layout.add_value('W', 'temperature', units='degF')

    # Now only use data without wind and no units
    data = {'temperature': [25.]}

    # Make the plot
    sp = StationPlot(fig.add_subplot(1, 1, 1), [1], [2], fontsize=12)
    layout.plot(sp, data)
    assert True
示例#33
0
def test_plot_text_fontsize():
    """Test changing fontsize in plot_text."""
    fig = plt.figure(figsize=(3, 3))
    ax = plt.subplot(1, 1, 1)

    # testing data
    x = np.array([1])
    y = np.array([2])

    # Make the plot
    sp = StationPlot(ax, x, y, fontsize=36)
    sp.plot_text('NW', ['72'], fontsize=24)
    sp.plot_text('SW', ['60'], fontsize=4)

    sp.ax.set_xlim(0, 3)
    sp.ax.set_ylim(0, 3)

    return fig
示例#34
0
def radar_plus_obs(station, my_datetime, radar_title=None, bb=None,
                   station_radius=75000., station_layout=simple_layout,
                  field='reflectivity', vmin=None, vmax=None,
                  sweep=0):
    if radar_title is None:
        radar_title = 'Area '

    radar = get_radar_from_aws(station, my_datetime)

    # Lets get some geographical context
    if bb is None:
        lats = radar.gate_latitude
        lons = radar.gate_longitude

        min_lon = lons['data'].min()
        min_lat = lats['data'].min()
        max_lat = lats['data'].max()
        max_lon = lons['data'].max()
        bb = {'north' : max_lat,
              'south' : min_lat,
              'east' : max_lon,
              'west' : min_lon}
    else:
        min_lon = bb['west']
        min_lat = bb['south']
        max_lon = bb['east']
        max_lat = bb['north']

    print('min_lat:', min_lat, ' min_lon:', min_lon,
          ' max_lat:', max_lat, ' max_lon:', max_lon)

    index_at_start = radar.sweep_start_ray_index['data'][sweep]
    time_at_start_of_radar = num2date(radar.time['data'][index_at_start],
                                      radar.time['units'])
    pacific = pytz.timezone('US/Central')
    local_time = pacific.fromutc(time_at_start_of_radar)
    fancy_date_string = local_time.strftime('%A %B %d at %I:%M %p %Z')
    print(fancy_date_string)

    metar_cat = TDSCatalog('http://thredds.ucar.edu/thredds/catalog/nws/metar/ncdecoded/catalog.xml?'
                           'dataset=nws/metar/ncdecoded/Metar_Station_Data_fc.cdmr')
    dataset = list(metar_cat.datasets.values())[0]
    ncss = NCSS(dataset.access_urls["NetcdfSubset"])

    query = ncss.query().accept('csv').time(time_at_start_of_radar)
    query.lonlat_box(north=max_lat, south=min_lat, east=max_lon, west=min_lon)
    query.variables('air_temperature', 'dew_point_temperature', 'inches_ALTIM',
                    'wind_speed', 'wind_from_direction', 'cloud_area_fraction', 'weather')
    data = ncss.get_data(query)

    lats = data['latitude'][:]
    lons = data['longitude'][:]
    tair = data['air_temperature'][:]
    dewp = data['dew_point_temperature'][:]
    slp = (data['inches_ALTIM'][:] * units('inHg')).to('mbar')

    # Convert wind to components
    u, v = mpcalc.get_wind_components(data['wind_speed'] * units.knot,
                                      data['wind_from_direction'] * units.deg)

    # Need to handle missing (NaN) and convert to proper code
    cloud_cover = 8 * data['cloud_area_fraction']
    cloud_cover[np.isnan(cloud_cover)] = 9
    cloud_cover = cloud_cover.astype(np.int)

    # For some reason these come back as bytes instead of strings
    stid = [s.decode() for s in data['station']]

    # Convert the text weather observations to WMO codes we can map to symbols
    #wx_text = [s.decode('ascii') for s in data['weather']]
    #wx_codes = np.array(list(to_code(wx_text)))

    sfc_data = {'latitude': lats, 'longitude': lons,
                'air_temperature': tair, 'dew_point_temperature': dewp, 'eastward_wind': u,
                'northward_wind': v, 'cloud_coverage': cloud_cover,
                'air_pressure_at_sea_level': slp}#, 'present_weather': wx_codes}

    fig = plt.figure(figsize=(10, 8))
    display = pyart.graph.RadarMapDisplayCartopy(radar)
    lat_0 = display.loc[0]
    lon_0 = display.loc[1]

    # Set our Projection
    projection = cartopy.crs.Mercator(central_longitude=lon_0,
                                      min_latitude=min_lat, max_latitude=max_lat)

    # Call our function to reduce data
    filter_data(sfc_data, projection, radius=station_radius, sort_key='present_weather')
    print(sweep)
    display.plot_ppi_map(
        field, sweep, colorbar_flag=True,
        title=radar_title +' area ' + field + ' \n' + fancy_date_string,
        projection=projection,
        min_lon=min_lon, max_lon=max_lon, min_lat=min_lat, max_lat=max_lat,
        vmin=vmin, vmax=vmax)

    # Mark the radar
    display.plot_point(lon_0, lat_0, label_text='Radar')

    # Get the current axes and plot some lat and lon lines
    gl = display.ax.gridlines(draw_labels=True,
                              linewidth=2, color='gray', alpha=0.5, linestyle='--')
    gl.xlabels_top = False
    gl.ylabels_right = False

    # Make the station plot
    stationplot = StationPlot(display.ax, sfc_data['longitude'], sfc_data['latitude'],
                              transform=cartopy.crs.PlateCarree(),
                              fontsize=12)
    station_layout.plot(stationplot, sfc_data)

    return display, time_at_start_of_radar
示例#35
0
def main():
    ### START OF USER SETTINGS BLOCK ###

    # FILE/DATA SETTINGS
    # file path to input file
    datafile = '/home/jgodwin/python/sfc_observations/surface_observations.txt'
    timefile = '/home/jgodwin/python/sfc_observations/validtime.txt'
    # file path to county shapefile
    ctyshppath = '/home/jgodwin/python/sfc_observations/shapefiles/counties/countyl010g.shp'
    # file path to ICAO list
    icaopath = '/home/jgodwin/python/sfc_observations/icao_list.csv'
    icaodf = pd.read_csv(icaopath, index_col='STATION')

    # MAP SETTINGS
    # map names (doesn't go anywhere (yet), just for tracking purposes)
    maps = ['CONUS', 'Texas', 'Tropical Atlantic']
    # minimum radius allowed between points (in km)
    radius = [100.0, 50.0, 75.0]
    # map boundaries (longitude/latitude degrees)
    west = [-122, -108, -100]
    east = [-73, -93, -60]
    south = [23, 25, 10]
    north = [50, 38, 35]
    restart_projection = [True, False, True]
    # use county map? (True/False): warning, counties load slow!
    usecounties = [False, False, False]

    # OUTPUT SETTINGS
    # save directory for output
    savedir = '/var/www/html/images/'
    # filenames for output
    savenames = ['conus.png', 'texas.png', 'atlantic.png']

    # TEST MODE SETTINGS
    test = False  # True/False
    testnum = 5  # which map are you testing? corresponds to index in "maps" above

    ### END OF USER SETTING SECTION ###

    # if there are any missing weather codes, add them here
    wx_code_map.update({
        '-RADZ': 59,
        '-TS': 17,
        'VCTSSH': 80,
        '-SGSN': 77,
        'SHUP': 76,
        'FZBR': 48,
        'FZUP': 76
    })

    ### READ IN DATA / SETUP MAP ###
    # read in the valid time file
    vt = open(timefile).read()
    # read in the data
    for i in range(len(maps)):
        if test and i != testnum:
            continue
        with open(datafile) as f:
            data = pd.read_csv(f,header=0,names=['siteID','lat','lon','elev','slp','temp','sky','dpt','wx','wdr',\
                'wsp'],na_values=-99999)
            # drop rows with missing winds
            data = data.dropna(how='any', subset=['wdr', 'wsp'])

        # remove data not within our domain

        data = data[(data['lat'] >= south[i]-2.0) & (data['lat'] <= north[i]+2.0) \
            & (data['lon'] >= west[i]-2.0) & (data['lon'] <= east[i]+2.0)]

        # filter data (there seems to be one site always reporting a really anomalous temperature
        data = data[data['temp'] <= 50]

        print("Working on %s" % maps[i])
        # set up the map projection central longitude/latitude and the standard parallels
        cenlon = (west[i] + east[i]) / 2.0
        cenlat = (south[i] + north[i]) / 2.0
        sparallel = cenlat
        if cenlat > 0:
            cutoff = -30
            flip = False
        elif cenlat < 0:
            cutoff = 30
            flip = True
        # create the projection
        if restart_projection:
            proj = ccrs.LambertConformal(central_longitude=cenlon,
                                         central_latitude=cenlat,
                                         standard_parallels=[sparallel],
                                         cutoff=cutoff)
            point_locs = proj.transform_points(ccrs.PlateCarree(),
                                               data['lon'].values,
                                               data['lat'].values)
        data = data[reduce_point_density(point_locs, radius[i] * 1000)]
        # state borders
        state_boundaries = cfeature.NaturalEarthFeature(category='cultural',\
            name='admin_1_states_provinces_lines',scale='50m',facecolor='none')
        # county boundaries
        if usecounties[i]:
            county_reader = shpreader.Reader(ctyshppath)
            counties = list(county_reader.geometries())
            COUNTIES = cfeature.ShapelyFeature(counties, ccrs.PlateCarree())
        ### DO SOME CONVERSIONS ###
        # get the wind components
        u, v = wind_components(data['wsp'].values * units('knots'),
                               data['wdr'].values * units.degree)
        # convert temperature from Celsius to Fahrenheit
        data['temp'] = cToF(data['temp'])
        data['dpt'] = cToF(data['dpt'])
        # convert the cloud fraction value into a code of 0-8 (oktas) and compenate for NaN values
        cloud_frac = (8 * data['sky'])
        cloud_frac[np.isnan(cloud_frac)] = 10
        cloud_frac = cloud_frac.astype(int)
        # map weather strings to WMO codes (only use first symbol if multiple are present
        data['wx'] = data.wx.str.split('/').str[0] + ''
        wx = [
            wx_code_map[s.split()[0] if ' ' in s else s]
            for s in data['wx'].fillna('')
        ]

        # get the minimum and maximum temperatures in domain
        searchdata = data[(data['lat'] >= south[i]) & (data['lat'] <= north[i]) \
            & (data['lon'] >= west[i]) & (data['lon'] <= east[i])]
        min_temp = searchdata.loc[searchdata['temp'].idxmin()]
        max_temp = searchdata.loc[searchdata['temp'].idxmax()]
        max_dewp = searchdata.loc[searchdata['dpt'].idxmax()]

        # look up the site names for the min/max temp locations
        min_temp_loc = icaoLookup(min_temp['siteID'], icaodf)
        max_temp_loc = icaoLookup(max_temp['siteID'], icaodf)
        max_dewp_loc = icaoLookup(max_dewp['siteID'], icaodf)
        text_str = "Min temp: %.0f F at %s (%s)\nMax temp: %.0f F at %s (%s)\nMax dewpoint: %.0f F at %s (%s)"\
             % (min_temp['temp'],min_temp['siteID'],min_temp_loc,\
                max_temp['temp'],max_temp['siteID'],max_temp_loc,\
                max_dewp['dpt'],max_dewp['siteID'],max_dewp_loc)

        ### PLOTTING SECTION ###
        # change the DPI to increase the resolution
        plt.rcParams['savefig.dpi'] = 255
        # create the figure and an axes set to the projection
        fig = plt.figure(figsize=(20, 10))
        ax = fig.add_subplot(1, 1, 1, projection=proj)
        # add various map elements
        ax.add_feature(cfeature.LAND, zorder=-1)
        ax.add_feature(cfeature.OCEAN, zorder=-1)
        ax.add_feature(cfeature.LAKES, zorder=-1)
        ax.add_feature(cfeature.COASTLINE, zorder=2, edgecolor='black')
        ax.add_feature(state_boundaries, edgecolor='black')
        if usecounties[i]:
            ax.add_feature(COUNTIES,
                           facecolor='none',
                           edgecolor='gray',
                           zorder=-1)
        ax.add_feature(cfeature.BORDERS, linewidth=2, edgecolor='black')
        # set plot bounds
        ax.set_extent((west[i], east[i], south[i], north[i]))

        ### CREATE STATION PLOTS ###
        # lat/lon of the station plots
        stationplot = StationPlot(ax,data['lon'].values,data['lat'].values,clip_on=True,\
            transform=ccrs.PlateCarree(),fontsize=6)
        # plot the temperature and dewpoint
        stationplot.plot_parameter('NW', data['temp'], color='red')
        stationplot.plot_parameter('SW', data['dpt'], color='darkgreen')
        # plot the SLP using the standard trailing three digits
        stationplot.plot_parameter(
            'NE', data['slp'], formatter=lambda v: format(10 * v, '.0f')[-3:])
        # plot the sky condition
        stationplot.plot_symbol('C', cloud_frac, sky_cover)
        # plot the present weather
        stationplot.plot_symbol('W', wx, current_weather)
        # plot the wind barbs
        stationplot.plot_barb(u, v, flip_barb=flip)
        # plot the text of the station ID
        stationplot.plot_text((2, 0), data['siteID'])
        # plot the valid time
        plt.title('Surface Observations valid %s' % vt)
        # plot the min/max temperature info and draw circle around warmest and coldest obs
        props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
        plt.text(west[i],
                 south[i],
                 text_str,
                 fontsize=12,
                 verticalalignment='top',
                 bbox=props,
                 transform=ccrs.Geodetic())
        projx1, projy1 = proj.transform_point(min_temp['lon'], min_temp['lat'],
                                              ccrs.Geodetic())
        ax.add_patch(
            matplotlib.patches.Circle(xy=[projx1, projy1],
                                      radius=50000,
                                      facecolor="None",
                                      edgecolor='blue',
                                      linewidth=3,
                                      transform=proj))
        projx2, projy2 = proj.transform_point(max_temp['lon'], max_temp['lat'],
                                              ccrs.Geodetic())
        ax.add_patch(
            matplotlib.patches.Circle(xy=[projx2, projy2],
                                      radius=50000,
                                      facecolor="None",
                                      edgecolor='red',
                                      linewidth=3,
                                      transform=proj))
        projx3, projy3 = proj.transform_point(max_dewp['lon'], max_dewp['lat'],
                                              ccrs.Geodetic())
        ax.add_patch(
            matplotlib.patches.Circle(xy=[projx3, projy3],
                                      radius=30000,
                                      facecolor="None",
                                      edgecolor='green',
                                      linewidth=3,
                                      transform=proj))
        # save the figure
        outfile_name = savedir + savenames[i]
        plt.savefig(outfile_name, bbox_inches='tight')

        # clear and close everything
        fig.clear()
        ax.clear()
        plt.close(fig)
        f.close()

    print("Script finished.")
示例#36
0
ax.coastlines(resolution='110m', zorder=2, color='black')
ax.add_feature(state_boundaries, edgecolor='black')
ax.add_feature(feat.BORDERS, linewidth='2', edgecolor='black')

# Set plot bounds
ax.set_extent((-118, -73, 23, 50))

#
# Here's the actual station plot
#

# Start the station plot by specifying the axes to draw on, as well as the
# lon/lat of the stations (with transform). We also the fontsize to 12 pt.
stationplot = StationPlot(ax,
                          data['longitude'],
                          data['latitude'],
                          transform=ccrs.PlateCarree(),
                          fontsize=12)

# The layout knows where everything should go, and things are standardized using
# the names of variables. So the layout pulls arrays out of `data` and plots them
# using `stationplot`.
simple_layout.plot(stationplot, data)

plt.show()

###########################################
# or instead, a custom layout can be used:

# Just winds, temps, and dewpoint, with colors. Dewpoint and temp will be plotted
# out to Farenheit tenths. Extra data will be ignored
示例#37
0
ax.coastlines(resolution='110m', zorder=2, color='black')
ax.add_feature(state_boundaries, edgecolor='black')
ax.add_feature(feat.BORDERS, linewidth='2', edgecolor='black')

# Set plot bounds
ax.set_extent((-118, -73, 23, 50))

#
# Here's the actual station plot
#

# Start the station plot by specifying the axes to draw on, as well as the
# lon/lat of the stations (with transform). We also the fontsize to 12 pt.
stationplot = StationPlot(ax,
                          data['lon'].values,
                          data['lat'].values,
                          clip_on=True,
                          transform=ccrs.PlateCarree(),
                          fontsize=12)

# Plot the temperature and dew point to the upper and lower left, respectively, of
# the center point. Each one uses a different color.
stationplot.plot_parameter('NW', data['air_temperature'], color='red')
stationplot.plot_parameter('SW',
                           data['dew_point_temperature'],
                           color='darkgreen')

# A more complex example uses a custom formatter to control how the sea-level pressure
# values are plotted. This uses the standard trailing 3-digits of the pressure value
# in tenths of millibars.
stationplot.plot_parameter('NE',
                           data['slp'],
示例#38
0
           s=30,
           marker='+',
           transform=ccrs.PlateCarree(),
           color='lightgrey',
           zorder=-1)

# Add gridlines for every 5 degree lat/lon
ax.gridlines(linestyle='solid',
             ylocs=range(15, 71, 5),
             xlocs=range(-150, -49, 5))

# Start the station plot by specifying the axes to draw on, as well as the
# lon/lat of the stations (with transform). We also the fontsize to 10 pt.
stationplot = StationPlot(ax,
                          df['longitude'].values,
                          df['latitude'].values,
                          clip_on=True,
                          transform=ccrs.PlateCarree(),
                          fontsize=10)

# Plot the temperature and dew point to the upper and lower left, respectively, of
# the center point.
stationplot.plot_parameter('NW', df['temperature'], color='black')
stationplot.plot_parameter('SW', df['dewpoint'], color='black')

# A more complex example uses a custom formatter to control how the geopotential height
# values are plotted. This is set in an earlier if-statement to work appropriate for
# different levels.
stationplot.plot_parameter('NE', df['height'], formatter=hght_format)

# Add wind barbs
stationplot.plot_barb(df['u_wind'], df['v_wind'], length=7, pivot='tip')
示例#39
0
ax.add_feature(cfeature.OCEAN)
ax.add_feature(cfeature.LAKES)
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.STATES)
ax.add_feature(cfeature.BORDERS)

# Set plot bounds
ax.set_extent((-118, -73, 23, 50))

#
# Here's the actual station plot
#

# Start the station plot by specifying the axes to draw on, as well as the
# lon/lat of the stations (with transform). We also the fontsize to 12 pt.
stationplot = StationPlot(ax, data['lon'].values, data['lat'].values, clip_on=True,
                          transform=ccrs.PlateCarree(), fontsize=12)

# Plot the temperature and dew point to the upper and lower left, respectively, of
# the center point. Each one uses a different color.
stationplot.plot_parameter('NW', data['air_temperature'], color='red')
stationplot.plot_parameter('SW', data['dew_point_temperature'],
                           color='darkgreen')

# A more complex example uses a custom formatter to control how the sea-level pressure
# values are plotted. This uses the standard trailing 3-digits of the pressure value
# in tenths of millibars.
stationplot.plot_parameter('NE', data['slp'], formatter=lambda v: format(10 * v, '.0f')[-3:])

# Plot the cloud cover symbols in the center location. This uses the codes made above and
# uses the `sky_cover` mapper to convert these values to font codes for the
# weather symbol font.
示例#40
0
def plot_map_temperature(proj,
                         point_locs,
                         df_t,
                         area='EU',
                         west=-5.5,
                         east=32,
                         south=42,
                         north=62,
                         fonts=14,
                         cm='gist_ncar',
                         path=None,
                         SLP=False):
    if path is None:
        # set up the paths and test for existence
        path = expanduser('~') + '/Documents/Metar_plots'
        try:
            os.listdir(path)
        except FileNotFoundError:
            os.mkdir(path)
    else:
        path = path
    df = df_t
    plt.rcParams['savefig.dpi'] = 300
    # =========================================================================
    # Create the figure and an axes set to the projection.
    fig = plt.figure(figsize=(20, 16))
    ax = fig.add_subplot(1, 1, 1, projection=proj)
    if area == 'Antarctica':
        df = df.loc[df['latitude'] < north]
        ax.set_extent([-180, 180, -90, -60], ccrs.PlateCarree())
        theta = np.linspace(0, 2 * np.pi, 100)
        center, radius = [0.5, 0.5], 0.5
        verts = np.vstack([np.sin(theta), np.cos(theta)]).T
        circle = mpath.Path(verts * radius + center)
        ax.set_boundary(circle, transform=ax.transAxes)
    elif area == 'Arctic':
        df = df.loc[df['latitude'] > south]
        ax.set_extent([-180, 180, 60, 90], ccrs.PlateCarree())
        theta = np.linspace(0, 2 * np.pi, 100)
        center, radius = [0.5, 0.5], 0.5
        verts = np.vstack([np.sin(theta), np.cos(theta)]).T
        circle = mpath.Path(verts * radius + center)
        ax.set_boundary(circle, transform=ax.transAxes)

    else:
        ax.set_extent((west, east, south, north))
    # Set up a cartopy feature for state borders.
    state_boundaries = feat.NaturalEarthFeature(category='cultural',
                                                name='admin_0_countries',
                                                scale='10m',
                                                facecolor='#d8dcd6',
                                                alpha=0.5)
    ax.coastlines(resolution='10m', zorder=1, color='black')
    ax.add_feature(state_boundaries, zorder=1, edgecolor='black')
    # ax.add_feature(cartopy.feature.OCEAN, zorder=0)
    # Set plot bounds
    # reset index for easier loop
    df = df.dropna(how='any', subset=['TT'])
    df = df.reset_index()
    cmap = matplotlib.cm.get_cmap(cm)
    norm = matplotlib.colors.Normalize(vmin=-30.0, vmax=30.0)
    # Start the station plot by specifying the axes to draw on, as well as the
    # lon/lat of the stations (with transform). We also the fontsize to 12 pt.
    index = 0
    a = np.arange(-30, 30, 1)
    for x in a:
        if index == 0:
            df_min = df.loc[df['TT'] < min(a)]
            df_max = df.loc[df['TT'] > max(a)]
            j = 0
            list_ex = [min(a) - 5, max(a) + 5]
            for arr in [df_min, df_max]:
                stationplot = StationPlot(ax,
                                          arr['longitude'],
                                          arr['latitude'],
                                          clip_on=True,
                                          transform=ccrs.PlateCarree(),
                                          fontsize=fonts)
                Temp = stationplot.plot_parameter('NW',
                                                  arr['TT'],
                                                  color=cmap(norm(list_ex[j])))
                try:
                    Temp.set_path_effects([
                        path_effects.Stroke(linewidth=1.5, foreground='black'),
                        path_effects.Normal()
                    ])
                except AttributeError:
                    pass
                j += 1
        # slice out values between x and x+1
        df_cur = df.loc[(df['TT'] < x + 1) & (df['TT'] >= x)]
        stationplot = StationPlot(ax,
                                  df_cur['longitude'],
                                  df_cur['latitude'],
                                  clip_on=True,
                                  transform=ccrs.PlateCarree(),
                                  fontsize=fonts)
        # plot the sliced values with a different color for each loop
        Temp = stationplot.plot_parameter('NW',
                                          df_cur['TT'],
                                          color=cmap(norm(x + 0.5)))
        try:
            Temp.set_path_effects([
                path_effects.Stroke(linewidth=1.5, foreground='black'),
                path_effects.Normal()
            ])
        except AttributeError:
            pass
        print('x={} done correctly '.format(x))
        index += 1
    # fontweight = 'bold'
    # More complex ex. uses custom formatter to control how sea-level pressure
    # values are plotted. This uses the standard trailing 3-digits of


# the pressure value in tenths of millibars.
    stationplot = StationPlot(ax,
                              df['longitude'].values,
                              df['latitude'].values,
                              clip_on=True,
                              transform=ccrs.PlateCarree(),
                              fontsize=fonts)
    try:
        u, v = wind_components(((df['ff'].values) * units('knots')),
                               (df['dd'].values * units.degree))
        cloud_frac = df['cloud_cover']
        if area != 'Arctic':
            stationplot.plot_barb(u, v, zorder=1000, linewidth=2)
            stationplot.plot_symbol('C', cloud_frac, sky_cover)
            # stationplot.plot_text((2, 0), df['Station'])

        for val in range(0, 2):
            wx = df[['ww', 'StationType']]
            if val == 0:
                # mask all the unmanned stations
                wx['ww'].loc[wx['StationType'] > 3] = np.nan
                wx2 = wx['ww'].fillna(00).astype(int).values.tolist()
                stationplot.plot_symbol('W', wx2, current_weather, zorder=2000)
            else:
                # mask all the manned stations
                wx['ww'].loc[(wx['StationType'] <= 3)] = np.nan
                # mask all reports smaller than 9
                # =7 is an empty symbol!
                wx['ww'].loc[wx['ww'] <= 9] = 7
                wx2 = wx['ww'].fillna(7).astype(int).values.tolist()
                stationplot.plot_symbol('W',
                                        wx2,
                                        current_weather_auto,
                                        zorder=2000)
        # print(u, v)
    except (ValueError, TypeError) as error:
        pass

    if SLP is True:
        lon = df['longitude'].loc[(df.PressureDefId == 'mean sea level')
                                  & (df.Hp <= 750)].values
        lat = df['latitude'].loc[(df.PressureDefId == 'mean sea level')
                                 & (df.Hp <= 750)].values
        xp, yp, _ = proj.transform_points(ccrs.PlateCarree(), lon, lat).T
        sea_levelp = df['SLP'].loc[(df.PressureDefId == 'mean sea level')
                                   & (df.Hp <= 750)]
        x_masked, y_masked, pres = remove_nan_observations(
            xp, yp, sea_levelp.values)
        slpgridx, slpgridy, slp = interpolate_to_grid(x_masked,
                                                      y_masked,
                                                      pres,
                                                      interp_type='cressman',
                                                      search_radius=400000,
                                                      rbf_func='quintic',
                                                      minimum_neighbors=1,
                                                      hres=100000,
                                                      rbf_smooth=100000)
        Splot_main = ax.contour(slpgridx,
                                slpgridy,
                                slp,
                                colors='k',
                                linewidths=2,
                                extent=(west, east, south, north),
                                levels=list(range(950, 1050, 10)))
        plt.clabel(Splot_main, inline=1, fontsize=12, fmt='%i')

        Splot = ax.contour(slpgridx,
                           slpgridy,
                           slp,
                           colors='k',
                           linewidths=1,
                           linestyles='--',
                           extent=(west, east, south, north),
                           levels=[
                               x for x in range(950, 1050, 1)
                               if x not in list(range(950, 1050, 10))
                           ])
        plt.clabel(Splot, inline=1, fontsize=10, fmt='%i')

    # stationplot.plot_text((2, 0), df['Station'])
    # Also plot the actual text of the station id. Instead of cardinal
    # directions, plot further out by specifying a location of 2 increments
    # in x and 0 in y.stationplot.plot_text((2, 0), df['station'])

    if (area == 'Antarctica' or area == 'Arctic'):
        plt.savefig(path + '/CURR_SYNOP_color_' + area + '.png',
                    bbox_inches='tight',
                    pad_inches=0)
    else:
        plt.savefig(path + '/CURR_SYNOP_color_' + area + '.png',
                    bbox_inches='tight',
                    transparent="True",
                    pad_inches=0)
示例#41
0
# Create the figure and an axes set to the projection.
fig = plt.figure(figsize=(20, 8))
add_metpy_logo(fig, 70, 30, size='large')
ax = fig.add_subplot(1, 1, 1, projection=proj)

# Add some various map elements to the plot to make it recognizable.
ax.add_feature(cfeature.LAND)
ax.add_feature(cfeature.STATES.with_scale('50m'))

# Set plot bounds
ax.set_extent((-104, -93, 33.4, 37.2))

stationplot = StationPlot(ax,
                          longitude.values,
                          latitude.values,
                          clip_on=True,
                          transform=ccrs.PlateCarree(),
                          fontsize=12)

# Plot the temperature and dew point to the upper and lower left, respectively, of
# the center point. Each one uses a different color.
stationplot.plot_parameter('NW', temperature, color='red')
stationplot.plot_parameter('SW', dewpoint, color='darkgreen')

# A more complex example uses a custom formatter to control how the sea-level pressure
# values are plotted. This uses the standard trailing 3-digits of the pressure value
# in tenths of millibars.
stationplot.plot_parameter('NE',
                           pressure.m,
                           formatter=lambda v: format(10 * v, '.0f')[-3:])