print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) ######################### #### Dataset prepare #### ######################### dataset = make_dataset(dataset=opt.dataset, dataroot=opt.dataroot, imageSize=opt.imageSize) assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) ######################### #### Models building #### ######################### device = torch.device("cuda:0" if opt.cuda else "cpu") ##device = torch.device("cpu") ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf)
if opt.manualSeed is None: opt.manualSeed = random.randint(1, 10000) print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") ######################### #### Dataset prepare #### ######################### dataset = make_dataset(dataset=opt.dataset, dataroot=opt.dataroot, imageSize=opt.imageSize) assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) ######################### #### Models building #### ######################### device = torch.device("cuda:0" if opt.cuda else "cpu") ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) nc = 3 netG = Generator(ngpu).to(device)