示例#1
0
def select_metric_value(m):
    """Interactive selection of a metric value

    Input:
       m : list of values that can be unpacked into valid
           parameters for constructing a Metric
    Return:
       a valid index for the Metric

    """
    m = Metric(*m)
    default_metric_value = m.index
    print("\n{0} {1} {2} {0}".format(10 * "+", m.name, m.short_name))
    while True:
        for v in m.values:
            print(v, v.description)
        idx = input('Select one [{0}]: '.format(default_metric_value)).upper()

        if not idx:
            idx = default_metric_value

        print('Selected metric value ###|', idx, '|###')

        try:
            m.index = idx
        except AssertionError:
            print('Not valid')
        else:
            return m.index
def get_metrics_H1(datadir):
    files = ['quality_WC_Unigram.label',
         'quality_WC_Unigam_NonZero.label',
         'quality_WC_Unigam_Content.label',
         'quality_WC_Unigam_OrgAssign.label',
         'quality_WC_Unigam_Speciteller.label',
         'quality_WC_Unigam_Title.label',
         'quality_DT.label',
         'quality_New.label',
         #'quality_New-Title.label',
         'quality_firstnode.label'
         ] 
        
    metric = Metric()
    
    body = []
    for file in files:
        labels, predicts, _ = load_label(datadir + file)
        row = [file]
        row.append(metric.accuracy(labels, predicts))
        row.append(metric.kappa(labels, predicts))
        row.append(metric.QWkappa(labels, predicts))
        body.append(row)
    
    output = datadir+'H1.txt'
    print output
    fio.WriteMatrix(output, body, header=None)
def get_metrics_H2b(datadir):
    metric = Metric()
    
    lectures = range(1, 9)
    
    feature = 'quality_CrossTopic_Rubric_firstnode_'
    feature_fixed = 'quality_CrossTopic_Rubric_firstnode_fixed_'
    
    for fold in lectures:
        input = datadir + feature + str(fold)+'_test.label'
        zero_file = datadir + feature + str(fold)+'_test_0.txt'
        output = datadir + feature_fixed + str(fold)+'_test.label'
        fix_firstnode(input, zero_file, output)
        
    body = []
    for feature in [
                    'quality_CrossTopic_WC_Unigram_', 
                    'quality_CrossTopic_Rubric_', 
                    'quality_CrossTopic_Rubric_firstnode_fixed_',
                    'quality_CrossTopic_DT_', 
                    ]:
        for lecture in lectures:
            file = feature + str(lecture)+'_test.label'
            print file
            
            labels, predicts, _ = load_label(datadir + file)
            row = [file]
            row.append(metric.accuracy(labels, predicts))
            row.append(metric.kappa(labels, predicts))
            row.append(metric.QWkappa(labels, predicts))
            body.append(row)
    
    output = datadir+'H2b.txt'
    print output
    fio.WriteMatrix(output, body, header=None)  
def get_metrics_H2c(datadir):
    metric = Metric()
    
    feature = 'quality_CrossCourse_Rubric_firstnode'
    feature_fixed = 'quality_CrossCourse_Rubric_firstnode_fixed'
    
    input = datadir + feature +'_test.label'
    zero_file = datadir + feature +'_test_0.txt'
    output = datadir + feature_fixed +'_test.label'
    fix_firstnode(input, zero_file, output)
    
    body = []
    for feature in [
                    'quality_CrossCourse_WC_Unigram',
                    'quality_CrossCourse_Rubric',
                    'quality_CrossCourse_Rubric_firstnode_fixed',
                    'quality_CrossCourse_DT', 
                    ]:
        file = feature+'_test.label'
        print file
        
        labels, predicts, _ = load_label(datadir + file)
        row = [file]
        row.append(metric.accuracy(labels, predicts))
        row.append(metric.kappa(labels, predicts))
        row.append(metric.QWkappa(labels, predicts))
        body.append(row)
    
    output = datadir+'H2c.txt'
    print output
    fio.WriteMatrix(output, body, header=None) 
示例#5
0
文件: cvss.py 项目: holmboe/CVSS
def select_metric_value(m):
    """Interactive selection of a metric value

    Input:
       m : list of values that can be unpacked into valid
           parameters for constructing a Metric
    Return:
       a valid index for the Metric

    """
    m = Metric(*m)
    default_metric_value = m.index
    print("\n{0} {1} {2} {0}".format(10 * "+", m.name, m.short_name))
    while True:
        for v in m.values:
            print(v, v.description)
        idx = input('Select one [{0}]: '.format(default_metric_value)).upper()

        if not idx:
           idx = default_metric_value

        print('Selected metric value ###|', idx, '|###')

        try:
            m.index = idx
        except AssertionError:
            print('Not valid')
        else:
            return m.index
 def test_pair_dist_starting_at_zero_dist(self):
     sigma = 0.1
     test_metric = Metric(sigma, edge=1)
     positions = [[0.2, 0.2], [0.2 + 2 * sigma, 0.2]]
     self.assertAlmostEqual(
         test_metric.pair_dist(positions[0], positions[1], 10, [1, 0]), 0,
         1, "Should collide")
示例#7
0
    def invert_metric(self, g):
        """ Invert a given metric g and return the inverted metric 
        as a shorthand dictionary of sympy.core.symbols.Symbol objects.
        """

        N = int(np.sqrt(len(g.elements)))
        g_matrix = sp.MatrixSymbol('g_matrix', N, N)
        g_matrix = sp.Matrix(g_matrix)
        print('Converting the metric to sp.Matrix object...')
        for i in range(N):
            for j in range(N):
                m = g.index_dict[i]
                n = g.index_dict[j]
                mn = m + n
                g_matrix[i, j] = g.elements[mn]

        print('Inverting the matrix...')
        g_matrix_inv = g_matrix**(-1)
        g_inv = Metric(index_dict=g.index_dict)
        for i in range(N):
            for j in range(N):
                m = g_inv.index_dict[i]
                n = g_inv.index_dict[j]
                mn = m + n
                g_inv.elements[mn] = g_matrix_inv[i, j]
        print('Succesfully inverted the matrix.')
        return g_inv
def metrics_lines(api_key):
    if authenticator.valid(api_key):
        metrics = bottle.request.body.readlines()

        if type(metrics) == list:
            for line in metrics:
                try:
                    parts = line.split()

                    if len(parts) != 3:
                        continue
                    else:
                        metric = {
                            'metric': parts[0],
                            'value': parts[1],
                            'timestamp': parts[2]
                        }

                    m = Metric(metric)
                    m.enqueue(q)
                except ValueError:
                    bottle.abort(400, "Invalid Metric Structure: %s" % (str(metric)))
                except Exception:
                    bottle.abort(500, "Unable to store metric!")
        else:
            bottle.abort(400, "Metric structure must be lines of 'metric.path value timestamp'")
    else:
        bottle.abort(403, "API Key not valid")
示例#9
0
 def compute_suspicious_score(self):
     scores = []
     for i in xrange(1, self.total_stmt + 1):
         cp, cf, np, nf = self.compute_statistics(i)
         metric = Metric(cp, cf, np, nf)
         scores.append(metric.odds_ratio())
     return scores
示例#10
0
 def __init__(self, world):
     # call base
     Metric.__init__(self, world)
     self.name = "compressibility"
     self.value = 0.0
     self.format = "%.2f%%"
     self.co = zlib.compressobj()
def evaluation(data_type,trec_path,dev_query_embedding2id,passage_embedding2id,dev_I,dev_D,test_set="trec2019",dev_split_num=-1,split_idx=-1):
    if data_type ==0 :
        if  test_set== "marcodev":
            qrels="../data/raw_data/msmarco-docdev-qrels.tsv"
        elif test_set== "trec2019":
            qrels="../data/raw_data/2019qrels-docs.txt"
    elif data_type ==1:
        if test_set == "marcodev":
            qrels="../data/raw_data/qrels.dev.small.tsv"
    else:
        logging.error("wrong data type")
        exit()

    trec_path=trec_path.replace(".trec",".formatted.trec")
    met = Metric()
    if split_idx >= 0:
        split_file_path=qrels+f"{dev_split_num}_fold.split_dict"
        with open(split_file_path,'rb') as f:
            split=pickle.load(f)
    else:
        split=None
    
    ndcg10 = met.get_metric(qrels, trec_path, 'ndcg_cut_10',split,split_idx)
    mrr10 = met.get_mrr(qrels, trec_path, 'mrr_cut_10',split,split_idx)
    mrr100 = met.get_mrr(qrels, trec_path, 'mrr_cut_100',split,split_idx)

    print(f" evaluation for {test_set}, trec_file {trec_path}, split_idx {split_idx} \
        ndcg_cut_10 : {ndcg10}, \
        mrr_cut_10 : {mrr10}, \
        mrr_cut_100 : {mrr100}"
    )

    return ndcg10
示例#12
0
 def __init__(self, world):
     # call base
     Metric.__init__(self, world)
     self.name = "exploration"
     self.value = 0.0
     self.format = "%.2f%%"
     # dictionary mapping hashes to ticks used for cycle detection
     self.rule_count = np.zeros(self.world.rule.size, dtype=int)
示例#13
0
 def testAttributes(self):
     metric = Metric()
     metric.setName("foo")
     metric.setValue(10)
     metric.setSource("localhost")
     self.assertEqual(metric.getName(), "foo", "Name does not match")
     self.assertEqual(metric.getValue(), 10, "Values does nto match")
     self.assertEqual(metric.getSource(), "localhost", "Source does not match")
示例#14
0
    def __init__(self, args):
        """
        Create Evaluator object which handles the evaluation of a specified model,
        the tracking of computed metrics, and saving of results.

        :param args: ArgParse object which holds the path the experiment configuration file along
                     with other key experiment options.
        """
        # get experiment configuration file
        osj = os.path.join
        oss = os.path.split

        base_path = os.path.dirname(os.path.abspath(__file__))
        config = get_config(base_path, args.config)
        self.config = config
        config_path = osj(base_path, 'config')

        # create experiment, logging, and model checkpoint directories
        model_name = os.path.split(args.model)[1].split('.')[0]
        self.eval_dir = osj(base_path, oss(args.config)[0], 'eval_' + args.data + '_' + model_name)
        self.visual_path = osj(self.eval_dir, 'visuals')
        if os.path.exists(self.eval_dir):
            print("Error: This evaluation already exists")
            print("Cancel Session:    0")
            print("Overwrite:         1")
            if input() == str(1):
                shutil.rmtree(self.eval_dir)
            else:
                exit(1)
        os.mkdir(self.eval_dir)
        os.mkdir(self.visual_path)

        # Device
        self.device = torch.device("cpu" if args.gpuid == 'cpu' else "cuda:{}".format(args.gpuid))

        # Model - load pre-trained
        model = get_model(config)
        self.model = model
        self.load_model(args.model)
        self.model.to(self.device)

        # Loss metric
        self.criterion = nn.MSELoss()

        # Dataset and DataLoader
        self.data_type = args.data
        self.dataset = ShapeNet(config, config_path, args.data)
        self.tracked_samples = extract_categories(self.dataset.samples, 5)
        self.loader = DataLoader(self.dataset, batch_size=config['batch_size'],
                                 shuffle=True, num_workers=1, drop_last=False)

        print("Commencing evaluation with {} model on {} split".format(config['model'], args.data))

        # Metrics
        self.metrics = Metric(config)
        self.metric_tracker = MetricTracker(config, self.eval_dir, args.data)
        self.epoch = 0
示例#15
0
 def __init__(self, world):
     # call base
     Metric.__init__(self, world)
     self.name = "cyclic"
     self.value = False
     # dictionary mapping hashes to ticks used for cycle detection
     self.hist = {}
     self.cycle_start = None
     self.cycle_period = None
 def test_wall_dist(self):
     test_metric = Metric(sigma=0.1, edge=1)
     pos = [0.5, 0.5]
     for wall in [1, -1, 2, -2]:
         v_hat = [0, 0]
         v_hat[np.abs(wall) - 1] = np.sign(wall)
         dist_to_wall, wall_type = test_metric.wall_dist(pos, v_hat, 1)
         self.assertEqual(dist_to_wall, 0.4, "Wrong distance to wall")
         self.assertEqual(wall_type, wall, "Wrong Classification of wall")
 def evaluate(self):
     test_featureset = self._get_featuresets(self.test_file)
     
     labels = [int(x[1]) for x in test_featureset]
     featureset = [x[0] for x in test_featureset]
     predicts = [int(x) for x in self._model.classify_many(featureset)]
     
     metric = Metric()
     
     return metric.accuracy(labels, predicts), metric.kappa(labels, predicts), metric.QWkappa(labels, predicts)
示例#18
0
 def test_metric_improvement(self):
     params = {"name": "logloss"}
     m = Metric(params)
     y_true = np.array([0, 0, 1, 1])
     y_predicted = np.array([0, 0, 0, 1])
     score_1 = m(y_true, y_predicted)
     y_true = np.array([0, 0, 1, 1])
     y_predicted = np.array([0, 0, 1, 1])
     score_2 = m(y_true, y_predicted)
     self.assertTrue(m.improvement(score_1, score_2))
 def test_step_size(self):
     sigma = 0.1
     test_metric = Metric(sigma, edge=1)
     positions = [[0.2, 0.2], [0.7, 0.2]]
     current_step_size, step_type, sphere_or_wall_ind = \
         test_metric.step_size(positions, 0, [1, 1], .2)
     self.assertEqual(current_step_size, .2, "Problem with free step")
     current_step_size, step_type, sphere_or_wall_ind = \
         test_metric.step_size(positions, 0, [1, 0], 1)
     self.assertAlmostEqual(current_step_size, .3, 1,
                            "Problem with pair collision")
    def test_wall_dist_starting_at_the_wall(self):
        test_metric = Metric(sigma=0.1, edge=1)
        pos = [0.1, 0.5]

        dist_to_wall, wall_type = test_metric.wall_dist(pos, [-1, 0], 1)
        self.assertEqual(dist_to_wall, 0, "Wrong distance to wall")
        self.assertEqual(wall_type, -1, "Wrong Classification of wall")

        dist_to_wall, wall_type = test_metric.wall_dist(pos, [0, 1], 1)
        self.assertEqual(dist_to_wall, 0.4, "Wrong distance to wall")
        self.assertEqual(wall_type, 2, "Wrong Classification of wall")
示例#21
0
    def __init__(self, init_list, goal_list):
        """Initialise Solver object. Raise ValueError if solution not possible."""

        self.initial_state = copy.deepcopy(self.list_to_grid(init_list))

        self.goal_state = copy.deepcopy(self.list_to_grid(goal_list))

        self.frontier = []
        self.explored = set()

        self.metrics = Metric(self.frontier)
    def test_pair_dist(self):
        sigma = 0.1
        test_metric = Metric(sigma, edge=1)
        positions = [[0.2, 0.2], [0.7, 0.2]]
        self.assertAlmostEqual(
            test_metric.pair_dist(positions[0], positions[1], 10, [1, 0]),
            0.5 - 2 * sigma, 1, "Wrong distance between pairs")

        positions = [[0.2, 0.2], [0.7, 0.7]]
        self.assertAlmostEqual(
            test_metric.pair_dist(positions[0], positions[1], 10, [0, 1]),
            float('inf'), 1, "Should not collide")
示例#23
0
def get_QWkappa(input):
    head,body = fio.ReadMatrix(input, True)
    
    metric = Metric()
    
    data = {}
    
    for i,row in enumerate(body):
        for coder, label in enumerate(row):
            if label == 'a': label = '0'
            label = int(label)
            
            if head[coder] not in data:
                data[ head[coder] ] = []
            data[ head[coder] ].append(label)
    
    print 'annototor 1', '\t','annototor 2', '\t', 'accuracy', '\t', 'kappa', '\t', 'QWkappa'
    print head[0], '\t', head[1], '\t', metric.accuracy(data[head[0]], data[head[1]]), '\t', metric.kappa(data[head[0]], data[head[1]]), '\t', metric.QWkappa(data[head[0]], data[head[1]])
    print head[0], '\t', head[2], '\t', metric.accuracy(data[head[0]], data[head[2]]), '\t', metric.kappa(data[head[0]], data[head[2]]), '\t', metric.QWkappa(data[head[0]], data[head[2]])
    print head[1], '\t', head[2], '\t', metric.accuracy(data[head[1]], data[head[2]]), '\t', metric.kappa(data[head[1]], data[head[2]]), '\t', metric.QWkappa(data[head[1]], data[head[2]])
    print '', '\t', 'Average', '\t', np.mean([metric.accuracy(data[head[0]], data[head[1]]), metric.accuracy(data[head[0]], data[head[2]]), metric.accuracy(data[head[1]], data[head[2]])]), '\t',\
        np.mean([metric.kappa(data[head[0]], data[head[1]]), metric.kappa(data[head[0]], data[head[2]]), metric.kappa(data[head[1]], data[head[2]])]), '\t',\
        np.mean([metric.QWkappa(data[head[0]], data[head[1]]), metric.QWkappa(data[head[0]], data[head[2]]), metric.QWkappa(data[head[1]], data[head[2]])])
    
    print metric.confusion_matrix(data[head[0]], data[head[1]])
    
    return 0
	def test_eval(self):
		iris = load_iris()
		X_train, y_train = iris.data[:120], iris.target[:120]
		X_test, y_test = iris.data[120:], iris.target[120:]

		rf = Model('rf', RandomForestClassifier, {'random_state':0})
		rf.run(X_train, y_train)
		metrics = rf.eval(X_test, y_test, metrics=['acc'])

		rf_metric = Metric('rf')
		rf_metric.addValue('acc', 0.7666666666666667)

		expected_metrics = rf_metric.getValues()

		self.assertEqual( metrics, expected_metrics )
示例#25
0
    def list_metrics(self, start_date, end_date):

        # Create CloudWatch client
        cloudwatch = boto3.client('cloudwatch')

        metrics = []

        statistics_type = 'Average'
        period = 3600  #hour

        # List metrics through the pagination interface
        paginator = cloudwatch.get_paginator('list_metrics')
        for response in paginator.paginate(Namespace=self.namespace):
            for row in response['Metrics']:
                metric_name = row['MetricName']

                for row2 in row['Dimensions']:
                    dimension_name = row2['Name']
                    dimension_value = row2['Value']

                    if (self.namespace == 'AWS/EC2' and metric_name in  ["CPUUtilization","NetworkOut","NetworkIn","EBSWriteBytes","EBSReadBytes","DiskReadBytes","DiskWriteBytes","DiskWriteOps","DiskReadOps"]) \
                        or self.namespace != 'AWS/EC2':

                        metric = Metric(metric_name, self.namespace,
                                        dimension_name, dimension_value,
                                        statistics_type, period, start_date,
                                        end_date)
                        metrics.append(metric)

        return metrics
示例#26
0
    def get_info(self):
        distance = None
        try:
            date = datetime.datetime.utcnow()

            GPIO.output(self.pin_trigger, GPIO.HIGH)
            time.sleep(0.00001)
            GPIO.output(self.pin_trigger, GPIO.LOW)

            while GPIO.input(self.pin_echo) == 0:
                pulse_start_time = time.time()
            while GPIO.input(self.pin_echo) == 1:
                pulse_end_time = time.time()

            pulse_duration = pulse_end_time - pulse_start_time

            distance = round(pulse_duration * 17150, 2)
        except Exception as e:
            logger.error(f'Error in distance: {e}')
            self.reset()

        if distance is not None:
            name = self.metric_prefix + 'distance'
            if self.output == 'WF':
                name = 'Distance'
                if len(self.metric_prefix) > 0:
                    name = self.metric_prefix + '.' + name
            if self.format == 'f':
                distance = distance / 30.48
            if self.format == 'i':
                distance = distance / 30.48 * 12
            self.metrics.append(Metric(name, distance, date))
示例#27
0
文件: soft_nms.py 项目: patham9/SORT
def soft_nms(bboxes, threshold=0.75):
    """
    soft non-max suppression implementation for object detection. takes a list of bounding boxes with scores,
    decreases score of bounding boxes with respect to their IoU with the highest score bounding box
    :param bboxes: (array) list of bounding boxes in format [x1, y1, x2, y2, score]
    :param threshold: (scalar, float) minimum acceptable score for bounding box
    :return: filtered list of bounding boxes after soft non-max suppression
    """
    bboxes_nms = []

    while bboxes:
        # filter all the bboxes with score below the threshold
        bboxes = [bbox for bbox in bboxes if bbox[4] >= threshold]

        # grab the highest score bbox, remove it from the list and add it to output list
        maxscore_bbox = max(bboxes, key=lambda x: x[4])
        bboxes.remove(maxscore_bbox)
        bboxes_nms.append(maxscore_bbox)

        # loop over all the possible overlaps with the selected bbox and update their scores
        bbox_pairs = [(maxscore_bbox, bbox) for bbox in bboxes]
        for maxscore_bbox, bbox2 in bbox_pairs:
            bbox2[4] -= Metric.iou(maxscore_bbox, bbox2)

    return bboxes_nms
示例#28
0
文件: sopt.py 项目: chrinide/pts
def test1(n):
    from numpy import array

    # One   equilibrium  of   Ar4  LJ   cluster  (in   coordinates  of
    # c2v_tetrahedron1 Func):
    w = 0.39685026
    A = array([w, w, +w])

    # Another equilibrium:
    B = array([w, w, -w])

    # Halfway between A and B:
    C = (A + B) / 2.0
    C = array([w + 0.01, w - 0.01, 0.0])

    xs = array([A, C, B])

    from test.testfuns import c2v_tetrahedron1, diagsandhight
    from path import MetricPath
    from metric import Metric
    from numpy import linspace

    z = c2v_tetrahedron1()

    # z = diagsandhight()
    # r = 1.12246195815
    # A = array([r, r,  r / sqrt(2.)])
    # B = array([r, r, -r / sqrt(2.)])
    # C = array([r, r * sqrt(2.), 0.])
    # xs = array([A, C, B])

    p = MetricPath(xs, Metric(z).norm_up)

    x0 = map(p, linspace(0., 1., n))

    from ase import Atoms
    from qfunc import QFunc
    from func import compose

    pes = compose(QFunc(Atoms("Ar4")), z)

    from rc import Volume

    vol = compose(Volume(), z)

    def callback(x, e, g, t):
        # from pts.tools.jmol import jmol_view_path
        print "energies=", e  # map(pes, x)
        print "volume=", map(vol, x)
        # jmol_view_path(map(z, x), syms=["Ar"]*4, refine=1)
        pass

    print "BEFORE:"
    callback(x0, map(pes, x0), map(pes.fprime, x0), None)

    x1, info = soptimize(pes, x0, tangent1, rc=vol, callback=callback)
    # print "info=", info

    print "AFTER:"
    callback(x1, map(pes, x1), map(pes.fprime, x1), None)
示例#29
0
 def convertDF(self, data, date):
     data = self.convertStringToList(data)
     length = len(data)
     for i in range(length):
         if i > 0:
             colLength = len(data[i])
             for c in range(colLength):
                 if c > 0 and c < 4:
                     name = 'disk.' + data[0][c]
                     tag = {}
                     tag['filesystem'] = data[i][0]
                     tag['mount'] = data[i][5]
                     value = int(data[i][c])
                     metric = Metric(name, value, date)
                     metric.tags = tag
                     self.metrics.append(metric)
示例#30
0
 def train(self, data, prm):
     best_corr_de = -1e100
     best_net = None
     patient = 0
     for it in range(prm.max_epochs_num):
         Logger.write_log('iter = ' + str(it))
         self.net.fit(x=data.Xtr,
                      y=data.Ytr,
                      batch_size=prm.batch_size,
                      epochs=1,
                      verbose=1,
                      shuffle=True)
         data_pred = self.evaluate(data, prm)
         corr_de = Metric.report_all_metrics(data_pred)
         if corr_de > best_corr_de:
             Logger.write_log('nice, model gets better ...')
             Logger.write_log('###############################')
             best_corr_de = corr_de
             best_net = copy.deepcopy(self.net)
             patient = 0
         else:
             Logger.write_log('oops, model gets worse ...')
             Logger.write_log('###############################')
             patient += 1
         if patient >= prm.max_patience:
             break
     self.net = best_net
def get_metrics_cv(datadir, files):
    metric = Metric()
    
    _, _, folds = load_label(datadir + files[0])
    
    body = []
    for file in files:
        labels, predicts, _ = load_label(datadir + file)
        row = [file]
        row += metric.cv_accuracy(labels, predicts, folds)
        row += metric.cv_kappa(labels, predicts, folds)
        row += metric.cv_QWkappa(labels, predicts, folds)
        body.append(row)
    
    output = datadir+'H1_p.txt'
    print output
    fio.WriteMatrix(output, body, header=None)
示例#32
0
 def worker(self, train, test):
     '''
     :parmas: train, 训练数据集
     :params: test, 测试数据集
     :return: 各指标的值
     '''
     print('Starting train data with function: {}'.format(self.rt))
     if self.rt == 'LFM':
         getRecommendation, P, Q = self.alg[self.rt](train, self.ratio, self.K_latent, \
                                                     self.lr, self.step, self.lmbda, self.N)
     else:
         getRecommendation = self.alg[self.rt](train, self.K,
                                               self.N)  # train
     print('Starting cacluate evaluation metrics with function: {}'.format(
         self.rt))
     metric = Metric(train, test, getRecommendation)
     return metric.eval()
示例#33
0
 def testString(self):
     metric = Metric()
     metric.setName("bar")
     metric.setValue(100)
     metric.setSource("snafu")
     print(str(self))
     self.assertEqual(str(metric), "bar 100 snafu", "String does not match")
示例#34
0
    def sample_sectors(self):
        """
        Runs the process to sample the repository.
        :return:
        """
        self.__sectors = self.__generate_sectors()

        for sector in self.__sectors:
            commits_in_sector = sector.get_objects()
            commits_count = len(commits_in_sector)

            if commits_count:
                m = Metric()

                m.commit_count = commits_count
                last_commit = commits_in_sector[commits_count - 1]

                m.commit = commits_in_sector[0]
                score = self.__score(commits_in_sector[0].id.hex,
                                     last_commit.id.hex, commits_count)
                m.activity = score[0]
                m.additions = score[1]
                m.deletions = score[2]
                m.timestamp = datetime.datetime.fromtimestamp(
                    last_commit.commit_time)

                self.__metrics.append(m)
示例#35
0
 def get_info(self):
     current_value = GPIO.input(self.pin)
     while current_value == self.initial_value:
         #do nothing, wait for a change
         current_value = GPIO.input(self.pin)
         time.sleep(0.00001)
     # changed
     self.initial_value = current_value
     self.metrics.append(Metric(self.name, current_value, datetime.datetime.utcnow()))
示例#36
0
 def get_info(self):
     date = datetime.datetime.utcnow()
     humidity, temp = Adafruit_DHT.read_retry(self.code, self.pin)
     if temp is not None:
         name = self.metric_prefix + 'humidity'
         if self.output == 'WF':
             name = 'Humidity'
             if len(self.metric_prefix) > 0:
                 name = self.metric_prefix + '.' + name
         self.metrics.append(Metric(name, humidity, date))
         if self.format == 'f':
             temp = (temp * 9 / 5) + 32
         name = self.metric_prefix + 'temperature'
         if self.output == 'WF':
             name = 'Temperature'
             if len(self.metric_prefix) > 0:
                 name = self.metric_prefix + '.' + name
         self.metrics.append(Metric(name, temp, date))
def createMetric(category, metric, value):
    # Build a metric type name for the given metric
    m = METRIC_TYPE + ' / ' + category + ' / ' + metric

    # Return a metric description object
    return Metric(source=METRIC_SOURCE,
                  metric=m,
                  resource=METRIC_RESOURCE,
                  node=METRIC_NODE,
                  value=value)
示例#38
0
 def test_generate_normal(self):
     sys = SystemDataGenerator(name='test00')
     metric_vals = {'name': 'cpu_busy',
               'min_val': 0,
               'max_val': 10,
               'mean': 10,
               'sd': 3}
     metric = Metric(**metric_vals)
     metric_value = sys.generate_metric_value_normal(metric)
     assert metric_value[metric.name] > 0
示例#39
0
 def convertUptime(self, data, date):
     hasUser = False
     if "user" in data.lower().strip():
         hasUser = True
     data = list(data.replace(",", "").split('  '))
     if len(data) > 1:
         for i in range(len(data)):
             data[i] = list(filter(None, data[i].split(' ')))
     else:
         data = list(filter(None, data[0].split(' ')))
         data = [[data[0], data[1]], [data[2]], [data[4], data[5]],
                 [data[6], data[7], data[8], data[9], data[10]]]
     #check if uptime has days
     uptime = 0
     i = 0
     if (hasUser and len(data) > 3) or (len(data) > 2 and not hasUser):
         if (len(data[0]) > 2):
             uptime += int(data[i][2]) * 24 * 60
         i += 1
         uptime += self.convertDurationToInt(data[i][0])
     else:
         if len(data[i]) == 5:
             uptime = int(data[i][2]) * 24 * 60
             uptime += self.convertDurationToInt(data[i][4])
         elif len(data[i]) == 6:
             uptime = int(data[i][2]) * 24 * 60
             uptime += int(data[i][4])
         else:
             uptime += self.convertDurationToInt(data[i][2])
     self.metrics.append(Metric("uptime", uptime, date))
     i += 1
     #users
     if hasUser:
         users = int(data[i][0])
         self.metrics.append(Metric("users", users, date))
         i += 1
     #load
     minMean = float(data[i][2])
     fiveMinMean = float(data[i][3])
     fifteenMean = float(data[i][4])
     self.metrics.append(Metric("load1min.mean", minMean, date))
     self.metrics.append(Metric("load5min.mean", fiveMinMean, date))
     self.metrics.append(Metric("load15min.mean", fifteenMean, date))
示例#40
0
 def test_create(self):
     params = {"name": "logloss"}
     m = Metric(params)
     y_true = np.array([0, 0, 1, 1])
     y_predicted = np.array([0, 0, 1, 1])
     score = m(y_true, y_predicted)
     self.assertTrue(score < 0.1)
     y_true = np.array([0, 0, 1, 1])
     y_predicted = np.array([1, 1, 0, 0])
     score = m(y_true, y_predicted)
     self.assertTrue(score > 1.0)
示例#41
0
文件: handle.py 项目: sjl421/bud
 def __init__(self):
     self.con = Container()
     self.ret = self.con.runContainerId()
     self.dt,self.dt1,self.dt2,self.dt3,self.dt4 = {},{},{},{},{}
     for i in self.ret:
         self.con.setFilePath(i)
         self.data = Metric(self.con.container_id,self.con.cpuacct_path,self.con.memStat_path,self.con.blkio_path,self.con.netStat_path)
         self.data.getNetns()
         self.dt_cpu,self.dt_mem,self.dt_blk,self.dt_net = {},{},{},{}
         self.dt_cpu['cpuAcct'] = self.data.cpuAcct()
         self.dt_mem['memStat'] = self.data.memStat(i)
         self.dt_blk['blkio'] = self.data.blkio()
         self.dt_net['netStat'] = self.data.netStat()
         # we set the trunc id for the metric
         _i = i[:12]
         self.dt[_i]= [self.dt_cpu,self.dt_mem,self.dt_blk,self.dt_net]
         self.dt1[_i] = [self.dt_cpu]
         self.dt2[_i] = [self.dt_mem]
         self.dt3[_i] = [self.dt_blk]
         self.dt4[_i] = [self.dt_net]
def get_metrics_NewCourse(datadir):
    files = ['DT.txt',
         'DT_NoneZero.txt',
         'Rubric.txt',
         'Rubric_NoneZero.txt',
         ] 
        
    metric = Metric()
    
    body = []
    for file in files:
        labels, predicts, _ = load_label(datadir + file)
        row = [file]
        row.append(metric.accuracy(labels, predicts))
        row.append(metric.kappa(labels, predicts))
        row.append(metric.QWkappa(labels, predicts))
        body.append(row)
    
    output = datadir+'H_NewCourse.txt'
    print output
    fio.WriteMatrix(output, body, header=None)
def get_metrics_H1_CV(datadir):
    metric = Metric()
    
    folds = range(0, 10)
    
    #fix firstnode
    feature = 'quality_rubric_firstnode_'
    feature_fixed = 'quality_rubric_firstnode_fixed_'
    
    for fold in folds:
        input = datadir + feature + str(fold)+'_test.label'
        zero_file = datadir + feature + str(fold)+'_test_0.txt'
        output = datadir + feature_fixed + str(fold)+'_test.label'
        fix_firstnode(input, zero_file, output)
         
    body = []
    for feature in ['quality_WC_Unigram_', 
                    'quality_WC_Unigam_NonZero_', 
                    'quality_WC_Unigam_Content_', 
                    'quality_WC_Unigam_OrgAssign_', 
                    'quality_WC_Unigam_Speciteller_', 
                    'quality_WC_Unigam_Title_',
                    'quality_rubric_',
                    'quality_rubric_firstnode_fixed_',
                    'quality_DT_',
                    ]:
        for fold in folds:
            file = feature + str(fold)+'_test.label'
            print file
            
            labels, predicts, _ = load_label(datadir + file)
            row = [file]
            row.append(metric.accuracy(labels, predicts))
            row.append(metric.kappa(labels, predicts))
            row.append(metric.QWkappa(labels, predicts))
            body.append(row)
    
    output = datadir+'H1_cv.txt'
    print output
    fio.WriteMatrix(output, body, header=None)  
def publish(api_key):
    if authenticator.valid(api_key):
        try:
            body = bottle.request.body.read()
            metrics = json.loads(body)
        except:
            log.error("Request unparsable: %s" % (body))
            bottle.abort(400, "Unable to successfully parse JSON")

        if type(metrics) == list:
            for metric in metrics:
                try:
                    m = Metric(metric)
                    m.enqueue(q)
                except ValueError:
                    bottle.abort(400, "Invalid Metric Structure: %s" % (str(metric)))
                except Exception:
                    bottle.abort(500, "Unable to store metric!")
        else:
            bottle.abort(400, "Metric structure must be <list> containing n <dict> items")
    else:
        bottle.abort(403, "API Key not valid")
def get_metrics_H0(datadir):
    metric = Metric()

    body = []
    for feature in ['quality_rubric', 'quality_binary_model', 'quality_New', 'quality_firstnode']:
        file = feature+'.label'
        print file

        labels, predicts, _ = load_label(datadir + file)
        fio.WriteMatrix(datadir + file + '.cm', metric.confusion_matrix(labels, predicts), None)
        
        row = [file]
        row.append(metric.accuracy(labels, predicts))
        row.append(metric.kappa(labels, predicts))
        row.append(metric.QWkappa(labels, predicts))
#         row += metric.cv_accuracy(labels, predicts)
#         row += metric.cv_kappa(labels, predicts)
#         row += metric.cv_QWkappa(labels, predicts)
        body.append(row)
    
    output = datadir+'H0.txt'
    print output
    fio.WriteMatrix(output, body, header=None) 
示例#46
0
    def __init__(self, user, password, ip, port, metric_labels):
        """Generate metrics list, connect to RabbitMQ server"""
        # Add valid metrics to list
        self.metric_list = []
        for label in metric_labels:
            metric = Metric.create(label)
            if metric is not None:
                self.metric_list.append(metric)

        # Connect to RabbitMQ server
        credentials = PlainCredentials(user,
                                       password)
        basicConfig(format='%(levelname)s:%(message)s',
                    level=CRITICAL)
        connection_parameters = ConnectionParameters(ip,
                                                     port,
                                                     '/',
                                                     credentials)
        self.connection = BlockingConnection(connection_parameters)
        self.channel = self.connection.channel()
        self.host = gethostname()

        # Prepare request queue
        self.processing_request = False
        self.channel.exchange_declare(exchange='request',
                                      type='fanout')
        result = self.channel.queue_declare(exclusive=True)
        request_queue = result.method.queue
        self.channel.queue_bind(exchange='request',
                                queue=request_queue)
        self.channel.basic_consume(self.request_metric,
                                   queue=request_queue,
                                   no_ack=True)

        # Prepare reply queue
        self.channel.queue_declare(queue='reply')
示例#47
0
from metric import Metric
import sympy as sp
x=sp.symbols(['z','t','x','y'])
gs=[sp.Symbol('g'+str(i))(x[0]) for i in x]
M=Metric(x,sp.diag(*gs))

A=[sp.Symbol(t)(M.x[0]) for t in ['Az','At','Ax','Ay']]


der=M.covariantVectorDerivative(A)

assert(M.g.is_diagonal())
sp.pprint(sp.simplify(sum(der[i][i]*M.ginv[i,i] for i in range(len(M.x)))))
示例#48
0
    def __init__(self, ministry, zbins=None, magbins=None,
                  catalog_type=['galaxycatalog'], tag=None,
                  appmag=True, lower_limit=True, cutband=None,
                  normed=True, selection_dict=None, **kwargs):
        """
        Angular Number density of objects as a function of redshift.

        inputs
        --------
        ministry - Ministry

        keywords
        ------
        zbins - np.array
          An array containing the edges of the redshift bins to use for dn/dz
        lower_limit - boolean
          Whether or not the magnitudes in magbins should be interpreted
          as bin edges or lower limits of cuts (i.e. mag<magbins[i])
        magbins - np.array
          A list of magnitudes to use as bin edges or lower limits of cuts
        catalog_type - list
          A list of catalog types, ususally not used
        tag - string
          A name for the metric to be used when making comparisons using bb-compare
        appmag - boolean
          True if we want to use apparent magnitude for cuts, false for absolute magnitudes
        cutband - int
          The index of the column of a vector of magnitudes to use
        normed - boolean
          Whether the metric integrates to N/deg^2 or not. Usually want True.
        """
        Metric.__init__(self, ministry, tag=tag, **kwargs)

        self.catalog_type = catalog_type

        if zbins is None:
            self.zbins = np.linspace(0, 2.0, 61)
        else:
            self.zbins = zbins
            self.zbins = np.array(self.zbins)

        self.nzbins = len(self.zbins)-1

        if appmag:
            self.mkey = 'appmag'
            defmbins = np.array([18, 19, 20, 21])
        else:
            self.mkey = 'luminosity'
            defmbins = np.array([-24, -23, -22, -21])

        if cutband is None:
            self.cutband = 0
        else:
            self.cutband = cutband

        self.lower_limit = lower_limit

        if magbins is None:
            self.magbins = [None]
            self.nmagbins = 0
            self.nomags = True
        else:
            self.nomags = False
            self.magbins = magbins
            if self.lower_limit:
                self.nmagbins = len(self.magbins)
            else:
                self.nmagbins = len(self.magbins) - 1

        self.normed = normed
        self.aschema = 'galaxyonly'

        if self.nmagbins > 0:
            self.mapkeys = [self.mkey, 'redshift']
            self.unitmap = {self.mkey :'mag'}
        else:
            self.mapkeys = ['redshift']
            self.unitmap = {}

        #Make selection dict here
        if (selection_dict is None) & lower_limit:
            selection_dict = {'mag':{'selection_type':'cut1d',
                                    'mapkeys':['appmag'],
                                    'bins':self.magbins,
                                    'selection_ind':self.cutband,
                                    'lower':True}}
        elif (selection_dict is None):
            selection_dict = {'mag':{'selection_type':'binned1d',
                                    'mapkeys':['appmag'],
                                    'bins':self.magbins,
                                    'selection_ind':self.cutband}}

        nmkeys = []
        for s in selection_dict:
            if 'mapkeys' in selection_dict[s]:
                ss = selection_dict[s]
                for m in ss['mapkeys']:
                    if m not in self.mapkeys:
                        self.mapkeys.append(m)
                    if m not in self.unitmap:
                        self.unitmap[m] = self.defaultUnits(m)

        self.zcounts = None
        self.selector = Selector(selection_dict)
示例#49
0
class Traffic:
    """ 
    Traffic class definition    : Traffic data

    Methods:
        Traffic(tmx)         :  constructor
        
        create(acid,actype,aclat,aclon,achdg,acalt,acspd) : create aircraft
        delete(acid)         : delete an aircraft from traffic data
        update(sim)          : do a numerical integration step
        findnearest(lat,lon) : find nearest a/c to lat/lon position
        trafperf ()          : calculate aircraft performance parameters

    Members: see create

    Created by  : Jacco M. Hoekstra
    """

    def __init__(self, tmx):
        self.tmx = tmx  # tmx object contains sim, scr and other main objects
        self.dts = []
        self.ntraf = 0

        #  model-specific parameters. 
        # Default: BlueSky internal performance model.
        # Insert your BADA files to the folder "BlueSky/data/coefficients/BADA"
        # for working with EUROCONTROL`s Base of Aircraft Data revision 3.12

        # Check for BADA OPF file 
        path = os.path.dirname(__file__) + '/../../data/coefficients/BADA/'
        files = os.listdir(path)
        self.bada = False

        for f in files:
            if f.upper().find(".OPF")!=-1:
                self.bada=True
                break
            
        # Initialize correct performance models
        if self.bada:
            self.perf = PerfBADA(self)
        else:
            self.perf = Perf(self)

        self.dts = []

        self.ntraf = 0
        
        # Create datalog instance
        self.log = Datalog()

        # Traffic list & arrays definition

        # !!!IMPORTANT NOTE!!!
        # Anny variables added here should also be added in the Traffic
        # methods self.create() (append) and self.delete() (delete)
        # which can be found directly below __init__

        # Traffic basic flight data

        # Traffic basic flight data
        self.id = []  # identifier (string)
        self.type = []  # aircaft type (string)
        self.lat = np.array([])  # latitude [deg]
        self.lon = np.array([])  # longitude [deg]
        self.trk = np.array([])  # track angle [deg]
        self.tas = np.array([])  # true airspeed [m/s]
        self.gs  = np.array([])  # ground speed [m/s]
        self.cas = np.array([])  # callibrated airspeed [m/s]
        self.M =   np.array([])  # mach number
        self.alt = np.array([])  # altitude [m]
        self.fll = np.array([]) # flight level [ft/100]       
        self.vs = np.array([])  # vertical speed [m/s]
        self.rho = np.array([])  # atmospheric air density [m/s]
        self.temp = np.array([]) # atmospheric air temperature [K]
        self.dtemp = np.array([]) # delta t for non-ISA conditions

        
        # Traffic performance data
        self.avsdef = np.array([])  # [m/s]default vertical speed of autopilot
        self.aphi = np.array([])  # [rad] bank angle setting of autopilot
        self.ax = np.array([])  # [m/s2] absolute value of longitudinal accelleration
        self.bank = np.array([])          # nominal bank angle, [radian]
        self.bphase = np.array([])             # standard bank angles per phase
        self.hdgsel = np.array([])   # determines whether aircraft is turning

        # Crossover altitude
        self.abco = np.array([])
        self.belco = np.array([])
                   

        # Traffic autopilot settings
        self.ahdg = []  # selected heading [deg]
        self.aspd = []  # selected spd(eas) [m/s]
        self.aptas = [] # just for initializing
        self.ama  = []   # selected spd above crossover altitude (Mach) [-]        
        self.aalt = []  # selected alt[m]
        self.afll = []  # selected fl [ft/100]
        self.avs  = []  # selected vertical speed [m/s]

        # limit settings
        self.lspd = [] # limit speed
        self.lalt = [] # limit altitude
        self.lvs =  [] # limit vertical speed due to thrust limitation


        # Traffic navigation information
        self.orig = []  # Four letter code of origin airport
        self.dest = []  # Four letter code of destination airport


        # LNAV route navigation
        self.swlnav = np.array([])  # Lateral (HDG) based on nav?
        self.swvnav = np.array([])  # Vertical/longitudinal (ALT+SPD) based on nav info

        self.actwplat = np.array([])  # Active WP latitude
        self.actwplon = np.array([])  # Active WP longitude
        self.actwpalt = np.array([])  # Active WP altitude to arrive at
        self.actwpspd = np.array([])  # Active WP speed
        self.actwpturn = np.array([]) # Distance when to turn to next waypoint

        # VNAV cruise level
        self.crzalt = np.array([])    # Cruise altitude[m]

        # Route info
        self.route = []

        # ASAS info per aircraft:
        self.iconf = []  # index in 'conflicting' aircraft database
        self.asasactive = np.array([]) # whether the autopilot follows ASAS or not
        self.asashdg = np.array([]) # heading provided by the ASAS [deg]
        self.asasspd = np.array([]) # speed provided by the ASAS (eas) [m/s]
        self.asasalt = np.array([]) # speed alt by the ASAS [m]
        self.asasvsp = np.array([]) # speed vspeed by the ASAS [m/s]

        self.desalt = np.array([]) #desired altitude [m]
        self.deshdg =np.array([]) #desired heading
        self.desvs =np.array([]) #desired vertical speed [m/s]
        self.desspd =np.array([]) #desired speed [m/s]

        # Display information on label
        self.label = []  # Text and bitmap of traffic label
        self.trailcol = []  # Trail color: default 'Blue'

        # Area
        self.inside = []
        
        # Transmitted data to other aircraft due to truncated effect
        self.adsbtime=np.array([])
        self.adsblat=np.array([])        
        self.adsblon=np.array([])
        self.adsbalt=np.array([])
        self.adsbtrk=np.array([])
        self.adsbtas=np.array([])
        self.adsbgs=np.array([])
        self.adsbvs=np.array([])
        
        #-----------------------------------------------------------------------------
        # Not per aircraft data

        # Scheduling of FMS and ASAS
        self.t0fms = -999.  # last time fms was called
        self.dtfms = 1.01  # interval for fms

        self.t0asas = -999.  # last time ASAS was called
        self.dtasas = 1.00  # interval for ASAS

        # Flight performance scheduling
        self.perfdt = 0.1          # [s] update interval of performance limits
        self.perft0 = -self.perfdt # [s] last time checked (in terms of sim.t)
        self.warned2 = False    # Flag: Did we warn for default engine parameters yet?


        # ASAS objects: Conflict Database
        self.dbconf = Dbconf(self,300., 5.*nm, 1000.*ft) # hard coded values to be replaced

        # Import navigation data base
        self.navdb  = Navdatabase("global")  # Read nav data from global folder

        # Traffic area: delete traffic when it leaves this area (so not when outside)
        self.swarea    = False
        self.arealat0  = 0.0  # [deg] lower latitude defining area
        self.arealat1  = 0.0  # [deg] upper latitude defining area
        self.arealat0  = 0.0  # [deg] lower longitude defining area
        self.arealat1  = 0.0  # [deg] upper longitude defining area
        self.areafloor = -999999.0  # [m] Delete when descending through this h
        self.areadt    = 5.0  # [s] frequency of area check (simtime)
        self.areat0    = -100.  # last time checked

        # Taxi switch
        self.swtaxi = False  # Default OFF: delete traffic below 1500 ft

        # Research Area ("Square" for Square, "Circle" for Circle area)
        self.area = ""

        # Metrics
        self.metricSwitch = 0
        self.metric       = Metric()

        # Bread crumbs for trails
        self.lastlat  = []
        self.lastlon  = []
        self.lasttim  = []
        self.trails   = Trails()
        self.swtrails = False  # Default switched off
        
        # ADS-B Coverage area
        self.swAdsbCoverage = False
        
        # Noise (turbulence, ADBS-transmission noise, ADSB-truncated effect)
        self.setNoise(False)
        
        self.eps = np.array([])
        
        return

    def create(self, acid, actype, aclat, aclon, achdg, acalt, acspd):
        """Create an aircraft"""
        # Check if not already exist
        if self.id.count(acid.upper()) > 0:
            return  # already exists do nothing

        # Increase number of aircraft
        self.ntraf = self.ntraf + 1

        # Process input
        self.id.append(acid.upper())
        self.type.append(actype)
        self.lat = np.append(self.lat, aclat)
        self.lon = np.append(self.lon, aclon)
        self.trk = np.append(self.trk, achdg)  # TBD: add conversion hdg => trk
        self.alt = np.append(self.alt, acalt)
        self.fll = np.append(self.fll, (acalt)/100)
        self.vs = np.append(self.vs, 0.)
        self.rho = np.append(self.rho, density(acalt))
        self.temp = np.append(self.temp, temp(acalt))
        self.dtemp = np.append(self.dtemp, 0) # at the moment just ISA conditions
        self.tas = np.append(self.tas, acspd)
        self.gs  = np.append(self.gs, acspd)
        self.cas = np.append(self.cas, tas2cas(acspd, acalt))
        self.M   = np.append (self.M, tas2mach(acspd, acalt)) 

        # AC is initialized with neutral max bank angle
        self.bank = np.append(self.bank, 25.)
        if self.ntraf<2:
            self.bphase = np.deg2rad(np.array([15,35,35,35,15,45]))
        self.hdgsel = np.append(self.hdgsel, False)

        #------------------------------Performance data--------------------------------                   
        # Type specific data 
        #(temporarily default values)
        self.avsdef = np.append(self.avsdef, 1500. * fpm)  # default vertical speed of autopilot
        self.aphi = np.append(self.aphi, radians(25.))  # bank angle setting of autopilot
        self.ax = np.append(self.ax, kts)  # absolute value of longitudinal accelleration

        # Crossover altitude
        self.abco = np.append(self.abco, 0)
        self.belco = np.append(self.belco, 1)         


        # performance data
        self.perf.create(actype)     

        # Traffic autopilot settings: hdg[deg], spd (CAS,m/s), alt[m], vspd[m/s]
        self.ahdg = np.append(self.ahdg, achdg)  # selected heading [deg]
        self.aspd = np.append(self.aspd, tas2eas(acspd, acalt))  # selected spd(eas) [m/s]
        self.aptas = np.append(self.aptas, vcas2tas(self.aspd, self.alt)) # [m/s]
        self.ama  = np.append(self.ama, 0.) # selected spd above crossover (Mach) [-]
        self.aalt = np.append(self.aalt, acalt)  # selected alt[m]
        self.afll = np.append(self.afll, (acalt/100)) # selected fl[ft/100]
        self.avs = np.append(self.avs, 0.)  # selected vertical speed [m/s]
        
        # limit settings: initialize with 0
        self.lspd = np.append(self.lspd, 0.0)
        self.lalt = np.append(self.lalt, 0.0)
        self.lvs = np.append(self.lvs, 0.0)

        # Traffic navigation information
        self.dest.append("")
        self.orig.append("")

        # LNAV route navigation
        self.swlnav = np.append(self.swlnav, False)  # Lateral (HDG) based on nav
        self.swvnav = np.append(self.swvnav, False)  # Vertical/longitudinal (ALT+SPD) based on nav info

        self.actwplat  = np.append(self.actwplat, 89.99)  # Active WP latitude
        self.actwplon  = np.append(self.actwplon, 0.0)   # Active WP longitude
        self.actwpalt  = np.append(self.actwpalt, 0.0)   # Active WP altitude
        self.actwpspd  = np.append(self.actwpspd, -999.)   # Active WP speed
        self.actwpturn = np.append(self.actwpturn, 1.0)   # Distance to active waypoint where to turn

        # VNAV cruise level
        self.crzalt = np.append(self.crzalt,-999.) # Cruise altitude[m] <0=None

        # Route info
        self.route.append(Route(self.navdb))  # create empty route connected with nav databse

        # ASAS info: no conflict => -1
        self.iconf.append(-1)  # index in 'conflicting' aircraft database
        self.asasactive = np.append(self.asasactive, False)
        self.asashdg = np.append(self.asashdg, achdg)
        self.asasspd = np.append(self.asasspd, tas2eas(acspd, acalt))
        self.asasalt = np.append(self.asasalt, acalt)
        self.asasvsp = np.append(self.asasvsp, 0.)

        # Area variable set to False to avoid deletion upon creation outside
        self.inside.append(False)

        # Display information on label
        self.label.append(['', '', '', 0])

        # Bread crumbs for trails
        self.trailcol.append(self.trails.defcolor)
        self.lastlat = np.append(self.lastlat, aclat)
        self.lastlon = np.append(self.lastlon, aclon)
        self.lasttim = np.append(self.lasttim, 0.0)

        # ADS-B Coverage area
        self.swAdsbCoverage = False
        
        # Transmitted data to other aircraft due to truncated effect
        self.adsbtime=np.append(self.adsbtime,np.random.rand(self.trunctime))
        self.adsblat=np.append(self.adsblat,aclat)
        self.adsblon=np.append(self.adsblon,aclon)
        self.adsbalt=np.append(self.adsbalt,acalt)
        self.adsbtrk=np.append(self.adsbtrk,achdg)
        self.adsbtas=np.append(self.adsbtas,acspd)
        self.adsbgs=np.append(self.adsbgs,acspd)
        self.adsbvs=np.append(self.adsbvs,0.)
        
        self.eps = np.append(self.eps, 0.01)

        return

    def delete(self, acid):
        """Delete an aircraft"""

        try:  # prevent error due to not found
            idx = self.id.index(acid)
        except:
            return False

        del self.id[idx]
        del self.type[idx]

        # Traffic basic data
        self.lat = np.delete(self.lat, idx)
        self.lon = np.delete(self.lon, idx)
        self.trk = np.delete(self.trk, idx)
        self.alt = np.delete(self.alt, idx)
        self.fll = np.delete(self.fll, idx)
        self.vs = np.delete(self.vs, idx)
        self.tas = np.delete(self.tas, idx)
        self.gs  = np.delete(self.gs, idx)
        self.cas = np.delete(self.cas, idx)
        self.M   = np.delete(self.M, idx)
        self.T = np.delete(self.T, idx)
        self.p = np.delete(self.p, idx)        
        self.rho = np.delete(self.rho, idx)
        self.temp = np.delete(self.temp, idx)
        self.dtemp = np.delete(self.dtemp, idx)
        
        self.hdgsel = np.delete(self.hdgsel, idx)
        self.bank = np.delete(self.bank, idx)
      
        # Crossover altitude
        self.abco = np.delete(self.abco, idx) 
        self.belco = np.delete(self.belco, idx)
        
        # Type specific data (temporarily default values)
        self.avsdef = np.delete(self.avsdef, idx)
        self.aphi = np.delete(self.aphi, idx)
        self.ax = np.delete(self.ax, idx)
  
        # performance data
        self.perf.delete(idx)

        # Traffic autopilot settings: hdg[deg], spd (CAS,m/s), alt[m], vspd[m/s]
        self.ahdg  = np.delete(self.ahdg, idx)
        self.aspd  = np.delete(self.aspd, idx)
        self.ama   = np.delete(self.ama, idx)
        self.aptas = np.delete(self.aptas, idx)
        self.aalt  = np.delete(self.aalt, idx)
        self.afll  = np.delete(self.afll, idx)
        self.avs   = np.delete(self.avs, idx)
        
        # limit settings
        self.lspd = np.delete(self.lspd, idx)
        self.lalt = np.delete(self.lalt, idx)
        self.lvs = np.delete(self.lvs, idx)

        # Traffic navigation variables
        del self.dest[idx]
        del self.orig[idx]

        self.swlnav = np.delete(self.swlnav, idx)
        self.swvnav = np.delete(self.swvnav, idx)

        self.actwplat  = np.delete(self.actwplat,  idx)
        self.actwplon  = np.delete(self.actwplon,  idx)
        self.actwpalt  = np.delete(self.actwpalt,  idx)
        self.actwpspd  = np.delete(self.actwpspd,  idx)
        self.actwpturn = np.delete(self.actwpturn, idx)

        # VNAV cruise level
        self.crzalt    = np.delete(self.crzalt,    idx)
        
        # Route info
        del self.route[idx]

        # ASAS info
        del self.iconf[idx]
        self.asasactive=np.delete(self.asasactive, idx)        
        self.asashdg=np.delete(self.asashdg, idx)
        self.asasspd=np.delete(self.asasspd, idx)
        self.asasalt=np.delete(self.asasalt, idx)
        self.asasvsp=np.delete(self.asasvsp, idx)

        self.desalt=np.delete(self.desalt, idx)
        self.desvs=np.delete(self.desvs, idx)
        self.desspd=np.delete(self.desspd, idx)
        self.deshdg=np.delete(self.deshdg, idx)  


        # Metrics, area
        del self.inside[idx]

        # Traffic display data: label
        del self.label[idx]

        # Delete bread crumb data
        self.lastlat = np.delete(self.lastlat, idx)
        self.lastlon = np.delete(self.lastlon, idx)
        self.lasttim = np.delete(self.lasttim, idx)
        del self.trailcol[idx]

        # Transmitted data to other aircraft due to truncated effect
        self.adsbtime=np.delete(self.adsbtime,idx)
        self.adsblat=np.delete(self.adsblat,idx)
        self.adsblon=np.delete(self.adsblon,idx)
        self.adsbalt=np.delete(self.adsbalt,idx)
        self.adsbtrk=np.delete(self.adsbtrk,idx)
        self.adsbtas=np.delete(self.adsbtas,idx)
        self.adsbgs=np.delete(self.adsbgs,idx)
        self.adsbvs=np.delete(self.adsbvs,idx)

        # Decrease number fo aircraft
        self.ntraf = self.ntraf - 1
        
        self.eps = np.delete(self.eps, idx)
        return True

    def deleteall(self):
        """Clear traffic buffer"""
        ndel = self.ntraf
        for i in range(ndel):
            self.delete(self.id[-1])
        self.ntraf = 0
        self.dbconf.reset()
        self.perf.reset
        return

    def update(self):
        """Sim and command objects quick access"""
        sim = self.tmx.sim
        cmd = self.tmx.cmd

        if (sim.mode == sim.op and sim.dt > 0.0 and self.ntraf > 0):
            self.dts.append(sim.dt)

            #---------------- Atmosphere ----------------
            self.T, self.rho, self.p = vatmos(self.alt)

            #-------------- Performance limits autopilot settings --------------
            # Check difference with AP settings for trafperf and autopilot
            self.delalt = self.aalt - self.alt  # [m]
            
            # below crossover altitude: CAS=const, above crossover altitude: MA = const
            # aptas hast to be calculated before delspd
            self.aptas = vcas2tas(self.aspd, self.alt)*self.belco + vmach2tas(self.ama, self.alt)*self.abco  
            self.delspd = self.aptas - self.tas 
       

            ###############################################################################
            # Debugging: add 10000 random aircraft
            #            if sim.t>1.0 and self.ntraf<1000:
            #                for i in range(10000):
            #                   acid="KL"+str(i)
            #                   aclat = random.random()*180.-90.
            #                   aclon = random.random()*360.-180.
            #                   achdg = random.random()*360.
            #                   acalt = (random.random()*18000.+2000.)*0.3048
            #                   self.create(acid,'B747',aclat,aclon,achdg,acalt,350.)
            #
            #################################################################################
            
            #-------------------- ADSB update: --------------------

            self.adsbtime+=sim.dt
            ADSB_update=np.where(self.adsbtime>self.trunctime)
            if not self.ADSBtrunc:
                ADSB_update=range(self.ntraf)
            for i in ADSB_update:
                self.adsbtime[i]-=self.trunctime
                self.adsblat[i]=self.lat[i]
                self.adsblon[i]=self.lon[i]
                self.adsbalt[i]=self.alt[i]
                self.adsbtrk[i]=self.trk[i]
                self.adsbtas[i]=self.tas[i]
                self.adsbgs[i]=self.gs[i]
                self.adsbvs[i]=self.vs[i]
            

            #------------------- ASAS update: ---------------------
            # Scheduling: when dt has passed or restart:
            if self.t0asas+self.dtasas<sim.t or sim.t<self.t0asas \
                and self.dbconf.swasas:
                self.t0asas = sim.t

                # Save old result
                iconf0 = np.array(self.iconf)

                # Call with traffic database and sim data
                self.dbconf.cd_state(sim)
                self.dbconf.cr_eby(sim)
                self.dbconf.APorASAS(sim)

                # Reset label because of colour change
                chnged = np.where(iconf0!=np.array(self.iconf))[0]
                for i in chnged:
                    self.label[i]=[" "," ", ""," "]


            #-----------------  FMS GUIDANCE & NAVIGATION  ------------------
            # Scheduling: when dt has passed or restart:
            if self.t0fms+self.dtfms<sim.t or sim.t<self.t0fms:
                self.t0fms = sim.t
                
                # FMS LNAV mode:

                qdr, dist = qdrdist(self.lat, self.lon, self.actwplat, self.actwplon) #[deg][nm]

                # Check whether shift based dist [nm] is required, set closer than WP turn distance

                iwpclose = np.where(self.swlnav*(dist < self.actwpturn))[0]
                
                # Shift for aircraft i where necessary

                for i in iwpclose:

                # Get next wp (lnavon = False if no more waypoints)

                    lat, lon, alt, spd, xtoalt, toalt, lnavon =  \
                           self.route[i].getnextwp()  # note: xtoalt,toalt in [m]

                # End of route/no more waypoints: switch off LNAV

                    if not lnavon:
                        self.swlnav[i] = False # Drop LNAV at end of route

                # In case of no LNAV, do not allow VNAV mode on it sown

                    if not self.swlnav[i]:
                        self.swvnav[i] = False
                        
                    self.actwplat[i] = lat
                    self.actwplon[i] = lon

                    # User entered altitude

                    if alt >= 0.:
                        self.actwpalt[i] = alt
                        
                    # VNAV calculated altitude is available and active
                    
                    if toalt  >= 0. and self.swvnav[i]:
                        # Descent VNAV mode (T/D logic)
                        
                        if self.alt[i]>toalt+10.*ft:       # Descent part is in this range of waypoints:

                            # Flat earth distance to next wp
                            dy = (lat-self.lat[i])
                            dx = (lon-self.lon[i])*cos(radians(lat))
                            dist2wp = 60.*nm*sqrt(dx*dx+dy*dy)
                  
                            steepness = 3000.*ft/(10.*nm) # 1:3 rule of thumb for now
                            maxaltwp  = toalt + xtoalt*steepness    # max allowed altitude at next wp
                            self.actwpalt[i] = min(self.alt[i],maxaltwp) #To descend now or descend later?

                            if maxaltwp<self.alt[i]: # if descent is necessary with maximum steepness

                                self.aalt[i] = self.actwpalt[i] # dial in altitude of next waypoint as calculated

                                t2go         = max(0.1,dist2wp)/max(0.01,self.gs[i])
                                self.avs[i]  = (self.actwpalt[i] - self.alt[i])/t2go
                           
                               
                            else:
                                print "else 1"
                                pass # TBD

                        # Climb VNAV mode: climb as soon as possible (T/C logic)                        

                        elif self.swvnav[i] and self.alt[i]<toalt-10.*ft:

                            # Flat earth distance to next wp

                            dy = (lat-self.lat[i])
                            dx = (lon-self.lon[i])*cos(radians(lat))
                            dist2wp = 60.*nm*sqrt(dx*dx+dy*dy)


                            self.aalt[i] = self.actwpalt[i] # dial in altitude of next waypoint as calculated

                            t2go         = max(0.1,dist2wp)/max(0.01,self.gs[i])
                            self.avs[i]  = (self.actwpalt[i] - self.alt[i])/t2go
                           
                           
                    if spd>0. and lnavon and self.swvnav[i]:
                        if spd<2.0:
                           self.actwpspd[i] = mach2cas(spd,self.alt[i])                            
                        else:    
                           self.actwpspd[i] = cas2tas(spd,self.alt[i])
                    else:
                        self.actwpspd[i] = -999.

                    # Calculate distance before waypoint where to start the turn
                    # Turn radius:      R = V2 tan phi / g
                    # Distance to turn: wpturn = R * tan (1/2 delhdg) but max 4 times radius
                    turnrad = self.tas[i]*self.tas[i]/tan(self.bank[i]) /g0 /nm # [nm] default bank angle per flight phase
#                    print turnrad
                    dy = (self.actwplat[i]-self.lat[i])
                    dx = (self.actwplon[i]-self.lon[i])*cos(radians(self.lat[i]))
                    qdr[i] = degrees(atan2(dx,dy))                    
                    self.actwpturn[i] = max(3.,abs(turnrad*tan(radians(0.5*degto180(qdr[i]- \
                         self.route[i].wpdirfrom[self.route[i].iactwp])))))  # [nm]                
                    
                # Set headings based on swlnav
                self.ahdg = np.where(self.swlnav, qdr, self.ahdg)

            # NOISE: Turbulence
            if self.turbulence:
                timescale=np.sqrt(sim.dt)
                trkrad=np.radians(self.trk)
                
                #write turbulences in array
                turb=np.array(self.standardturbulence)
                turb=np.where(turb>1e-6,turb,1e-6)
                
                #horizontal flight direction
                turbhf=np.random.normal(0,turb[0]*timescale,self.ntraf) #[m]
                
                #horizontal wing direction
                turbhw=np.random.normal(0,turb[1]*timescale,self.ntraf) #[m]
                
                #vertical direction
                turbalt=np.random.normal(0,turb[2]*timescale,self.ntraf) #[m]
                
                #latitudinal, longitudinal direction
                turblat=np.cos(trkrad)*turbhf-np.sin(trkrad)*turbhw #[m]
                turblon=np.sin(trkrad)*turbhf+np.cos(trkrad)*turbhw #[m]
            else:
                turbalt=np.zeros(self.ntraf) #[m]
                turblat=np.zeros(self.ntraf) #[m]
                turblon=np.zeros(self.ntraf) #[m]


            # ASAS AP switches
            #--------- Select Autopilot settings to follow: destination or ASAS ----------

            # desired autopilot settings due to ASAS
            self.deshdg = self.asasactive*self.asashdg+(1-self.asasactive)*self.ahdg
            self.desspd = self.asasactive*self.asasspd+(1-self.asasactive)*self.aspd
            self.desalt = self.asasactive*self.asasalt+(1-self.asasactive)*self.aalt
            self.desvs = self.asasactive*self.asasvsp+(1-self.asasactive)*self.avs

            # check for the flight envelope
            self.perf.limits()
     

            # update autopilot settings with values within the flight envelope
            # speed
            self.aspd = (self.lspd ==0)*self.desspd + (self.lspd!=0)*self.lspd
            # altitude
            self.aalt = (self.lalt ==0)*self.desalt + (self.lalt!=0)*self.lalt
            # hdg
            self.ahdg = self.deshdg
            # vs
            self.avs = (self.lvs==0)*self.desvs + (self.lvs!=0)*self.lvs

            # below crossover altitude: CAS=const, above crossover altitude: MA = const
            #climb/descend above crossover: Ma = const, else CAS = const  
            #ama is fixed when above crossover
            check = self.abco*(self.ama == 0.)
            swma = np.where(check==True)
            self.ama[swma] = cas2mach(self.aspd[swma], self.alt[swma])
            # ama is deleted when below crossover
            check2 = self.belco*(self.ama!=0.)
            swma2 = np.where(check2==True)
            self.ama[swma2] = 0. 

            #---------- Basic Autopilot  modes ----------

            # SPD HOLD/SEL mode: aspd = autopilot selected speed (first only eas)
            # for information:    
            self.aptas = (self.actwpspd>0.)*self.actwpspd + \
                                      (self.actwpspd<=0.)*self.aptas
            self.delspd = self.aptas - self.tas 
            swspdsel = np.abs(self.delspd) > 0.4  # <1 kts = 0.514444 m/s
            ax = np.minimum(abs(self.delspd / sim.dt), self.ax)
            self.tas = swspdsel * (self.tas + ax * np.sign(self.delspd) *  \
                                              sim.dt) + (1. - swspdsel) * self.aptas
                                              
            # print "DELSPD", self.delspd/sim.dt, "AX", self.ax, "SELECTED", ax
            # without that part: non-accelerating ac would have TAS = 0            
            # print "1-sw", (1. - swspdsel) * self.aptas
            # print "NEW TAS", self.tas

            # Speed conversions
            self.cas = vtas2cas(self.tas, self.alt)
            self.gs  = self.tas
            self.M   = vtas2mach(self.tas, self.alt)

            # Update performance every self.perfdt seconds
            if abs(sim.t - self.perft0) >= self.perfdt:               
                self.perft0 = sim.t            
                self.perf.perf()

            # update altitude
            self.eps = np.array(self.ntraf * [0.01])  # almost zero for misc purposes
            swaltsel = np.abs(self.aalt-self.alt) >      \
                      np.maximum(3.,np.abs(2. * sim.dt * np.abs(self.vs))) # 3.[m] = 10 [ft] eps alt
#            print swaltsel

            self.vs = swaltsel*((1-self.swvnav)*np.abs(1500./60.*ft) + \
                         self.swvnav*np.abs(self.avs)*np.sign(self.aalt-self.alt))

            self.alt = swaltsel * (self.alt + self.vs * sim.dt) + \
                       (1. - swaltsel) * self.aalt + turbalt

            # HDG HOLD/SEL mode: ahdg = ap selected heading
            delhdg = (self.ahdg - self.trk + 180.) % 360 - 180.  #[deg]

            # print delhdg
            # omega = np.degrees(g0 * np.tan(self.aphi) / \
            # np.maximum(self.tas, self.eps))
                                           
            # nominal bank angles per phase from BADA 3.12                               
            omega = np.degrees(g0 * np.tan(self.bank) / \
                               np.maximum(self.tas, self.eps))
                               
            self.hdgsel = np.abs(delhdg) > np.abs(2. * sim.dt * omega)
            
            self.trk = (self.trk + sim.dt * omega * self.hdgsel * np.sign(delhdg)) % 360.

            #--------- Kinematics: update lat,lon,alt ----------
            ds = sim.dt * self.gs

            self.lat = self.lat + np.degrees(ds * np.cos(np.radians(self.trk)+turblat) \
                                             / Rearth)

            self.lon = self.lon + np.degrees(ds * np.sin(np.radians(self.trk)+turblon) \
                                             / np.cos(np.radians(self.lat)) / Rearth)

            # Update trails when switched on
            if self.swtrails:
                self.trails.update(sim.t, self.lat, self.lon,
                                   self.lastlat, self.lastlon,
                                   self.lasttim, self.id, self.trailcol)
            else:
                self.lastlat = self.lat
                self.lastlon = self.lon
                self.lattime = sim.t

            # Update metrics
            if self.metricSwitch == 1:
                self.metric.update(self, sim, cmd)


        # ----------------AREA check----------------
        # Update area once per areadt seconds:
        if self.swarea and abs(sim.t - self.areat0) > self.areadt:

            # Update loop timer
            self.areat0 = sim.t

            # Chekc all aicraft
            for i in xrange(self.ntraf):

                # Current status
                if self.area == "Square":
                    inside = self.arealat0 <= self.lat[i] <= self.arealat1 and \
                             self.arealon0 <= self.lon[i] <= self.arealon1 and \
                             self.alt[i] >= self.areafloor and \
                             (self.alt[i] >= 1500 or self.swtaxi)
                elif self.area == "Circle":

                    ## Average of lat
                    latavg = (radians(self.lat[i]) + radians(self.metric.fir_circle_point[0])) / 2
                    cosdlat = (cos(latavg))

                    # Distance x to centroid
                    dx = (self.lon[i] - self.metric.fir_circle_point[1]) * cosdlat * 60
                    dx2 = dx * dx

                    # Distance y to centroid
                    dy = self.lat[i] - self.metric.fir_circle_point[0]
                    dy2 = dy * dy * 3600

                    # Radius squared
                    r2 = self.metric.fir_circle_radius * self.metric.fir_circle_radius

                    # Inside if smaller
                    inside = (dx2 + dy2) < r2

                # Compare with previous: when leaving area: delete command
                if self.inside[i] and not inside:
                    cmd.stack("DEL " + self.id[i])

                # Update area status
                self.inside[i] = inside
        return


    def findnearest(self, lat, lon):
        """Find nearest aircraft"""
        if self.ntraf > 0:
            d2 = (lat - self.lat) ** 2 + cos(radians(lat)) * (lon - self.lon) ** 2
            idx = np.argmin(d2)
            del d2
            return idx
        else:
            return -1


    def id2idx(self, acid):
        """Find index of aircraft id"""
        try:
            return self.id.index(acid.upper())
        except:
            return -1


    def changeTrailColor(self, color, idx):
        """Change color of aircraft trail"""
        # print color
        # print idx
        # print "     " + str(self.trails.colorsOfAC[idx])
        self.trailcol[idx] = self.trails.colorList[color]
        # print "     " + str(self.trails.colorsOfAC[idx])
        return

    def setNoise(self,A):
        """Noise (turbulence, ADBS-transmission noise, ADSB-truncated effect)"""
        self.noise=A
        self.trunctime=1 # seconds
        self.transerror = [1,100, 100 * ft] #[degree,m,m] standard bearing, distance, altitude error
        self.standardturbulence = [0,0.1,0.1] #m/s standard turbulence  (nonnegative)
        # in (horizontal flight direction, horizontal wing direction, vertical)
        
        if self.noise:
            self.turbulence=True
            self.ADSBtransnoise=True
            self.ADSBtrunc=True
        else:
            self.turbulence=False
            self.ADSBtransnoise=False
            self.ADSBtrunc=False
        return

    def engchange (self, acid, engid):
        """Change of engines"""
        self.perf.engchange(acid, engid)
        return
示例#50
0
    def __init__(self, tmx):
        self.tmx = tmx  # tmx object contains sim, scr and other main objects
        self.dts = []
        self.ntraf = 0

        #  model-specific parameters. 
        # Default: BlueSky internal performance model.
        # Insert your BADA files to the folder "BlueSky/data/coefficients/BADA"
        # for working with EUROCONTROL`s Base of Aircraft Data revision 3.12

        # Check for BADA OPF file 
        path = os.path.dirname(__file__) + '/../../data/coefficients/BADA/'
        files = os.listdir(path)
        self.bada = False

        for f in files:
            if f.upper().find(".OPF")!=-1:
                self.bada=True
                break
            
        # Initialize correct performance models
        if self.bada:
            self.perf = PerfBADA(self)
        else:
            self.perf = Perf(self)

        self.dts = []

        self.ntraf = 0
        
        # Create datalog instance
        self.log = Datalog()

        # Traffic list & arrays definition

        # !!!IMPORTANT NOTE!!!
        # Anny variables added here should also be added in the Traffic
        # methods self.create() (append) and self.delete() (delete)
        # which can be found directly below __init__

        # Traffic basic flight data

        # Traffic basic flight data
        self.id = []  # identifier (string)
        self.type = []  # aircaft type (string)
        self.lat = np.array([])  # latitude [deg]
        self.lon = np.array([])  # longitude [deg]
        self.trk = np.array([])  # track angle [deg]
        self.tas = np.array([])  # true airspeed [m/s]
        self.gs  = np.array([])  # ground speed [m/s]
        self.cas = np.array([])  # callibrated airspeed [m/s]
        self.M =   np.array([])  # mach number
        self.alt = np.array([])  # altitude [m]
        self.fll = np.array([]) # flight level [ft/100]       
        self.vs = np.array([])  # vertical speed [m/s]
        self.rho = np.array([])  # atmospheric air density [m/s]
        self.temp = np.array([]) # atmospheric air temperature [K]
        self.dtemp = np.array([]) # delta t for non-ISA conditions

        
        # Traffic performance data
        self.avsdef = np.array([])  # [m/s]default vertical speed of autopilot
        self.aphi = np.array([])  # [rad] bank angle setting of autopilot
        self.ax = np.array([])  # [m/s2] absolute value of longitudinal accelleration
        self.bank = np.array([])          # nominal bank angle, [radian]
        self.bphase = np.array([])             # standard bank angles per phase
        self.hdgsel = np.array([])   # determines whether aircraft is turning

        # Crossover altitude
        self.abco = np.array([])
        self.belco = np.array([])
                   

        # Traffic autopilot settings
        self.ahdg = []  # selected heading [deg]
        self.aspd = []  # selected spd(eas) [m/s]
        self.aptas = [] # just for initializing
        self.ama  = []   # selected spd above crossover altitude (Mach) [-]        
        self.aalt = []  # selected alt[m]
        self.afll = []  # selected fl [ft/100]
        self.avs  = []  # selected vertical speed [m/s]

        # limit settings
        self.lspd = [] # limit speed
        self.lalt = [] # limit altitude
        self.lvs =  [] # limit vertical speed due to thrust limitation


        # Traffic navigation information
        self.orig = []  # Four letter code of origin airport
        self.dest = []  # Four letter code of destination airport


        # LNAV route navigation
        self.swlnav = np.array([])  # Lateral (HDG) based on nav?
        self.swvnav = np.array([])  # Vertical/longitudinal (ALT+SPD) based on nav info

        self.actwplat = np.array([])  # Active WP latitude
        self.actwplon = np.array([])  # Active WP longitude
        self.actwpalt = np.array([])  # Active WP altitude to arrive at
        self.actwpspd = np.array([])  # Active WP speed
        self.actwpturn = np.array([]) # Distance when to turn to next waypoint

        # VNAV cruise level
        self.crzalt = np.array([])    # Cruise altitude[m]

        # Route info
        self.route = []

        # ASAS info per aircraft:
        self.iconf = []  # index in 'conflicting' aircraft database
        self.asasactive = np.array([]) # whether the autopilot follows ASAS or not
        self.asashdg = np.array([]) # heading provided by the ASAS [deg]
        self.asasspd = np.array([]) # speed provided by the ASAS (eas) [m/s]
        self.asasalt = np.array([]) # speed alt by the ASAS [m]
        self.asasvsp = np.array([]) # speed vspeed by the ASAS [m/s]

        self.desalt = np.array([]) #desired altitude [m]
        self.deshdg =np.array([]) #desired heading
        self.desvs =np.array([]) #desired vertical speed [m/s]
        self.desspd =np.array([]) #desired speed [m/s]

        # Display information on label
        self.label = []  # Text and bitmap of traffic label
        self.trailcol = []  # Trail color: default 'Blue'

        # Area
        self.inside = []
        
        # Transmitted data to other aircraft due to truncated effect
        self.adsbtime=np.array([])
        self.adsblat=np.array([])        
        self.adsblon=np.array([])
        self.adsbalt=np.array([])
        self.adsbtrk=np.array([])
        self.adsbtas=np.array([])
        self.adsbgs=np.array([])
        self.adsbvs=np.array([])
        
        #-----------------------------------------------------------------------------
        # Not per aircraft data

        # Scheduling of FMS and ASAS
        self.t0fms = -999.  # last time fms was called
        self.dtfms = 1.01  # interval for fms

        self.t0asas = -999.  # last time ASAS was called
        self.dtasas = 1.00  # interval for ASAS

        # Flight performance scheduling
        self.perfdt = 0.1          # [s] update interval of performance limits
        self.perft0 = -self.perfdt # [s] last time checked (in terms of sim.t)
        self.warned2 = False    # Flag: Did we warn for default engine parameters yet?


        # ASAS objects: Conflict Database
        self.dbconf = Dbconf(self,300., 5.*nm, 1000.*ft) # hard coded values to be replaced

        # Import navigation data base
        self.navdb  = Navdatabase("global")  # Read nav data from global folder

        # Traffic area: delete traffic when it leaves this area (so not when outside)
        self.swarea    = False
        self.arealat0  = 0.0  # [deg] lower latitude defining area
        self.arealat1  = 0.0  # [deg] upper latitude defining area
        self.arealat0  = 0.0  # [deg] lower longitude defining area
        self.arealat1  = 0.0  # [deg] upper longitude defining area
        self.areafloor = -999999.0  # [m] Delete when descending through this h
        self.areadt    = 5.0  # [s] frequency of area check (simtime)
        self.areat0    = -100.  # last time checked

        # Taxi switch
        self.swtaxi = False  # Default OFF: delete traffic below 1500 ft

        # Research Area ("Square" for Square, "Circle" for Circle area)
        self.area = ""

        # Metrics
        self.metricSwitch = 0
        self.metric       = Metric()

        # Bread crumbs for trails
        self.lastlat  = []
        self.lastlon  = []
        self.lasttim  = []
        self.trails   = Trails()
        self.swtrails = False  # Default switched off
        
        # ADS-B Coverage area
        self.swAdsbCoverage = False
        
        # Noise (turbulence, ADBS-transmission noise, ADSB-truncated effect)
        self.setNoise(False)
        
        self.eps = np.array([])
        
        return
示例#51
0
 def __init__(self, name):
     Metric.__init__(self, name)
     self._count = 0
     return
示例#52
0
 def __init__(self, name, fn):
     Metric.__init__(self, name)
     self._fn = fn
     return