def __init__(self, opt): self.log = create_logger(__name__, silent=False, to_disk=True, log_file=cfg.log_filename if cfg.if_test else [cfg.log_filename, cfg.save_root + 'log.txt']) self.sig = Signal(cfg.signal_file) self.opt = opt self.show_config() self.clas = None # load dictionary self.word2idx_dict, self.idx2word_dict = load_dict(cfg.dataset) # Dataloader try: self.train_data = GenDataIter(cfg.train_data) self.test_data = GenDataIter(cfg.test_data, if_test_data=True) except: pass try: self.train_data_list = [GenDataIter(cfg.cat_train_data.format(i)) for i in range(cfg.k_label)] self.test_data_list = [GenDataIter(cfg.cat_test_data.format(i), if_test_data=True) for i in range(cfg.k_label)] self.clas_data_list = [GenDataIter(cfg.cat_test_data.format(str(i)), if_test_data=True) for i in range(cfg.k_label)] self.train_samples_list = [self.train_data_list[i].target for i in range(cfg.k_label)] self.clas_samples_list = [self.clas_data_list[i].target for i in range(cfg.k_label)] except: pass # Criterion self.mle_criterion = nn.NLLLoss() self.dis_criterion = nn.CrossEntropyLoss() self.clas_criterion = nn.CrossEntropyLoss() # Optimizer self.clas_opt = None # Metrics self.bleu = BLEU('BLEU', gram=[2, 3, 4, 5], if_use=cfg.use_bleu) self.nll_gen = NLL('NLL_gen', if_use=cfg.use_nll_gen, gpu=cfg.CUDA) self.nll_div = NLL('NLL_div', if_use=cfg.use_nll_div, gpu=cfg.CUDA) self.self_bleu = BLEU('Self-BLEU', gram=[2, 3, 4], if_use=cfg.use_self_bleu) self.clas_acc = ACC(if_use=cfg.use_clas_acc) self.ppl = PPL(self.train_data, self.test_data, n_gram=5, if_use=cfg.use_ppl) self.all_metrics = [self.bleu, self.nll_gen, self.nll_div, self.self_bleu, self.ppl]
class BasicInstructor: def __init__(self, opt): self.log = create_logger(__name__, silent=False, to_disk=True, log_file=cfg.log_filename if cfg.if_test else [cfg.log_filename, cfg.save_root + 'log.txt']) self.sig = Signal(cfg.signal_file) self.opt = opt self.show_config() self.clas = None # load dictionary self.word2idx_dict, self.idx2word_dict = load_dict(cfg.dataset) # Dataloader try: self.train_data = GenDataIter(cfg.train_data) self.test_data = GenDataIter(cfg.test_data, if_test_data=True) except: pass try: self.train_data_list = [ GenDataIter(cfg.cat_train_data.format(i)) for i in range(cfg.k_label) ] self.test_data_list = [ GenDataIter(cfg.cat_test_data.format(i), if_test_data=True) for i in range(cfg.k_label) ] self.clas_data_list = [ GenDataIter(cfg.cat_test_data.format(str(i)), if_test_data=True) for i in range(cfg.k_label) ] self.train_samples_list = [ self.train_data_list[i].target for i in range(cfg.k_label) ] self.clas_samples_list = [ self.clas_data_list[i].target for i in range(cfg.k_label) ] except: pass # Criterion self.mle_criterion = nn.NLLLoss() self.dis_criterion = nn.CrossEntropyLoss() self.clas_criterion = nn.CrossEntropyLoss() # Optimizer self.clas_opt = None # Metrics self.bleu = BLEU('BLEU', gram=[2, 3, 4, 5], if_use=cfg.use_bleu) self.nll_gen = NLL('NLL_gen', if_use=cfg.use_nll_gen, gpu=cfg.CUDA) self.nll_div = NLL('NLL_div', if_use=cfg.use_nll_div, gpu=cfg.CUDA) self.self_bleu = BLEU('Self-BLEU', gram=[2, 3, 4], if_use=cfg.use_self_bleu) self.clas_acc = ACC(if_use=cfg.use_clas_acc) self.ppl = PPL(self.train_data, self.test_data, n_gram=5, if_use=cfg.use_ppl) self.all_metrics = [ self.bleu, self.nll_gen, self.nll_div, self.self_bleu, self.ppl ] def _run(self): print('Nothing to run in Basic Instructor!') pass def _test(self): pass def init_model(self): if cfg.dis_pretrain: self.log.info('Load pre-trained discriminator: {}'.format( cfg.pretrained_dis_path)) self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path)) if cfg.gen_pretrain: self.log.info('Load MLE pre-trained generator: {}'.format( cfg.pretrained_gen_path)) self.gen.load_state_dict(torch.load(cfg.pretrained_gen_path)) if cfg.CUDA: self.gen = self.gen.cuda() self.dis = self.dis.cuda() def train_gen_epoch(self, model, data_loader, criterion, optimizer): total_loss = 0 for i, data in enumerate(data_loader): inp, target = data['input'], data['target'] if cfg.CUDA: inp, target = inp.cuda(), target.cuda() hidden = model.init_hidden(data_loader.batch_size) pred = model.forward(inp, hidden) loss = criterion(pred, target.view(-1)) self.optimize(optimizer, loss, model) total_loss += loss.item() return total_loss / len(data_loader) def train_dis_epoch(self, model, data_loader, criterion, optimizer): total_loss = 0 total_acc = 0 total_num = 0 for i, data in enumerate(data_loader): inp, target = data['input'], data['target'] if cfg.CUDA: inp, target = inp.cuda(), target.cuda() pred = model.forward(inp) loss = criterion(pred, target) self.optimize(optimizer, loss, model) total_loss += loss.item() total_acc += torch.sum((pred.argmax(dim=-1) == target)).item() total_num += inp.size(0) total_loss /= len(data_loader) total_acc /= total_num return total_loss, total_acc def train_classifier(self, epochs): """ Classifier for calculating the classification accuracy metric of category text generation. Note: the train and test data for the classifier is opposite to the generator. Because the classifier is to calculate the classification accuracy of the generated samples where are trained on self.train_samples_list. Since there's no test data in synthetic data (oracle data), the synthetic data experiments doesn't need a classifier. """ import copy # Prepare data for Classifier clas_data = CatClasDataIter(self.clas_samples_list) eval_clas_data = CatClasDataIter(self.train_samples_list) max_acc = 0 best_clas = None for epoch in range(epochs): c_loss, c_acc = self.train_dis_epoch(self.clas, clas_data.loader, self.clas_criterion, self.clas_opt) _, eval_acc = self.eval_dis(self.clas, eval_clas_data.loader, self.clas_criterion) if eval_acc > max_acc: best_clas = copy.deepcopy( self.clas.state_dict()) # save the best classifier max_acc = eval_acc self.log.info( '[PRE-CLAS] epoch %d: c_loss = %.4f, c_acc = %.4f, eval_acc = %.4f, max_eval_acc = %.4f', epoch, c_loss, c_acc, eval_acc, max_acc) self.clas.load_state_dict( copy.deepcopy(best_clas)) # Reload the best classifier @staticmethod def eval_dis(model, data_loader, criterion): total_loss = 0 total_acc = 0 total_num = 0 with torch.no_grad(): for i, data in enumerate(data_loader): inp, target = data['input'], data['target'] if cfg.CUDA: inp, target = inp.cuda(), target.cuda() pred = model.forward(inp) loss = criterion(pred, target) total_loss += loss.item() total_acc += torch.sum((pred.argmax(dim=-1) == target)).item() total_num += inp.size(0) total_loss /= len(data_loader) total_acc /= total_num return total_loss, total_acc @staticmethod def optimize_multi(opts, losses): for i, (opt, loss) in enumerate(zip(opts, losses)): opt.zero_grad() loss.backward(retain_graph=True if i < len(opts) - 1 else False) opt.step() @staticmethod def optimize(opt, loss, model=None, retain_graph=False): opt.zero_grad() loss.backward(retain_graph=retain_graph) if model is not None: torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.clip_norm) opt.step() def show_config(self): self.log.info(100 * '=') self.log.info('> training arguments:') for arg in vars(self.opt): self.log.info('>>> {0}: {1}'.format(arg, getattr(self.opt, arg))) self.log.info(100 * '=') def cal_metrics(self, fmt_str=False): """ Calculate metrics :param fmt_str: if return format string for logging """ with torch.no_grad(): # Prepare data for evaluation eval_samples = self.gen.sample(cfg.samples_num, 4 * cfg.batch_size) gen_data = GenDataIter(eval_samples) gen_tokens = tensor_to_tokens(eval_samples, self.idx2word_dict) gen_tokens_s = tensor_to_tokens(self.gen.sample(200, 200), self.idx2word_dict) # Reset metrics self.bleu.reset(test_text=gen_tokens, real_text=self.test_data.tokens) self.nll_gen.reset(self.gen, self.train_data.loader) self.nll_div.reset(self.gen, gen_data.loader) self.self_bleu.reset(test_text=gen_tokens_s, real_text=gen_tokens) self.ppl.reset(gen_tokens) if fmt_str: return ', '.join([ '%s = %s' % (metric.get_name(), metric.get_score()) for metric in self.all_metrics ]) else: return [metric.get_score() for metric in self.all_metrics] def cal_metrics_with_label(self, label_i): assert type(label_i) == int, 'missing label' with torch.no_grad(): # Prepare data for evaluation eval_samples = self.gen.sample(cfg.samples_num, 8 * cfg.batch_size, label_i=label_i) gen_data = GenDataIter(eval_samples) gen_tokens = tensor_to_tokens(eval_samples, self.idx2word_dict) gen_tokens_s = tensor_to_tokens( self.gen.sample(200, 200, label_i=label_i), self.idx2word_dict) clas_data = CatClasDataIter([eval_samples], label_i) # Reset metrics self.bleu.reset(test_text=gen_tokens, real_text=self.test_data_list[label_i].tokens) self.nll_gen.reset(self.gen, self.train_data_list[label_i].loader, label_i) self.nll_div.reset(self.gen, gen_data.loader, label_i) self.self_bleu.reset(test_text=gen_tokens_s, real_text=gen_tokens) self.clas_acc.reset(self.clas, clas_data.loader) self.ppl.reset(gen_tokens) return [metric.get_score() for metric in self.all_metrics] def comb_metrics(self, fmt_str=False): all_scores = [ self.cal_metrics_with_label(label_i) for label_i in range(cfg.k_label) ] all_scores = np.array( all_scores).T.tolist() # each row for each metric if fmt_str: return ', '.join([ '%s = %s' % (metric.get_name(), score) for (metric, score) in zip(self.all_metrics, all_scores) ]) return all_scores def _save(self, phase, epoch): """Save model state dict and generator's samples""" if phase != 'ADV': torch.save( self.gen.state_dict(), cfg.save_model_root + 'gen_{}_{:05d}.pt'.format(phase, epoch)) save_sample_path = cfg.save_samples_root + 'samples_{}_{}_{:05d}.txt'.format( phase, cfg.samples_num, epoch) samples = self.gen.sample(5000, cfg.batch_size) write_tokens(save_sample_path, tensor_to_tokens(samples, self.idx2word_dict)) def update_temperature(self, i, N): self.gen.temperature.data = torch.Tensor( [get_fixed_temperature(cfg.temperature, i, N, cfg.temp_adpt)]) if cfg.CUDA: self.gen.temperature.data = self.gen.temperature.data.cuda()