def train(): data, _ = process_data.get_signal_values() Y = process_data.get_crack_lengths() X = metrics.fft_amp_sums(data) #yes #X = metrics.correlation_coef(data) i = metrics.correlation_coef(data) #yes X = metrics.concatenate_data(X, i) i = metrics.psd_height_sum(data) #maybe X = metrics.concatenate_data(X, i) i = metrics.xc_mean_bin1(data) #yes X = metrics.concatenate_data(X, i) X_train, Y_train, X_test, Y_test = process_data.remove_one_plate(X, Y) X_train, Y_train, X_test, Y_test = process_data.flatten_data( X_train, Y_train, X_test, Y_test) scaler = RobustScaler().fit(np.concatenate((X_train, X_test))) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) Y_train = np.array(Y_train) Y_test = np.array(Y_test) lin_reg.fit(X_train, Y_train, X_test, Y_test)
def load_data(): data, _ = process_data.get_signal_values() Y = process_data.get_crack_lengths() X = metrics.fft_amp_sums(data) # i = metrics.avg_peak_width(data) # X = metrics.concatenate_data(X, i) i = metrics.correlation_coef(data) X = metrics.concatenate_data(X, i) i = metrics.xc_mean_bin1(data) X = metrics.concatenate_data(X, i) return X, Y
def predict(model): data, _ = process_data.get_signal_values() Y = process_data.get_crack_lengths() x1 = metrics.fft_amp_sums(data) x2 = metrics.avg_peak_width(data) X = metrics.concatenate_data(x1, x2) X, Y, _, _ = process_data.flatten_data(X, Y) predictions = model.predict(X, Y) print("\nTrue | Predicted") for t, p in zip(Y, predictions): print(t, "-", p)
def train(model): data, _ = process_data.get_signal_values() Y = process_data.get_crack_lengths() X = metrics.fft_amp_sums(data) #yes #X = metrics.correlation_coef(data) # i = metrics.avg_peak_width(data) #no # X = metrics.concatenate_data(X, i) i = metrics.correlation_coef(data) #yes X = metrics.concatenate_data(X, i) # i = metrics.fft_amp_max(data) #no # X = metrics.concatenate_data(X, i) i = metrics.psd_height_sum(data) #maybe X = metrics.concatenate_data(X, i) i = metrics.xc_mean_bin1(data) #yes X = metrics.concatenate_data(X, i) # i = metrics.psd_max_height(data) # X = metrics.concatenate_data(X, i) X_train, Y_train, X_test, Y_test = process_data.remove_one_plate(X, Y) X_train, Y_train, X_test, Y_test = process_data.flatten_data( X_train, Y_train, X_test, Y_test) scaler = RobustScaler().fit(np.concatenate((X_train, X_test))) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) Y_train = categorize(Y_train) Y_test = categorize(Y_test) model.fit(X_train, Y_train, X_test, Y_test)