示例#1
0
 def __init__(self,
              EVALUATION_DATA_PATH,
              TARGET_APPLIANCE,
              ON_POWER_THRESHOLD,
              MAX_TARGET_POWER,
              disagg_func,
              disagg_kwargs,
              remove_vampire_power=False,
              pad_mains=True,
              pad_appliance=False,
              downsample_factor=1):
     self.EVALUATION_DATA_PATH = EVALUATION_DATA_PATH
     self.BUILDINGS = []
     self.TARGET_APPLIANCE = TARGET_APPLIANCE
     if TARGET_APPLIANCE == "dish washer":
         self.ON_POWER_THRESHOLD = 15
     else:
         self.ON_POWER_THRESHOLD = ON_POWER_THRESHOLD
     self.MAX_TARGET_POWER = MAX_TARGET_POWER
     self.PAD_WIDTH = 1536
     self.pad_mains = pad_mains
     self.pad_appliance = pad_appliance
     self.disagg_func = disagg_func
     self.disagg_kwargs = disagg_kwargs
     self.downsample_factor = downsample_factor
     self.metrics = MetricsAccumulator(self.ON_POWER_THRESHOLD, 4200)
     self._init_data(remove_vampire_power)
示例#2
0
def run_experiment(dataset, INPUT_MEAN, INPUT_STD, SOURCE_TYPES,
                   VALIDATION_SOURCE_TYPES, DOWNSAMPLE_FACTOR, SEQ_LENGTH,
                   TARGET_SEQ_LENGTH, MAX_TARGET_POWER, TARGET_APPLIANCE,
                   TRAINING_SEED, VERBOSE_TRAINING, LEARNING_RATE,
                   NUM_SEQ_PER_BATCH, EPOCHS, STEPS_PER_EPOCH, USE_CUDA,
                   CHECKPOINT_BEST_MSE, CHECKPOINTING_EVERY_N_EPOCHS,
                   TEST_DISAGGREGATE_EVERY_N_EPOCHS, _run):

    torch.manual_seed(TRAINING_SEED)

    OUTPUT_FOLDER = os.path.join(ex.get_experiment_info()['name'], "output")
    for observer in _run.observers:
        if type(observer) is FileStorageObserver:
            OUTPUT_FOLDER = os.path.join(observer.basedir, str(_run._id))
            VERBOSE_TRAINING = 0
    os.makedirs(OUTPUT_FOLDER, exist_ok=True)

    writer = SummaryWriter(log_dir=OUTPUT_FOLDER)

    # From dataset Ingredient
    TRAIN_BUILDINGS = dataset["TRAIN_BUILDINGS"]
    ON_POWER_THRESHOLD = dataset["ON_POWER_THRESHOLD"]

    ##############################################################################################
    #PREPARE DATASET (DATALOADERs)
    ##############################################################################################
    running_data_processes = []  # stop these at the end
    sources, validation_sources = get_sources(
        training_source_names=SOURCE_TYPES,
        validation_source_names=VALIDATION_SOURCE_TYPES,
        seq_length=SEQ_LENGTH,
        sources_seed=TRAINING_SEED,
        validation_stride=128)

    input_processing_steps = [
        Add(-INPUT_MEAN),
        DivideBy(INPUT_STD),
        Transpose((0, 2, 1))
    ]
    target_processing_steps = [
        Add(-INPUT_MEAN),
        DivideBy(INPUT_STD),
        Transpose((0, 2, 1))
    ]

    if DOWNSAMPLE_FACTOR > 1:
        downsample_rng = np.random.RandomState(TRAINING_SEED)
        input_processing_steps_training = [
            DownSample(DOWNSAMPLE_FACTOR, downsample_rng)
        ] + input_processing_steps
    else:
        input_processing_steps_training = input_processing_steps

    validation_pipeline = DataPipeline(
        sources=validation_sources,
        num_seq_per_batch=NUM_SEQ_PER_BATCH,
        input_processing=input_processing_steps_training,
        target_processing=target_processing_steps)
    validation_batches = get_validation_batches(validation_pipeline)
    print("appliance {} has {} validation batches".format(
        TARGET_APPLIANCE,
        sum([len(v) for k, v in validation_batches.items()])))

    data_pipeline = DataPipeline(
        sources=sources,
        num_seq_per_batch=NUM_SEQ_PER_BATCH,
        input_processing=input_processing_steps_training,
        target_processing=target_processing_steps)
    data_thread = DataProcess(data_pipeline)
    data_thread.start()
    running_data_processes.append(data_thread)

    net = _Net(SEQ_LENGTH)
    print(net)

    metrics_accu = MetricsAccumulator(on_power_threshold=ON_POWER_THRESHOLD,
                                      max_power=MAX_TARGET_POWER)

    # note: MSE - Mean Squared Error
    criterion = torch.nn.MSELoss()

    stop_training = False
    best_mse = None

    # PREPARE TEST DISAGGREGATOR
    if TEST_DISAGGREGATE_EVERY_N_EPOCHS is not None:
        test_disaggregator = Disaggregator(
            EVALUATION_DATA_PATH=dataset['EVALUATION_DATA_PATH'],
            TARGET_APPLIANCE=TARGET_APPLIANCE,
            ON_POWER_THRESHOLD=ON_POWER_THRESHOLD,
            MAX_TARGET_POWER=MAX_TARGET_POWER,
            pad_mains=True,
            pad_appliance=False,
            disagg_func=disag_seq2seq,
            downsample_factor=DOWNSAMPLE_FACTOR,
            disagg_kwargs=dict(model=net,
                               input_processing=input_processing_steps,
                               target_processing=target_processing_steps,
                               n_seq_per_batch=NUM_SEQ_PER_BATCH,
                               seq_length=SEQ_LENGTH,
                               target_seq_length=TARGET_SEQ_LENGTH,
                               USE_CUDA=USE_CUDA,
                               stride=1))

    # PREPARE TENSORS, WHICH WILL BE FED USED DURING TRAINING AND VALIDATION
    input = torch.FloatTensor(NUM_SEQ_PER_BATCH, 1, SEQ_LENGTH)
    target = torch.FloatTensor(NUM_SEQ_PER_BATCH, 1, TARGET_SEQ_LENGTH)

    if USE_CUDA:
        # note: push to GPU
        net.cuda()
        criterion.cuda()
        input, target = input.cuda(), target.cuda()

    # setup optimizer.  TODO: Should we use 'Adam' for disaggregator?
    optimizer = optim.Adam(net.parameters(),
                           lr=LEARNING_RATE,
                           betas=(0.9, 0.999))
    #optimizer = optim.SGD(net.parameters(), momentum=0.9, nesterov=True, lr=LEARNING_RATE)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=[50, 75],
                                         gamma=0.1)

    history = {}
    csvpath = os.path.join(OUTPUT_FOLDER, "history.csv")
    if os.path.exists(csvpath):
        print("Already exists: {}".format(csvpath))
        return -1

    progbar_epoch = tqdm(desc="Epoch",
                         total=EPOCHS,
                         unit="epoch",
                         disable=(not VERBOSE_TRAINING))
    for epoch in range(EPOCHS):
        # TRAINING
        metrics_log = {'training': {}}
        training_loss = 0.0
        progbar = tqdm(desc="Train",
                       total=STEPS_PER_EPOCH,
                       leave=False,
                       disable=(not VERBOSE_TRAINING))
        for i in range(STEPS_PER_EPOCH):
            net.zero_grad()
            batch = data_thread.get_batch()
            while batch is None:
                batch = data_thread.get_batch()
            qsize = data_thread._queue.qsize()

            aggregated_signal = torch.from_numpy(batch.after_processing.input)
            target_signal = torch.from_numpy(batch.after_processing.target)
            if USE_CUDA:
                aggregated_signal = aggregated_signal.cuda()
                target_signal = target_signal.cuda()
            input.resize_as_(aggregated_signal).copy_(aggregated_signal)
            target.resize_as_(target_signal).copy_(target_signal)
            inputv = Variable(input, requires_grad=False)
            targetv = Variable(target, requires_grad=False)
            output = net(inputv)
            loss = criterion(output, targetv)
            loss.backward()
            optimizer.step()
            training_loss += loss.item()

            progbar.set_postfix(dict(loss="{:.4f}".format(loss.item()),
                                     qsize=qsize),
                                refresh=False)
            progbar.update()

        metrics_log['training']['loss'] = float(training_loss /
                                                STEPS_PER_EPOCH)
        metrics_log['training']['lr'] = optimizer.param_groups[0]['lr']

        # VALIDATION
        #pr_num_thresholds = 127
        for fold in validation_batches:
            metrics_accu.reset_accumulator()
            #accumulated_pr = {}
            #for cl in ["tp", "tn", "fp", "fn"]:
            #    accumulated_pr[cl] = torch.LongTensor(pr_num_thresholds).zero_()
            for batch in validation_batches[fold]:
                aggregated_signal = torch.from_numpy(
                    batch.after_processing.input)
                target_signal = torch.from_numpy(batch.after_processing.target)
                if USE_CUDA:
                    aggregated_signal = aggregated_signal.cuda()
                    target_signal = target_signal.cuda()
                input.resize_as_(aggregated_signal).copy_(aggregated_signal)
                target.resize_as_(target_signal).copy_(target_signal)
                with torch.no_grad():
                    inputv = Variable(input)
                    targetv = Variable(target)
                    output = net(inputv)
                    val_loss = criterion(output, targetv)
                    loss_value = val_loss.item()
                # other metrics
                pred_y = data_pipeline.apply_inverse_processing(
                    output.cpu().data.numpy(), 'target')
                true_y = batch.before_processing.target
                metrics_accu.accumulate_metrics(true_y,
                                                pred_y,
                                                val_loss=loss_value)
                #calculate_pr_curve_torch(accumulated_pr, MAX_TARGET_POWER, true_y, pred_y, num_thresholds=pr_num_thresholds)

            for key, value in metrics_accu.finalize_metrics().items():
                metrics_log.setdefault(fold[0],
                                       {}).setdefault(key, {})[fold[1]] = value

            #precision = accumulated_pr["tp"] / (accumulated_pr["tp"] + accumulated_pr["fp"])
            #recall = accumulated_pr["tp"] / (accumulated_pr["tp"] + accumulated_pr["fn"])
            #writer.add_pr_curve_raw("pr_{}/{}".format(fold[0], fold[1]),
            #    true_positive_counts=accumulated_pr["tp"],
            #    false_positive_counts=accumulated_pr["fp"],
            #    true_negative_counts=accumulated_pr["tn"],
            #    false_negative_counts=accumulated_pr["fn"],
            #    precision=precision, recall=recall,
            #    global_step=(epoch+1)*STEPS_PER_EPOCH, num_thresholds=pr_num_thresholds)

        # LR Scheduler
        val_loss = metrics_log['unseen_activations']['val_loss']['rss']
        #val_loss = metrics_log['mean_squared_error']['unseen_activations']['rss']
        #scheduler.step(val_loss)
        scheduler.step()

        # PRINT STATS
        if not VERBOSE_TRAINING:
            print('[{:d}/{:d}] {}'.format(epoch + 1, EPOCHS,
                                          metrics_log['training']))
        else:
            progbar_epoch.set_postfix(
                dict(loss=metrics_log['training']['loss']), refresh=False)

        progbar_epoch.update()
        progbar.close()

        # store in history / tensorboard
        for fold, metrics_for_fold in metrics_log.items():
            for metric_name, value in metrics_for_fold.items():
                if type(value) == dict:
                    SW_add_scalars2(writer, "{}/{}".format(fold, metric_name),
                                    value, (epoch + 1) * STEPS_PER_EPOCH)
                    for k, v in value.items():
                        name = "{}/{}/{}".format(fold, metric_name, k)
                        history.setdefault(name, []).append(v)
                else:
                    name = "{}/{}".format(fold, metric_name)
                    writer.add_scalar(name, value,
                                      (epoch + 1) * STEPS_PER_EPOCH)
                    history.setdefault(name, []).append(value)

        # CHECKPOINTING
        if CHECKPOINT_BEST_MSE:
            mse = val_loss
            if best_mse is None:
                best_mse = mse
            if best_mse > mse:
                msg = "[{:d}/{:d}] MSE improved from {:.4f} to {:.4f} (d={:f}), saving model...".format(
                    epoch + 1, EPOCHS, best_mse, mse, best_mse - mse)
                if not VERBOSE_TRAINING:
                    print(msg)
                else:
                    progbar_epoch.write(msg)
                torch.save(
                    {
                        'epoch': epoch + 1,
                        'step': (epoch + 1) * STEPS_PER_EPOCH,
                        'mse': mse,
                        'model': net.state_dict()
                    }, '{}/net_best_mse.pth.tar'.format(OUTPUT_FOLDER))
                best_mse = mse

        if CHECKPOINTING_EVERY_N_EPOCHS is not None:
            if (epoch + 1) % CHECKPOINTING_EVERY_N_EPOCHS == 0:
                torch.save(
                    net.state_dict(), '{}/net_step_{:06d}.pth'.format(
                        OUTPUT_FOLDER, (epoch + 1) * STEPS_PER_EPOCH))

        if TEST_DISAGGREGATE_EVERY_N_EPOCHS is not None:
            if (epoch + 1) % TEST_DISAGGREGATE_EVERY_N_EPOCHS == 0:
                scores = test_disaggregator.calculate_metrics()
                scores_by_metric = {}
                for building_i, building in scores.items():
                    for metric, value in building.items():
                        scores_by_metric.setdefault(metric,
                                                    {})[building_i] = value
                for metric, building_d in scores_by_metric.items():
                    SW_add_scalars2(writer, "test_score/{}".format(metric),
                                    building_d, (epoch + 1) * STEPS_PER_EPOCH)

        if stop_training:
            break

    # CHECKPOINTING at end
    torch.save(
        {
            'epoch': epoch + 1,
            'step': (epoch + 1) * STEPS_PER_EPOCH,
            'model': net.state_dict(),
            'optimizer': optimizer.state_dict(),
            #'scheduler': scheduler.state_dict()
            # TODO: scheduler is not saved this way, scheduler.state_dict() does not exist
        },
        '{}/net_step_{:06d}.pth.tar'.format(OUTPUT_FOLDER,
                                            (epoch + 1) * STEPS_PER_EPOCH))

    df = pd.DataFrame(history)
    df.to_csv(csvpath)

    for p in running_data_processes:
        p.stop()
    writer.close()

    #return 42
    return metrics_log['training']['loss']
示例#3
0
class Disaggregator():
    def __init__(self,
                 EVALUATION_DATA_PATH,
                 TARGET_APPLIANCE,
                 ON_POWER_THRESHOLD,
                 MAX_TARGET_POWER,
                 disagg_func,
                 disagg_kwargs,
                 remove_vampire_power=False,
                 pad_mains=True,
                 pad_appliance=False,
                 downsample_factor=1):
        self.EVALUATION_DATA_PATH = EVALUATION_DATA_PATH
        self.BUILDINGS = []
        self.TARGET_APPLIANCE = TARGET_APPLIANCE
        if TARGET_APPLIANCE == "dish washer":
            self.ON_POWER_THRESHOLD = 15
        else:
            self.ON_POWER_THRESHOLD = ON_POWER_THRESHOLD
        self.MAX_TARGET_POWER = MAX_TARGET_POWER
        self.PAD_WIDTH = 1536
        self.pad_mains = pad_mains
        self.pad_appliance = pad_appliance
        self.disagg_func = disagg_func
        self.disagg_kwargs = disagg_kwargs
        self.downsample_factor = downsample_factor
        self.metrics = MetricsAccumulator(self.ON_POWER_THRESHOLD, 4200)
        self._init_data(remove_vampire_power)

    def _init_data(self, remove_vampire_power):
        re_building_filename = re.compile("^((.*)_(.*))\\.pkl$")
        self.mains = {}
        self.appliance_y_true = {}
        for filename in os.listdir(self.EVALUATION_DATA_PATH):
            re_match = re_building_filename.match(filename)
            if re_match:
                building_i = re_match.group(1)
                mains, y_true = (
                    self._load_data(filename,
                        remove_vampire_power,
                        pad_mains=self.pad_mains,
                        pad_appliance=self.pad_appliance))
                if mains is None:
                    continue
                self.BUILDINGS.append(building_i)
                self.mains[building_i] = mains
                self.appliance_y_true[building_i] = y_true


    def _load_data(self, filename, remove_vampire_power, pad_mains=True, pad_appliance=False):
        # Load mains
        filename = os.path.join(self.EVALUATION_DATA_PATH, filename)
        df = pd.read_pickle(filename)

        if not self.TARGET_APPLIANCE in df:
            return None, None

        mains = df['mains'].values
        if remove_vampire_power:
            vampire_power = df['mains'].quantile(0.0002)
            mains = np.clip(mains-vampire_power, 0, None)
        if self.downsample_factor > 1:
            mains = self._resample_mains(mains)

        # Pad
        if pad_mains:
            mains = np.pad(
                mains, pad_width=(self.PAD_WIDTH, self.PAD_WIDTH), mode='constant')

        y_true = df[self.TARGET_APPLIANCE].values

        if pad_appliance:
            y_true = np.pad(
                y_true, pad_width=(self.PAD_WIDTH, self.PAD_WIDTH), mode='constant')

        return mains, y_true


    def _resample_mains(self, mains):
        mains_length_odd = len(mains)
        downsample_factor = self.downsample_factor
        n_samples_new = int(np.ceil(mains_length_odd/downsample_factor))
        mains_length_even = n_samples_new*downsample_factor
        mains_resampled = np.pad(mains, pad_width=(0, mains_length_even-mains_length_odd), mode='constant')
        mains_resampled = mains_resampled.reshape((n_samples_new, downsample_factor))
        mains_resampled[:, :] = mains_resampled.mean(axis=1)[:, np.newaxis]
        return mains_resampled.reshape((-1))[:mains_length_odd]

    def get_mains(self, building_i):
        if pad_mains:
            return self.mains[building_i][self.PAD_WIDTH:-self.PAD_WIDTH]
        else:
            return self.mains[building_i]


    def disaggregate(self, building_i, return_sequences=False):
        kwargs = dict(
            mains=self.mains[building_i],
            target=self.appliance_y_true[building_i],
            max_target_power=self.MAX_TARGET_POWER,
            building_i=building_i,
            return_sequences=return_sequences
        )
        kwargs.update(self.disagg_kwargs)

        if return_sequences:
            estimates, sequences = self.disagg_func(**kwargs)
        else:
            estimates = self.disagg_func(**kwargs)

        if self.pad_mains and not self.pad_appliance:
            estimates = estimates[self.PAD_WIDTH:-self.PAD_WIDTH]  # remove padding
        estimates = np.round(estimates).astype(int)

        if return_sequences:
            return estimates, sequences
        else:
            return estimates


    def calculate_metrics(self, return_sequences=False):
        scores = {}
        estimates = {}
        sequences = {}
        for building_i in self.BUILDINGS:
            mains = self.mains[building_i]
            y_true = self.appliance_y_true[building_i]
            if return_sequences:
                y_pred, y_sequences = self.disaggregate(building_i, return_sequences=True)
            else:
                y_pred = self.disaggregate(building_i)

            if self.pad_appliance:
                y_true = y_true[self.PAD_WIDTH:-self.PAD_WIDTH]  # remove padding
                y_pred = y_pred[self.PAD_WIDTH:-self.PAD_WIDTH]

            # Truncate
            n = min(len(y_true), len(y_pred))
            y_true = y_true[:n]
            y_pred = y_pred[:n]

            #np.savez("building_{}".format(building_i), y_true=y_true, y_pred=y_pred, mains=mains)
            scores[building_i] = self.metrics.run_metrics(y_true, y_pred, mains)

            if return_sequences:
                sequences[building_i] = y_sequences
                estimates[building_i] = y_pred

        if return_sequences:
            return scores, estimates, sequences
        else:
            return scores


    def save_disaggregation_data(self,
                                 model_name,
                                 estimates,
                                 sequences,
                                 SAVETO_DIR='./disaggregation_data/'):

        model_name = model_name.replace(" ", "_")

        SAVETO_DIR = os.path.join(SAVETO_DIR, model_name)

        for building_i in sequences:
            SAVETO_PartialPATH = os.path.join(SAVETO_DIR, str(building_i))
            os.makedirs(SAVETO_PartialPATH, exist_ok=True)
            
            SAVETO_PATHs = [os.path.join(SAVETO_PartialPATH, "estimate_windows.npz"),
                            os.path.join(SAVETO_PartialPATH, "estimate_average.npy"),
                            os.path.join(SAVETO_PartialPATH, "mains.npy"),
                            os.path.join(SAVETO_PartialPATH, "appliance.npy")]

            for SAVETO_PATH in SAVETO_PATHs:
                assert not os.path.exists(SAVETO_PATH), "ERROR: File {} already exists !!!!!!".format(SAVETO_PATH)

            np.savez(SAVETO_PATHs[0], **sequences[building_i])
            np.save(SAVETO_PATHs[1], estimates[building_i])
            np.save(SAVETO_PATHs[2], self.mains[building_i])
            np.save(SAVETO_PATHs[3], self.appliance_y_true[building_i])

            print("INFO: saved estimates windows to {}".format(SAVETO_PATHs[0]))
            print("INFO: saved estimates averages to {}".format(SAVETO_PATHs[1]))
            print("INFO: saved mains to {}".format(SAVETO_PATHs[2]))
            print("INFO: saved appliance_y_true to {}".format(SAVETO_PATHs[3]))


    def load_disaggregation_data(PATH):
        return np.load(PATH)