def main(): # init or load model print("init model with input shape",config["input_shape"]) model = NvNet(config=config,input_shape=config["input_shape"], seg_outChans=config["n_labels"]) parameters = model.parameters() optimizer = optim.Adam(parameters, lr=config["initial_learning_rate"], weight_decay = config["L2_norm"]) start_epoch = 1 if config["VAE_enable"]: loss_function = CombinedLoss(k1=config["loss_k1_weight"], k2=config["loss_k2_weight"]) else: loss_function = SoftDiceLoss() # data_generator print("data generating") training_data = BratsDataset(phase="train", config=config) train_loader = torch.utils.data.DataLoader(dataset=training_data, batch_size=config["batch_size"], shuffle=True, pin_memory=True) valildation_data = BratsDataset(phase="validate", config=config) valildation_loader = torch.utils.data.DataLoader(dataset=valildation_data, batch_size=config["batch_size"], shuffle=True, pin_memory=True) train_logger = Logger(model_name=config["model_file"],header=['epoch', 'loss', 'acc', 'lr']) if config["cuda_devices"] is not None: model = model.cuda() loss_function = loss_function.cuda() # if not config["overwrite"] and os.path.exists(config["model_file"]) or os.path.exists(config["saved_model_file"]): # model, start_epoch, optimizer = load_old_model(model, optimizer, saved_model_path=config["saved_model_file"]) scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=config["lr_decay"],patience=config["patience"]) print("training on label:{}".format(config["labels"])) for i in range(start_epoch,config["epochs"]): train_epoch(epoch=i, data_loader=train_loader, model=model, model_name=config["model_file"], criterion=loss_function, optimizer=optimizer, opt=config, epoch_logger=train_logger) val_loss = val_epoch(epoch=i, data_loader=valildation_loader, model=model, criterion=loss_function, opt=config, optimizer=optimizer, logger=train_logger) scheduler.step(val_loss)
def main(): """ input: outp1 concat with 4 modalities; target: difference between outp1 and the GT :return: """ # init or load model print("init model with input shape", config["input_shape"]) model = AttentionVNet(config=config) parameters = model.parameters() optimizer = optim.Adam(parameters, lr=config["initial_learning_rate"], weight_decay=config["L2_norm"]) start_epoch = 1 if config["VAE_enable"]: loss_function = CombinedLoss(combine=config["combine"], k1=config["loss_k1_weight"], k2=config["loss_k2_weight"]) else: loss_function = SoftDiceLoss(combine=config["combine"]) with open('valid_list.txt', 'r') as f: val_list = f.read().splitlines() with open('train_list.txt', 'r') as f: tr_list = f.read().splitlines() config["training_patients"] = tr_list config["validation_patients"] = val_list preprocessor = stage2net_preprocessor(config, patch_size=patch_size) # data_generator print("data generating") training_data = PatchDataset(phase="train", config=config, preprocessor=preprocessor) valildation_data = PatchDataset(phase="validate", config=config, preprocessor=preprocessor) train_logger = Logger(model_name=config["model_name"] + '.h5', header=['epoch', 'loss', 'wt-dice', 'tc-dice', 'et-dice', 'lr']) if not config["overwrite"] and config["saved_model_file"] is not None: if not os.path.exists(config["saved_model_file"]): raise Exception("Invalid model path!") model, start_epoch, optimizer_resume = load_old_model(model, optimizer, saved_model_path=config["saved_model_file"]) parameters = model.parameters() optimizer = optim.Adam(parameters, lr=optimizer_resume.param_groups[0]["lr"], weight_decay=optimizer_resume.param_groups[0]["weight_decay"]) if config["cuda_devices"] is not None: model = model.cuda() model = nn.DataParallel(model) # multi-gpu training for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.cuda() scheduler = lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=poly_lr_scheduler_multi) # scheduler = lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=poly_lr_scheduler) max_val_TC_dice = 0. max_val_ET_dice = 0. max_val_AVG_dice = 0. for i in range(start_epoch, config["epochs"]): train_epoch(epoch=i, data_set=training_data, model=model, criterion=loss_function, optimizer=optimizer, opt=config, logger=train_logger) val_loss, WT_dice, TC_dice, ET_dice = val_epoch(epoch=i, data_set=valildation_data, model=model, criterion=loss_function, opt=config, optimizer=optimizer, logger=train_logger) scheduler.step() dices = np.array([WT_dice, TC_dice, ET_dice]) AVG_dice = dices.mean() save_flag = False if config["checkpoint"] and TC_dice > max_val_TC_dice: max_val_TC_dice = TC_dice save_flag = True if config["checkpoint"] and ET_dice > max_val_ET_dice: max_val_ET_dice = ET_dice save_flag = True if config["checkpoint"] and AVG_dice > max_val_AVG_dice: max_val_AVG_dice = AVG_dice save_flag = True if save_flag: save_dir = config["result_path"] if not os.path.exists(save_dir): os.makedirs(save_dir) save_states_path = os.path.join(save_dir, 'epoch_{0}_val_loss_{1:.4f}_TC_{2:.4f}_ET_{3:.4f}_AVG_{4:.4f}.pth'.format(i, val_loss, TC_dice, ET_dice, AVG_dice)) if config["cuda_devices"] is not None: state_dict = model.module.state_dict() else: state_dict = model.state_dict() states = { 'epoch': i, 'state_dict': state_dict, 'optimizer': optimizer.state_dict(), } torch.save(states, save_states_path) save_model_path = os.path.join(save_dir, "best_model.pth") if os.path.exists(save_model_path): os.system("rm "+ save_model_path) torch.save(model, save_model_path) print("batch {0:d} finished, validation loss:{1:.4f}; TC:{2:.4f}, ET:{3:.4f}, AVG:{4:.4f}".format(i, val_loss, TC_dice, ET_dice, AVG_dice))
def main(): # init or load model print("init model with input shape", config["input_shape"]) if config["attention"]: model = AttentionVNet(config=config) else: model = NvNet(config=config) parameters = model.parameters() optimizer = optim.Adam(parameters, lr=config["initial_learning_rate"], weight_decay=config["L2_norm"]) start_epoch = 1 if config["VAE_enable"]: loss_function = CombinedLoss(new_loss=config["new_SoftDiceLoss"], k1=config["loss_k1_weight"], k2=config["loss_k2_weight"], alpha=config["focal_alpha"], gamma=config["focal_gamma"], focal_enable=config["focal_enable"]) else: loss_function = SoftDiceLoss(new_loss=config["new_SoftDiceLoss"]) with open('valid_list_v2.txt', 'r') as f: val_list = f.read().splitlines() # with open('train_list.txt', 'r') as f: with open('train_list_v2.txt', 'r') as f: tr_list = f.read().splitlines() config["training_patients"] = tr_list config["validation_patients"] = val_list # data_generator print("data generating") training_data = BratsDataset(phase="train", config=config) # x = training_data[0] # for test valildation_data = BratsDataset(phase="validate", config=config) train_logger = Logger( model_name=config["model_name"] + '.h5', header=['epoch', 'loss', 'wt-dice', 'tc-dice', 'et-dice', 'lr']) if not config["overwrite"] and config["saved_model_file"] is not None: if not os.path.exists(config["saved_model_file"]): raise Exception("Invalid model path!") model, start_epoch, optimizer_resume = load_old_model( model, optimizer, saved_model_path=config["saved_model_file"]) parameters = model.parameters() optimizer = optim.Adam( parameters, lr=optimizer_resume.param_groups[0]["lr"], weight_decay=optimizer_resume.param_groups[0]["weight_decay"]) if config["cuda_devices"] is not None: model = model.cuda() loss_function = loss_function.cuda() model = nn.DataParallel(model) # multi-gpu training for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.cuda() # scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=config["lr_decay"], patience=config["patience"]) scheduler = lr_scheduler.LambdaLR( optimizer=optimizer, lr_lambda=poly_lr_scheduler) # can't restore lr correctly max_val_WT_dice = 0. max_val_AVG_dice = 0. for i in range(start_epoch, config["epochs"]): train_epoch(epoch=i, data_set=training_data, model=model, criterion=loss_function, optimizer=optimizer, opt=config, logger=train_logger) val_loss, WT_dice, TC_dice, ET_dice = val_epoch( epoch=i, data_set=valildation_data, model=model, criterion=loss_function, opt=config, optimizer=optimizer, logger=train_logger) scheduler.step() # scheduler.step(val_loss) dices = np.array([WT_dice, TC_dice, ET_dice]) AVG_dice = dices.mean() if config["checkpoint"] and (WT_dice > max_val_WT_dice or AVG_dice > max_val_AVG_dice or WT_dice >= 0.912): max_val_WT_dice = WT_dice max_val_AVG_dice = AVG_dice # save_dir = os.path.join(config["result_path"], config["model_file"].split("/")[-1].split(".h5")[0]) save_dir = config["result_path"] if not os.path.exists(save_dir): os.makedirs(save_dir) save_states_path = os.path.join( save_dir, 'epoch_{0}_val_loss_{1:.4f}_WTdice_{2:.4f}_AVGDice:{3:.4f}.pth' .format(i, val_loss, WT_dice, AVG_dice)) if config["cuda_devices"] is not None: state_dict = model.module.state_dict() else: state_dict = model.state_dict() states = { 'epoch': i, 'state_dict': state_dict, 'optimizer': optimizer.state_dict(), } torch.save(states, save_states_path) save_model_path = os.path.join(save_dir, "best_model.pth") if os.path.exists(save_model_path): os.system("rm " + save_model_path) torch.save(model, save_model_path) print( "batch {0:d} finished, validation loss:{1:.4f}; WTDice:{2:.4f}; AVGDice:{3:.4f}" .format(i, val_loss, WT_dice, AVG_dice))
def main(): # convert input images into an hdf5 file if config["overwrite"] or not os.path.exists(config["data_file"]): training_files, subject_ids = fetch_training_data_files(return_subject_ids=True) write_data_to_file(training_files, config["data_file"], image_shape=config["image_shape"], subject_ids=subject_ids) # init or load model print("init model with input shape",config["input_shape"]) model = NvNet(config=config) parameters = model.parameters() optimizer = optim.Adam(parameters, lr=config["initial_learning_rate"], weight_decay = config["L2_norm"]) start_epoch = 1 if config["VAE_enable"]: loss_function = CombinedLoss(k1=config["loss_k1_weight"], k2=config["loss_k2_weight"]) else: loss_function = SoftDiceLoss() # data_generator print("data generating") training_data = BratsDataset(phase="train", config=config) valildation_data = BratsDataset(phase="validate", config=config) train_logger = Logger(model_name=config["model_file"],header=['epoch', 'loss', 'acc', 'lr']) if config["cuda_devices"] is not None: # model = nn.DataParallel(model) # multi-gpu training model = model.cuda() loss_function = loss_function.cuda() if not config["overwrite"] and config["saved_model_file"] is not None: if not os.path.exists(config["saved_model_file"]): raise Exception("Invalid model path!") model, start_epoch, optimizer = load_old_model(model, optimizer, saved_model_path=config["saved_model_file"]) scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=config["lr_decay"],patience=config["patience"]) print("training on label:{}".format(config["labels"])) max_val_acc = 0. for i in range(start_epoch,config["epochs"]): train_epoch(epoch=i, data_set=training_data, model=model, criterion=loss_function, optimizer=optimizer, opt=config, logger=train_logger) val_loss, val_acc = val_epoch(epoch=i, data_set=valildation_data, model=model, criterion=loss_function, opt=config, optimizer=optimizer, logger=train_logger) scheduler.step(val_loss) if config["checkpoint"] and val_acc > max_val_acc: max_val_acc = val_acc save_dir = os.path.join(config["result_path"], config["model_file"].split("/")[-1].split(".h5")[0]) if not os.path.exists(save_dir): os.makedirs(save_dir) save_states_path = os.path.join(save_dir,'epoch_{0}_val_loss_{1:.4f}_acc_{2:.4f}.pth'.format(i, val_loss, val_acc)) states = { 'epoch': i + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), } torch.save(states, save_states_path) save_model_path = os.path.join(save_dir, "best_model_file.pth") if os.path.exists(save_model_path): os.system("rm "+save_model_path) torch.save(model, save_model_path)
def main(): # init or load model print("init model with input shape", config["input_shape"]) model = NvNet(config=config) #model = MiniNvNet(config=config) parameters = model.parameters() optimizer = optim.Adam(parameters, lr=config["initial_learning_rate"], weight_decay=config["L2_norm"]) start_epoch = 1 if config["VAE_enable"]: loss_function = CombinedLoss(k1=config["loss_k1_weight"], k2=config["loss_k2_weight"]) else: loss_function = SoftDiceLoss() # data_generator print("data generating") training_data = StanfordDataset(phase="train", config=config) validation_data = StanfordDataset(phase="validate", config=config) # training_data = StanfordSmallDataset(phase="train", config=config, limit=5) # validation_data = StanfordSmallDataset(phase="validate", config=config, limit=1) train_logger = Logger(model_name=config["model_file"], header=['epoch', 'loss', 'acc', 'lr']) if config["cuda_devices"] is not None: #gpu_list = list(range(0, 2)) #model = nn.DataParallel(model, gpu_list) # multi-gpu training model = model.cuda() loss_function = loss_function.cuda() # model = model.to(device=device) # move the model parameters to CPU/GPU # loss_function = loss_function.to(device=device) if not config["overwrite"] and config["saved_model_file"] is not None: if not os.path.exists(config["saved_model_file"]): raise Exception("Invalid model path!") model, start_epoch, optimizer = load_old_model( model, optimizer, saved_model_path=config["saved_model_file"]) scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=config["lr_decay"], patience=config["patience"]) #model = torch.load("checkpoint_models/run0/best_model_file_24.pth") print("training on label:{}".format(config["labels"])) max_val_acc = 0. for i in range(start_epoch, config["epochs"]): train_epoch(epoch=i, data_set=training_data, model=model, criterion=loss_function, optimizer=optimizer, opt=config, logger=train_logger) val_loss, val_acc = val_epoch(epoch=i, data_set=validation_data, model=model, criterion=loss_function, opt=config, optimizer=optimizer, logger=train_logger) scheduler.step(val_loss) if config["checkpoint"] and val_acc >= max_val_acc - 0.10: #0.01: max_val_acc = val_acc save_dir = os.path.join( config["result_path"], config["model_file"].split("/")[-1].split(".h5")[0]) if not os.path.exists(save_dir): os.makedirs(save_dir) save_states_path = os.path.join( save_dir, 'epoch_{0}_val_loss_{1:.4f}_acc_{2:.4f}.pth'.format( i, val_loss, val_acc)) states = { 'epoch': i + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), } torch.save(states, save_states_path) save_model_path = os.path.join(save_dir, "best_model_file_{0}.pth".format(i)) if os.path.exists(save_model_path): os.system("rm " + save_model_path) torch.save(model, save_model_path)